Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Cell ; 181(4): 848-864.e18, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32298651

RESUMO

Chronic obstructive pulmonary disease (COPD) is a progressive condition of chronic bronchitis, small airway obstruction, and emphysema that represents a leading cause of death worldwide. While inflammation, fibrosis, mucus hypersecretion, and metaplastic epithelial lesions are hallmarks of this disease, their origins and dependent relationships remain unclear. Here we apply single-cell cloning technologies to lung tissue of patients with and without COPD. Unlike control lungs, which were dominated by normal distal airway progenitor cells, COPD lungs were inundated by three variant progenitors epigenetically committed to distinct metaplastic lesions. When transplanted to immunodeficient mice, these variant clones induced pathology akin to the mucous and squamous metaplasia, neutrophilic inflammation, and fibrosis seen in COPD. Remarkably, similar variants pre-exist as minor constituents of control and fetal lung and conceivably act in normal processes of immune surveillance. However, these same variants likely catalyze the pathologic and progressive features of COPD when expanded to high numbers.


Assuntos
Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Adulto , Idoso , Animais , Feminino , Fibrose/fisiopatologia , Humanos , Inflamação/patologia , Pulmão/metabolismo , Masculino , Metaplasia/fisiopatologia , Camundongos , Pessoa de Meia-Idade , Neutrófilos/imunologia , Pneumonia/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Análise de Célula Única/métodos , Células-Tronco/metabolismo
2.
Cell ; 168(6): 1086-1100.e10, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28283063

RESUMO

Innate lymphoid cells (ILCs) represent innate versions of T helper and cytotoxic T cells that differentiate from committed ILC precursors (ILCPs). How ILCPs give rise to mature tissue-resident ILCs remains unclear. Here, we identify circulating and tissue ILCPs in humans that fail to express the transcription factors and cytokine outputs of mature ILCs but have these signature loci in an epigenetically poised configuration. Human ILCPs robustly generate all ILC subsets in vitro and in vivo. While human ILCPs express low levels of retinoic acid receptor (RAR)-related orphan receptor C (RORC) transcripts, these cells are found in RORC-deficient patients and retain potential for EOMES+ natural killer (NK) cells, interferon gamma-positive (IFN-γ+) ILC1s, interleukin (IL)-13+ ILC2s, and for IL-22+, but not for IL-17A+ ILC3s. Our results support a model of tissue ILC differentiation ("ILC-poiesis"), whereby diverse ILC subsets are generated in situ from systemically distributed ILCPs in response to local environmental signals.


Assuntos
Linfócitos/citologia , Células-Tronco/citologia , Animais , Antígenos CD34/análise , Diferenciação Celular , Linhagem da Célula , Sangue Fetal/citologia , Feto/citologia , Humanos , Imunidade Inata , Interleucina-17 , Fígado/citologia , Pulmão/citologia , Linfócitos/imunologia , Tecido Linfoide/citologia , Camundongos , Proteínas Proto-Oncogênicas c-kit/análise , Transcrição Gênica
3.
J Virol ; 97(12): e0105223, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38032197

RESUMO

IMPORTANCE: Human metapneumovirus (hMPV) is a common pathogen causing lower respiratory tract infections worldwide and can develop severe symptoms in high-risk populations such as infants, the elderly, and immunocompromised patients. There are no approved hMPV vaccines or neutralizing antibodies available for therapeutic or prophylactic use. The trimeric hMPV fusion F protein is the major target of neutralizing antibodies in human sera. Understanding the immune recognition of antibodies to hMPV-F antigen will provide critical insights into developing efficacious hMPV monoclonal antibodies and vaccines.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Idoso , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Metapneumovirus/fisiologia , Infecções por Paramyxoviridae/imunologia , Proteínas Virais de Fusão , Vacinas Virais/imunologia
4.
J Biomed Sci ; 30(1): 59, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525188

RESUMO

BACKGROUND: The COVID-19 pandemic continues to pose a significant worldwide threat to human health, as emerging SARS-CoV-2 Omicron variants exhibit resistance to therapeutic antibodies and the ability to evade vaccination-induced antibodies. Here, we aimed to identify human antibodies (hAbs) from convalescent patients that are potent and broadly neutralizing toward Omicron sublineages. METHODS: Using a single B-cell cloning approach, we isolated BA.5 specific human antibodies. We further examined the neutralizing activities of the most promising neutralizing hAbs toward different variants of concern (VOCs) with pseudotyped virus. RESULTS: Sixteen hAbs showed strong neutralizing activities against Omicron BA.5 with low IC50 values (IC50 < 20 ng/mL). Among four of the most promising neutralizing hAbs (RBD-hAb-B22, -B23, -B25 and -B34), RBD-hAb-B22 exhibited the most potent and broad neutralization profiles across Omicron subvariant pseudoviruses, with low IC50 values (7.7-41.6 ng/mL) and a low PRNT50 value (3.8 ng/mL) in plaque assays with authentic BA.5. It also showed potent therapeutic effects in BA.5-infected K18-hACE2 mice. CONCLUSIONS: Thus, our efficient screening of BA.5-specific neutralizing hAbs from breakthrough infectious convalescent donors successfully yielded hAbs with potent therapeutic potential against multiple SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Pandemias , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Glicoproteína da Espícula de Coronavírus/genética
5.
Mol Biol Rep ; 49(8): 7887-7898, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35637316

RESUMO

BACKGROUND: Disease-specific human induced pluripotent stem cells (hiPSCs) can be generated directly from individuals with known disease characteristics or alternatively be modified using genome editing approaches to introduce disease causing genetic mutations to study the biological response of those mutations. The genome editing procedure in hiPSCs is still inefficient, particularly when it comes to homology directed repair (HDR) of genetic mutations or targeted transgene insertion in the genome and single cell cloning of edited cells. In addition, genome editing processes also involve additional cellular stresses such as poor cell viability and genetic stability of hiPSCs. Therefore, efficient workflows are desired to increase genome editing application to hiPSC disease models and therapeutic applications. METHODS AND RESULTS: To this end, we demonstrate an efficient workflow for feeder-free single cell clone generation and expansion in both CRISPR-mediated knock-out (KO) and knock-in (KI) hiPSC lines. Using StemFlex medium and CloneR supplement in conjunction with Matrigel cell culture matrix, we show that cell viability and expansion during single-cell cloning in edited and unedited cells is significantly enhanced. Keeping all factors into account, we have successfully achieved hiPSC single-cell survival and cloning in both edited and unedited cells with rates as maximum as 70% in less than 2 weeks. CONCLUSION: This simplified and efficient workflow will allow for a new level of sophistication in generating hiPSC-based disease models to promote rapid advancement in basic research and also the development of novel cellular therapeutics.


Assuntos
Células-Tronco Pluripotentes Induzidas , Sistemas CRISPR-Cas/genética , Clonagem Molecular , Edição de Genes/métodos , Genoma Humano , Humanos
6.
Biotechnol Lett ; 44(11): 1337-1346, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36074283

RESUMO

Single-cell selection and cloning is required for multiple bioprocessing and cell engineering workflows. Dispensing efficiency and outgrowth were optimized for multiple common suspension (CHO ES, Expi293F, and Jurkat) and adherent (MCF-7, A549, CHO-K1, and HEK293) cell lines. Single-cell sorting using a low pressure microfluidic cell sorter, the WOLF Cell Sorter, was compared with limiting dilution at 0.5 cells/well to demonstrate the increased efficiency of using flow cytometry selection of cells. In this work, there was an average single cell deposition on Day 0 of 89.1% across all the cell lines tested compared to 41.2% when using limiting dilution. After growth for 14 days, 66.7% of single-cell clones sorted with the WOLF Cell Sorter survived and only 23.8% when using limiting dilution. Using the WOLF Cell Sorter for cell line development results in higher viable single-cell colonies and the ability to select subpopulations of single-cells using multiple parameters.


Assuntos
Separação Celular , Clonagem Molecular , Humanos , Separação Celular/métodos , Citometria de Fluxo/métodos , Células HEK293
7.
J Proteome Res ; 20(10): 4728-4745, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469172

RESUMO

Chronic low-dose exposure to organophosphorus pesticides is associated with the risk of neurodegenerative disease. The mechanism of neurotoxicity is independent of acetylcholinesterase inhibition. Adducts on tyrosine, lysine, threonine, and serine can occur after exposure to organophosphorus pesticides, the most stable being adducts on tyrosine. Rabbit monoclonal 1C6 to diethoxyphosphate-modified tyrosine (depY) was created by single B cell cloning. The amino acid sequence and binding constant (Kd 3.2 × 10-8 M) were determined. Cultured human neuroblastoma SH-SY5Y and mouse neuroblastoma N2a cells incubated with a subcytotoxic dose of 10 µM chlorpyrifos oxon contained depY-modified proteins detected by monoclonal 1C6 on Western blots. depY-labeled peptides from tryptic digests of cell lysates were immunopurified by binding to immobilized 1C6. Peptides released with 50% acetonitrile and 1% formic acid were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) on an Orbitrap Fusion Lumos mass spectrometer. Protein Prospector database searches identified 51 peptides modified on tyrosine by diethoxyphosphate in SH-SY5Y cell lysate and 73 diethoxyphosphate-modified peptides in N2a cell lysate. Adducts appeared most frequently on the cytoskeleton proteins tubulin, actin, and vimentin. It was concluded that rabbit monoclonal 1C6 can be useful for studies that aim to understand the mechanism of neurotoxicity resulting from low-dose exposure to organophosphorus pesticides.


Assuntos
Doenças Neurodegenerativas , Praguicidas , Acetilcolinesterase , Animais , Linfócitos B , Células Cultivadas , Clorpirifos/análogos & derivados , Cromatografia Líquida , Clonagem Molecular , Camundongos , Compostos Organofosforados , Peptídeos , Praguicidas/toxicidade , Espectrometria de Massas em Tandem
8.
Proc Natl Acad Sci U S A ; 115(4): 708-713, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29311328

RESUMO

Genetically engineered pigs play an indispensable role in the study of rare monogenic diseases. Pigs harboring a gene responsible for a specific disease can be efficiently generated via somatic cell cloning. The generation of somatic cell-cloned pigs from male cells with mutation(s) in an X chromosomal gene is a reliable and straightforward method for reproducing X-linked genetic diseases (XLGDs) in pigs. However, the severe symptoms of XLGDs are often accompanied by impaired growth and reproductive disorders, which hinder the reproduction of these valuable model animals. Here, we generated unique chimeric boars composed of mutant cells harboring a lethal XLGD and normal cells. The chimeric boars exhibited the cured phenotype with fertility while carrying and transmitting the genotype of the XLGD. This unique reproduction system permits routine production of XLGD model pigs through the male-based breeding, thereby opening an avenue for translational research using disease model pigs.


Assuntos
Técnicas de Cultura Embrionária/métodos , Doenças Genéticas Ligadas ao Cromossomo X/genética , Reprodução/genética , Animais , Animais Geneticamente Modificados/genética , Cruzamento , Quimera , Clonagem de Organismos/métodos , Modelos Animais de Doenças , Fertilidade , Técnicas de Inativação de Genes/métodos , Engenharia Genética/métodos , Masculino , Técnicas de Transferência Nuclear , Suínos/genética
9.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299109

RESUMO

The domestic goat (Capra aegagrus hircus), a mammalian species with high genetic merit for production of milk and meat, can be a tremendously valuable tool for transgenic research. This research is focused on the production and multiplication of genetically engineered or genome-edited cloned specimens by applying somatic cell nuclear transfer (SCNT), which is a dynamically developing assisted reproductive technology (ART). The efficiency of generating the SCNT-derived embryos, conceptuses, and progeny in goats was found to be determined by a variety of factors controlling the biological, molecular, and epigenetic events. On the one hand, the pivotal objective of our paper was to demonstrate the progress and the state-of-the-art achievements related to the innovative and highly efficient solutions used for the creation of transgenic cloned does and bucks. On the other hand, this review seeks to highlight not only current goals and obstacles but also future challenges to be faced by the approaches applied to propagate genetically modified SCNT-derived goats for the purposes of pharmacology, biomedicine, nutritional biotechnology, the agri-food industry, and modern livestock breeding.


Assuntos
Animais Geneticamente Modificados/genética , Clonagem de Organismos/veterinária , Embrião de Mamíferos/citologia , Engenharia Genética/veterinária , Técnicas de Transferência Nuclear/veterinária , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Cabras
10.
Reprod Domest Anim ; 55(10): 1314-1327, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32679613

RESUMO

CRISPR/Cas9-mediated genome editing technology is a simple and highly efficient and specific genome modification approach with wide applications in the animal industry. CRISPR/Cas9-mediated genome editing combined with somatic cell nuclear transfer rapidly constructs gene-edited somatic cell-cloned pigs for the genetic improvement of traits or simulation of human diseases. Chinese Bama pigs are an excellent indigenous minipig breed from Bama County of China. Research on genome editing of Chinese Bama pigs is of great significance in protecting its genetic resource, improving genetic traits and in creating disease models. This study aimed to address the disadvantages of slow growth and low percentage of lean meat in Chinese Bama pigs and to knock out the myostatin gene (MSTN) by genome editing to promote growth and increase lean meat production. We first used CRISPR/Cas9-mediated genome editing to conduct biallelic knockout of the MSTN, followed by somatic cell nuclear transfer to successfully generate MSTN biallelic knockout Chinese Bama pigs, which was confirmed to have significantly faster growth rate and showed myofibre hyperplasia when they reached sexual maturity. This study lays the foundation for the rapid improvement of production traits of Chinese Bama pigs and the generation of gene-edited disease models in this breed.


Assuntos
Sistemas CRISPR-Cas , Miostatina/genética , Porco Miniatura/genética , Animais , Feminino , Técnicas de Inativação de Genes/veterinária , Masculino , Fibras Musculares Esqueléticas/fisiologia , Técnicas de Transferência Nuclear/veterinária , Carne de Porco , Suínos , Porco Miniatura/crescimento & desenvolvimento
11.
Adv Exp Med Biol ; 1123: 55-69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016595

RESUMO

The incidence of esophageal adenocarcinoma is rapidly increasing in Western countries. This is despite the introduction of sophisticated endoscopic techniques and our ability to readily monitor the presumed precursor lesion known as Barrett's esophagus. Preemptive approaches, including radiofrequency ablation (RFA), and photodynamic therapy (PDT) for Barrett's esophagus and dysplasia are achieving dramatic initial results. Although the long-term efficacy of these nonspecific ablative therapies is awaiting longitudinal studies, reports of recurrences are increasing. More targeted therapies, particularly directed at the stem cells of Barrett's esophagus, demand knowing the origin of this intestinal metaplasia (IM). The prevailing concept holds that Barrett's esophagus arises from the "transcommitment" of esophageal stem cells to produce an intestine-like epithelium. An alternative explanation derives from the discovery of a discrete population of residual embryonic cells (RECs) existing at the gastroesophageal junction in normal individuals that expands and colonizes regions of the esophagus denuded by chronic reflux. These RECs form IM within days of esophageal injury, suggesting a novel mechanism of tumorigenesis.A corollary of this work is that the Barrett's stem cell is distinct from that of the squamous epithelium and, once identified, will form the basis of new preemptive strategies for addressing Barrett's and its related neoplasia.


Assuntos
Esôfago de Barrett/patologia , Neoplasias Esofágicas/patologia , Esôfago/citologia , Células-Tronco/citologia , Humanos , Metaplasia , Recidiva Local de Neoplasia
12.
Reprod Domest Anim ; 53(6): 1546-1554, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30085375

RESUMO

Huanjiang Xiang pig is a unique native minipig breed originating in Guangxi, China, and has great utility value in agriculture and biomedicine. Reproductive biotechnologies such as somatic cell nuclear transfer (SCNT) and SCNT-mediated genetic modification show great potential value in genetic preservation and utilization of Huanjiang Xiang pigs. Our previous work has successfully produced cloned and transgenic-cloned embryos using somatic cells from a Huanjiang Xiang pig. In this study, we firstly report the generation of transgenic-cloned Huanjiang Xiang pigs carrying an enhanced green fluorescent protein (eGFP) gene. A total of 504 SCNT-derived embryos were transferred to two surrogate recipients, one of which became pregnant and gave birth to three live piglets. Exogenous eGFP transgene had integrated in all of the three Huanjiang Xiang piglets identified by genotyping. Furthermore, expression of eGFP was also detected from in vitro cultured skin fibroblast cells and various organs or tissues from positive transgenic-cloned Huanjiang Xiang pigs. The present work provides a practical method to preserve this unique genetic resource and also lays a foundation for genetic modification of Huanjiang Xiang pigs with improved values in agriculture and biomedicine.


Assuntos
Clonagem de Organismos/veterinária , Proteínas de Fluorescência Verde/genética , Porco Miniatura/genética , Animais , Animais Geneticamente Modificados , Clonagem de Organismos/métodos , Desenvolvimento Embrionário , Feminino , Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Gravidez , Suínos/genética , Transgenes
13.
Biochem Biophys Res Commun ; 474(4): 768-772, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27169766

RESUMO

Cell cloning is a laboratory routine to isolate and keep particular properties of cultured cells. Transfected or other genetically modified cells can be selected by the traditional microbiological cloning. In addition, common laboratory cell lines are prone to genotypic drift during their continual culture, so that supplementary cloning steps are often required to maintain correct lineage phenotypes. Here, we designed a silicone-made attachable cloning cylinder, which facilitated an easy and bona fide cloning of interested cells. This silicone cylinder was easy to make, showed competent stickiness to laboratory plastics including culture dishes, and hence enabled secure isolation and culture for days of selected single cells, especially, on the spots of preceding cell-plating dishes under microscopic examination of visible cellular phenotypes. We tested the silicone cylinder in the monoclonal subcloning from a heterogeneous population of a breast cancer cell line, MDA-MB-231, and readily established independent MDA-MB-231 subclones showing different sublineage phenotypes.


Assuntos
Técnicas de Cultura Celular por Lotes/instrumentação , Técnicas de Cultura Celular por Lotes/métodos , Clonagem de Organismos/instrumentação , Clonagem de Organismos/métodos , Silicones/química , Células Clonais , Desenho de Equipamento , Análise de Falha de Equipamento
14.
Biochem Biophys Res Commun ; 453(1): 131-7, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25264198

RESUMO

The microenvironment of cells, which includes basement proteins, shear stress, and extracellular stimuli, should be taken into consideration when examining physiological cell behavior. Although microfluidic devices allow cellular responses to be analyzed with ease at the single-cell level, few have been designed to recover cells. We herein demonstrated that a newly developed microfluidic device helped to improve culture conditions and establish a clonality-validated human pluripotent stem cell line after tracing its growth at the single-cell level. The device will be a helpful tool for capturing various cell types in the human body that have not yet been established in vitro.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Técnicas Analíticas Microfluídicas , Técnicas de Cultura de Células/instrumentação , Proliferação de Células , Células Clonais/citologia , Células Clonais/metabolismo , Simulação por Computador , Desenho de Equipamento , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Nicho de Células-Tronco
15.
Clin Exp Immunol ; 176(2): 255-65, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24666184

RESUMO

Human adipose mesenchymal stem cells are a heterogeneous population, where cell cultures derived from single-cell-expanded clones present varying degrees of differential plasticity. This work focuses on the immunomodulatory/anti-inflammatory properties of these cells. To this end, five single-cell clones were isolated (generally called 1.X and 3.X) from two volunteers. Regarding the expression level of the lineage-characteristic surface antigens, clones 1·10 and 1·22 expressed the lowest amounts, while clones 3·10 and 3·5 expressed more CD105 than the rest and clone 1·7 expressed higher amounts of CD73 and CD44. Regarding cytokine secretion, all clones were capable of spontaneously releasing high levels of interleukin (IL)-6 and low to moderate levels of IL-8. These differences can be explained in part by the distinct methylation profile exhibited by the clones. Furthermore, and after lipopolysaccharide stimulation, clone 3.X produced the highest amounts of proinflammatory cytokines such as IL-1ß, while clones 1·10 and 1·22 highly expressed IL-4 and IL-5. In co-culture experiments, clones 1.X are, together, more potent inhibitors than clones 3.X for proliferation of total, CD3(+) T, CD4(+) T and CD8(+) T lymphocytes and natural killer (NK) cells. The results of this work indicate that the adipose stem cell population is heterogeneous in cytokine production profile, and that isolation, characterization and selection of the appropriate cell clone is a more exact method for the possible treatment of different patients or pathologies.


Assuntos
Tecido Adiposo/citologia , Citocinas/imunologia , Mediadores da Inflamação/imunologia , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Complexo CD3/imunologia , Complexo CD3/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Células Cultivadas , Células Clonais/citologia , Células Clonais/imunologia , Células Clonais/metabolismo , Análise por Conglomerados , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Metilação de DNA , Citometria de Fluxo , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/metabolismo , Interleucina-5/genética , Interleucina-5/imunologia , Interleucina-5/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transcriptoma/genética , Transcriptoma/imunologia
16.
Cytometry A ; 85(8): 688-97, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24845779

RESUMO

Over the last few years, significant scientific insight on the effects of chemotherapy drugs at cellular level using synchrotron-based FTIR (S-FTIR) microspectroscopy has been obtained. The work carried out so far has identified spectral differences in cancer cells before and after the addition of drugs. However, this had to account for the following issues. First, chemotherapy agents cause both chemical and morphological changes in cells, the latter being responsible for changes in the spectral profile not correlated with biochemical characteristics. Second, as the work has been carried out in mixed populations of cells (resistant and sensitive), it is important to distinguish the spectral differences which are due to sensitivity/resistance to those due to cell morphology and/or cell mixture. Here, we successfully cloned resistant and sensitive lung cancer cells to a chemotherapy drug. This allowed us to study a more uniform population and, more important, allowed us to study sensitive and resistant cells prior to the addition of the drug with S-FTIR microscopy. Principal component analysis (PCA) did not detect major differences in resistant cells prior to and after adding the drug. However, PCA separated sensitive cells prior to and after the addition of the drug. This would indicate that the spectral differences between cells prior to and after adding a drug might reside on those more or less sensitive cells that have been able to remain alive when they were collected to be studied with S-FTIR microspectroscopy. This is a proof of concept and a feasibility study showing a methodology that opens a new way to identify the effects of drugs on more homogeneous cell populations using vibrational spectroscopy.


Assuntos
Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Síncrotrons , Linhagem Celular Tumoral , Células Clonais , Desoxicitidina/farmacologia , Humanos , Análise de Componente Principal , Gencitabina
17.
Biotechnol J ; 19(5): e2300488, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38803036

RESUMO

Improving current cell line development workflows can either focus on increasing the specific productivity of the cell lines or shortening timelines to reach the clinic as fast as possible. In this work, using the Beacon platform, we have combined two distinct protocols - early cloning with low-viability pools, and IgG membrane staining-, to concomitantly reach both objectives, and generate highly productive CHO clones in shorter timelines. Fast-sorting approaches using low-viability pools in combination with the Beacon platform have recently been reported to shorten CLD timelines. However, the low recovery led to a drastic reduction in the clone number obtained postcloning. Here, we report a combined approach of fast-sorting and fluorescent membrane staining. With this new protocol, the cells reach a correct recovery, allowing to fully exploit the Beacon screening capacities. In addition, by using a fluorescent staining recognizing the secreted IgG, we were able to enrich the fraction of highly secreting cells prior to cloning and we obtained significant increases in the cell's specific productivity. The combination of these two protocols has a synergistic effect, and as they help discarding the dead and nonproducing populations prior to cloning, they increase the throughput power of the Beacon platform and the detection of super productive clones.


Assuntos
Cricetulus , Células CHO , Animais , Imunoglobulina G/genética , Dispositivos Lab-On-A-Chip , Citometria de Fluxo
18.
Methods Mol Biol ; 2797: 323-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570470

RESUMO

Cell line panels have proven to be an invaluable tool for investigators researching a range of topics from drug mechanism or drug sensitivity studies to disease-specific etiology. The cell lines used in these panels may range from heterogeneous tumor populations grown from primary tumor isolations to genetically engineered clonal cell lines which express specific gene isoforms. Mouse embryonic fibroblast (MEF) cells are a commonly used cell line for biological research due to their accessibility and ease of genetic manipulation. This chapter will describe the process of creating a size-sorted diploid (SSDC) clonal cell panel expressing specific RAS isoforms from a previously engineered RAS-less MEF cell line pool.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Animais , Camundongos , Diploide , Fibroblastos/patologia , Células Clonais , Linhagem Celular , Neoplasias/patologia , Isoformas de Proteínas
19.
Methods Mol Biol ; 2810: 197-210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38926281

RESUMO

Single-cell isolation is a key step in the manufacturing of therapeutic proteins, which relies on the development of monoclonal cell lines. It increases production safety and consistency. It also ensures higher manufacturing performances thanks to the selection of the rare clonally derived cell lines with optimal growth and production capacities. DISPENCELL-S3 is a small format single-cell dispenser whose technology is based on impedance spectroscopy. Here, we provide a detailed protocol for generating Chinese hamster ovary (CHO) monoclonal cell lines using DISPENCELL-S3. Production and characterization of an adequate cell sample for single-cell isolation, as well as the optimization of the DISPENCELL-S3 dispensing parameters are described. Monoclonal outgrowth assessment and the use of the recorded impedance signal as evidence of clonality are also outlined.


Assuntos
Técnicas de Cultura de Células , Cricetulus , Animais , Células CHO , Técnicas de Cultura de Células/métodos , Cricetinae , Separação Celular/métodos , Anticorpos Monoclonais , Espectroscopia Dielétrica
20.
Animals (Basel) ; 13(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37889804

RESUMO

Successful dog cloning requires a sufficient number of in vivo matured oocytes as recipient oocytes for reconstructing embryos. The accurate prediction of the ovulation day in estrus bitches is critical for collecting mature oocytes. Traditionally, a specific serum progesterone (P4) range in the radioimmunoassay (RIA) system has been used for the prediction of ovulation. In this study, we investigated the use of an enzyme-linked fluorescence assay (ELFA) system for the measurement of P4. Serum samples of estrus bitches were analyzed using both RIA and ELFA, and the measured P4 values of ELFA were sorted into 11 groups based on the standard concentration measured in RIA and compared. In addition, to examine the tendency of changes in the P4 values in each system, the P4 values on ovulation day (from D - 6 to D + 1) in both systems were compared. The ELFA range of 5.0-12.0 ng/mL was derived from the RIA standard range of 4.0-8.0 ng/mL. The rates of acquired matured oocytes in RIA and ELFA were 55.47% and 65.19%, respectively. The ELFA system successfully produced cloned puppies after the transfer of the reconstructed cloned oocytes. Our findings suggest that the ELFA system is suitable for obtaining in vivo matured oocytes for dog cloning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA