RESUMO
SSc is a systemic autoimmune disease of unknown etiology characterized by frequently progressive cutaneous and internal organ fibrosis causing severe disability, organ failure and high mortality. A remarkable feature of SSc is the extension of the fibrotic alterations to nonaffected tissues. The mechanisms involved in the extension of fibrosis have remained elusive. We propose that this process is mediated by exosome microvesicles released from SSc-affected cells that induce an activated profibrotic phenotype in normal or nonaffected cells. Exosomes are secreted microvesicles involved in an intercellular communication system. Exosomes can transfer their macromolecular content to distant target cells and induce paracrine effects in the recipient cells, changing their molecular pathways and gene expression. Confirmation of this hypothesis may identify the molecular mechanisms responsible for extension of the SSc fibrotic process from affected cells to nonaffected cells and may allow the development of novel therapeutic approaches for the disease.
Assuntos
Exossomos , Escleroderma Sistêmico , Humanos , Fibrose , Fibroblastos/metabolismo , FenótipoRESUMO
Thoracic aortic aneurysm (TAA) develops silently and asymptomatically and is a major cause of mortality. TAA prevalence is greatly underestimated, it is usually diagnosed incidentally, and its treatment consists mainly of prophylactic surgery based on the aortic diameter. The lack of effective drugs and biological markers to identify and stratify TAAs by risk before visible symptoms results from scant knowledge of its pathophysiological mechanisms. Here we integrate the structural impairment affecting non-syndromic non-familial TAA with the main cellular and molecular changes described so far and consider how these changes are interconnected through specific pathways. The ultimate goal is to define much-needed novel markers of TAA, and so the potential of previously identified molecules to aid in early diagnosis/prognosis is also discussed. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Assuntos
Aneurisma da Aorta Torácica , HumanosRESUMO
Type 2 transglutaminase (TG2) is a ubiquitous enzyme able to modify gliadin peptides introduced into the organism through the diet. By means of its catalytic activity, TG2 seems to have an important pathogenetic role in celiac disease (CD), an inflammatory intestinal disease caused by the ingestion of gluten-containing cereals. A strong autoimmune response to TG2 characterizes CD development. Anti-TG2 antibodies specifically derange the uptake of the α-gliadin peptide 31-43 by control, but not by celiac dermal fibroblasts, underlying some different constitutive features regarding TG2 in healthy and celiac subjects. Our aim was to investigate whether these differences depended on a different TG2 subcellular distribution and whether peptide 31-43 differentially regulated TG2 expression and activity in cells of the two groups of subjects. We found that TG2 was more abundantly associated with membranes of celiac fibroblasts than of control cells, in particular with the early endosomal and autophagic compartments. We also found that peptide 31-43 differentially affected TG2 expression and activity in the two groups of cells, activating TG2 more in control than in celiac cells and inducing TG2 expression in celiac cells, but not in control ones. The different TG2 subcellular localization and the different way the peptide 31-43 modulates TG2 activity and availability into control and CD cells suggested that TG2 is involved in the definition of a constitutive CD cellular phenotype, thus having an important and still undefined role in CD pathogenesis.
Assuntos
Doença Celíaca/enzimologia , Doença Celíaca/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Transglutaminases/metabolismo , Adolescente , Adulto , Anticorpos , Autoanticorpos/imunologia , Doença Celíaca/imunologia , Dieta Livre de Glúten , Fibroblastos/metabolismo , Gliadina/imunologia , Voluntários Saudáveis , Humanos , Peptídeos , Proteína 2 Glutamina gama-Glutamiltransferase , Pele/metabolismo , Adulto JovemRESUMO
The implications of the epithelial-mesenchymal transition (EMT) mechanisms in the initiation and progression of epithelial ovarian cancer (EOC) remain poorly understood. We have previously shown that suppression of the antigen receptor LY75 directs mesenchymal-epithelial transition (MET) in EOC cell lines with the mesenchymal phenotype, associated with the loss of Wnt/ß-catenin signaling activity. In the present study, we used the LY75-mediated modulation of EMT in EOC cells as a model in order to investigate in vivo the specific role of EOC cells, with an epithelial (E), mesenchymal (M) or mixed epithelial plus mesenchymal (E+M) phenotype, in EOC initiation, dissemination and treatment response, following intra-bursal (IB) injections of SKOV3-M (control), SKOV3-E (Ly75KD) and a mixed population of SKOV3-E+M cells, into severe combined immunodeficiency (SCID) mice. We found that the IB-injected SKOV3-E cells displayed considerably higher metastatic potential and resistance to treatment as compared to the SKOV3-M cells, due to the acquisition of a Ly75KD-mediated hybrid phenotype and stemness characteristics. We also confirmed in vivo that the LY75 depletion directs suppression of the Wnt/ß-catenin pathway in EOC cells, suggestive of a protective role of this pathway in EOC etiology. Moreover, our data raise concerns regarding the use of LY75-targeted vaccines for dendritic-cell EOC immunotherapy, due to the possible occurrence of undesirable side effects.
Assuntos
Antígenos CD/genética , Carcinogênese/genética , Carcinoma Epitelial do Ovário/genética , Regulação Neoplásica da Expressão Gênica , Lectinas Tipo C/genética , Antígenos de Histocompatibilidade Menor/genética , Neoplasias Ovarianas/genética , Receptores de Superfície Celular/genética , Animais , Antineoplásicos/uso terapêutico , Carboplatina/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos SCID , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Neoplasias Experimentais , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologiaRESUMO
Lung cancer is considered one of the most frequent causes of cancer-related death worldwide and Non-Small Cell Lung Cancer (NSCLC) accounts for 80% of all lung cancer cases. Autophagy is a cellular process responsible for the recycling of damaged organelles and protein aggregates. Transforming growth factor beta-1 (TGFß1) is involved in Epithelial to Mesenchymal Transition (EMT) and autophagy induction in different cancer models and plays an important role in the pathogenesis of NSCLC. It is not clear how autophagy can regulate EMT in NSCLC cells. In the present study, we have investigated the regulatory role of autophagy in EMT induction in NSCLC and show that TGFß1 can simultaneously induce both autophagy and EMT in the NSCL lines A549 and H1975. Upon chemical inhibition of autophagy using Bafilomycin-A1, the expression of the mesenchymal marker vimentin and N-cadherin was reduced. Immunoblotting and immunocytochemistry (ICC) showed that the mesenchymal marker vimentin was significantly downregulated upon TGFß1 treatment in ATG7 knockdown cells when compared to corresponding cells treated with scramble shRNA (negative control), while E-cadherin was unchanged. Furthermore, autophagy inhibition (Bafilomycin A1 and ATG7 knockdown) decreased two important mesenchymal functions, migration and contraction, of NSCLC cells upon TGFß1 treatment. This study identified a crucial role of autophagy as a potential positive regulator of TGFß1-induced EMT in NSCLC cells and identifies inhibitors of autophagy as promising new drugs in antagonizing the role of EMT inducers, like TGFß1, in the clinical progression of NSCLC.
Assuntos
Autofagia/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Transição Epitelial-Mesenquimal/genética , Fator de Crescimento Transformador beta1/genética , Células A549 , Autofagia/efeitos dos fármacos , Caderinas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Macrolídeos/administração & dosagem , Vimentina/genéticaRESUMO
AIMS: Brugada syndrome (BrS) is associated with a pronounced risk to develop sudden cardiac death (SCD). Up to 21% of patients are related to mutations in SCN5A. Studies identified SCN10A as a contributor of BrS. However, the investigation of the human cellular phenotype of BrS in the presence of SCN10A mutations remains lacking. The objective of this study was to establish a cellular model of BrS in presence of SCN10A mutations using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). METHODS AND RESULTS: Dermal fibroblasts obtained from a BrS patient suffering from SCD harbouring the SCN10A double variants (c.3803G>A and c.3749G>A) and three independent healthy control subjects were reprogrammed to hiPSCs. Human-induced pluripotent stem cells were differentiated into cardiomyocytes (hiPSC-CMs).The hiPSC-CMs from the BrS patient showed a significantly reduced peak sodium channel current (INa) and a significantly reduced ATX II (sea anemone toxin, an enhancer of late INa) sensitive as well as A-887826 (a blocker of SCN10A channel) sensitive late sodium channel current (INa) when compared with the healthy control hiPSC-CMs, indicating loss-of-function of sodium channels. Consistent with reduced INa the action potential amplitude and upstroke velocity (Vmax) were significantly reduced, which may contribute to arrhythmogenesis of BrS. Moreover, Ajmaline effects on action potentials were stronger in BrS-hiPSC-CMs than in healthy control cells. This is in agreement with the higher susceptibility of patients to sodium channel blocking drugs in unmasking BrS. CONCLUSION: Patient-specific hiPSC-CMs are able to recapitulate single-cell phenotype features of BrS with SCN10A mutations and may provide novel opportunities to further elucidate the cellular disease mechanism.
Assuntos
Potenciais de Ação/fisiologia , Síndrome de Brugada/genética , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Ajmalina/farmacologia , Síndrome de Brugada/metabolismo , Cardiotônicos/farmacologia , Estudos de Casos e Controles , Técnicas de Reprogramação Celular , Venenos de Cnidários/farmacologia , Morte Súbita Cardíaca , Humanos , Células-Tronco Pluripotentes Induzidas , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Morfolinas/farmacologia , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Técnicas de Patch-Clamp , Fenótipo , Taquicardia Ventricular , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologiaRESUMO
BACKGROUND: Loss-of-function phenotypes are widely used to infer gene function using the principle that similar phenotypes are indicative of similar functions. However, converting phenotypic to functional annotations requires careful interpretation of phenotypic descriptions and assessment of phenotypic similarity. Understanding how functions and phenotypes are linked will be crucial for the development of methods for the automatic conversion of gene loss-of-function phenotypes to gene functional annotations. RESULTS: We explored the relation between cellular phenotypes from RNAi-based screens in human cells and gene annotations of cellular functions as provided by the Gene Ontology (GO). Comparing different similarity measures, we found that information content-based measures of phenotypic similarity were the best at capturing gene functional similarity. However, phenotypic similarities did not map to the Gene Ontology organization of gene function but to functions defined as groups of GO terms with shared gene annotations. CONCLUSIONS: Our observations have implications for the use and interpretation of phenotypic similarities as a proxy for gene functions both in RNAi screen data analysis and curation and in the prediction of disease genes.
Assuntos
Biologia Computacional/métodos , Área Sob a Curva , Análise por Conglomerados , Humanos , Fenótipo , Interferência de RNA , Curva ROCRESUMO
BACKGROUND: Huntington's disease (HD) is a fatal neurodegenerative disorder caused by a CAG expansion in the Huntingtin (HTT) gene. Proteolytic cleavage of mutant huntingtin (Htt) protein with an expanded polyglutamine (polyQ) stretch results in production of Htt fragments that aggregate and induce impaired ubiquitin proteasome, mitochondrial functioning and transcriptional dysregulation. To understand the time-resolved relationship between aggregate formation and transcriptional changes at early disease stages, we performed temporal transcriptome profiling and quantification of aggregate formation in living cells in an inducible HD cell model. RESULTS: Rat pheochromocytoma (PC12) cells containing a stably integrated, doxycycline-inducible, eGFP-tagged N-terminal human Htt fragment with an expanded polyQ domain were used to analyse gene expression changes at different stages of mutant Htt aggregation. At earliest time points after doxycycline induction no detectable aggregates and few changes in gene expression were observed. Aggregates started to appear at intermediate time points. Aggregate formation and subsequent enlargement of aggregates coincided with a rapid increase in the number of differentially expressed (DE) genes. The increase in number of large aggregates coincided with a decrease in the number of smaller aggregates whereas the transcription profile reverted towards the profile observed before mutant Htt induction. Cluster-based analysis of the 2,176 differentially expressed genes revealed fourteen distinct clusters responding differently over time. Functional enrichment analysis of the two major gene clusters revealed that genes in the up-regulated cluster were mainly involved in metabolic (antioxidant activity and cellular ketone metabolic processes) and genes in the down-regulated cluster in developmental processes, respectively. Promoter-based analysis of the identified gene clusters resulted in identification of a transcription factor network of which several previously have been linked to HD. CONCLUSIONS: We demonstrate a time-resolved relationship between Htt aggregation and changes in the transcriptional profile. We identified two major gene clusters showing involvement of (i) mitochondrial dysfunction and (ii) developmental processes implying cellular homeostasis defects. We identified novel and known HD-linked transcription factors and show their interaction with known and predicted regulatory proteins. Our data provide a novel resource for hypothesis building on the role of transcriptional key regulators in early stages of HD and possibly other polyQ-dependent diseases.
Assuntos
Perfilação da Expressão Gênica , Proteína Huntingtina/química , Proteína Huntingtina/genética , Doença de Huntington/patologia , Agregados Proteicos , Transcrição Gênica , Animais , Humanos , Doença de Huntington/genética , Família Multigênica/genética , Mutação , Células PC12 , Regiões Promotoras Genéticas/genética , Ratos , Fatores de Transcrição/metabolismoRESUMO
With the combined purpose of facilitating useful vision over a lifetime, a number of ocular cells have evolved specialized features not found elsewhere in the body. The trabecular meshwork (TM) cell at the irido-corneal angle, which is a key regulator of intraocular pressure, is no exception. Examination of cells in culture isolated from the human TM has shown that they are unique in many ways, displaying characteristic features of several different cell types. Thus, these neural crest derived cells display expression patterns and behaviors typical of endothelia, fibroblasts, smooth muscle and macrophages, owing to the multiple roles and two distinct environments where they operate to maintain intraocular pressure homeostasis. In most individuals, TM cells function normally over a lifetime in the face of persistent stressors, including phagocytic, oxidative, mechanical and metabolic stress. Study of TM cells isolated from ocular hypertensive eyes has shown a compromised ability to perform their daily duties. This review highlights the many responsibilities of the TM cell and its challenges, progress in our understanding of TM biology over the past 30 years, as well as discusses unanswered questions about TM dysfunction that results in IOP dysregulation and glaucoma.
Assuntos
Humor Aquoso/metabolismo , Pressão Intraocular/fisiologia , Malha Trabecular/citologia , Malha Trabecular/fisiologia , Animais , Técnicas de Cultura de Células , Glaucoma/fisiopatologia , HumanosRESUMO
Iron deficiency ends up into several unavoidable consequences including damaging oxidative stress in cyanobacteria. NtcA is a global nitrogen regulator controls wide range of metabolisms in addition to regulation of nitrogen metabolism. In present communication, NtcA based regulation of iron homeostasis, ROS production and cellular phenotype under iron deficiency in Anabaena 7120 has been investigated. NtcA regulates the concentration dependent iron uptake by controlling the expression of furA gene. NtcA also regulated pigment synthesis and phenotypic alterations in Anabaena 7120. A significant increase in ROS production and corresponding reduction in the activities of antioxidative enzymes (SOD, CAT, APX and GR) in CSE2 mutant strain in contrast to wild type Anabaena 7120 also suggested the possible involvement of NtcA in protection against oxidative stress in iron deficiency. NtcA has no impact on the expression of furB and furC in spite of presence of consensus NtcA binding site (NBS) and -10 boxes in their promoter. NtcA also regulates the thylakoid arrangement as well as related photosynthetic and respiration rates under iron deficiency in Anabaena 7120. Overall results suggested that NtcA regulates iron acquisition and in turn protect Anabaena cells from the damaging effects of oxidative stress induced under iron deficiency.
Assuntos
Anabaena/genética , Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Homeostase , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Anabaena/enzimologia , Ascorbato Peroxidases/análise , Sítios de Ligação , Catalase/análise , Eletrólitos , Genes Bacterianos/genética , Glutationa Redutase/análise , Peroxidação de Lipídeos , Mutação , Estresse Oxidativo , Fotossíntese/fisiologia , Pigmentos Biológicos/análise , Regiões Promotoras Genéticas , Superóxido Dismutase/análiseRESUMO
Advances in systems biology in conjunction with the expansion in knowledge of drug effects and diseases present an unprecedented opportunity to extend traditional pharmacokinetic and pharmacodynamic modeling/analysis to conduct systems pharmacology modeling. Many drugs that cause liver injury and myopathies have been studied extensively. Mitochondrion-centric systems pharmacology modeling is important since drug toxicity across a large number of pharmacological classes converges to mitochondrial injury and death. Approaches to systems pharmacology modeling of drug effects need to consider drug exposure, organelle and cellular phenotypes across all key cell types of human organs, organ-specific clinical biomarkers/phenotypes, gene-drug interaction and immune responses. Systems modeling approaches, that leverage the knowledge base constructed from curating a selected list of drugs across a wide range of pharmacological classes, will provide a critically needed blueprint for making informed decisions to reduce the rate of attrition for drugs in development and increase the number of drugs with an acceptable benefit/risk ratio.
Assuntos
Modelos Biológicos , Farmacologia Clínica/métodos , Biologia de Sistemas/métodos , Biomarcadores , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Humanos , FenótipoRESUMO
The antibiotic doxycycline is known to inhibit inflammation and was therefore considered as a therapeutic to prevent abdominal aortic aneurysm (AAA) growth. Yet mitochondrial dysfunction is a key-characteristic of clinical AAA disease. We hypothesize that doxycycline impairs mitochondrial function in the aorta and aortic smooth muscle cells (SMCs). Doxycycline induced mitonuclear imbalance, reduced proliferation and diminished expression of typical contractile smooth muscle cell (SMC) proteins. To understand the underlying mechanism, we studied krüppel-like factor 4 (KLF4). The expression of this transcription factor was enhanced in SMCs after doxycycline treatment. Knockdown of KLF4, however, did not affect the doxycycline-induced SMC phenotypic changes. Then we used the bioenergetics drug elamipretide (SS-31). Doxycycline-induced loss of SMC contractility markers was not rescued, but mitochondrial genes and mitochondrial connectivity improved upon elamipretide. Thus while doxycycline is anti-inflammatory, it also induces mitochondrial dysfunction in aortic SMCs and causes SMC phenotypic switching, potentially contributing to aortic aneurysm pathology. The drug elamipretide helps mitigate the harmful effects of doxycycline on mitochondrial function in aortic SMC, and may be of interest for treatment of aneurysm diseases with pre-existing mitochondrial dysfunction.
Assuntos
Aneurisma da Aorta Abdominal , Doenças Mitocondriais , Humanos , Doxiciclina/efeitos adversos , Doxiciclina/metabolismo , Aorta/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Abdominal/genética , Miócitos de Músculo Liso/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologiaRESUMO
Targeted gene therapy has shown durable efficacy in non-neoplastic and neoplastic patients. Therefore, finding a suitable target has become a key area of research. Mesenchyme homeobox 1 (MEOX1) is a transcriptional factor that plays a significant role in regulation of somite development. Evidence indicates that abnormalities in MEOX1 expression and function are associated with a variety of pathologies, including non-neoplastic and neoplastic diseases. MEOX1 expression is upregulated during progression of most diseases and plays a critical role in maintenance of the cellular phenotypes such as cell differentiation, cell cycle arrest and senescence, migration, and proliferation. Therefore, MEOX1 may become an important molecular target and therapeutic target. This review will discuss the current state of knowledge on the role of MEOX1 in different diseases.
Assuntos
Proteínas de Homeodomínio , Neoplasias , Humanos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Diferenciação Celular , Neoplasias/genética , Senescência Celular , Regulação Neoplásica da Expressão GênicaRESUMO
NF-κB signaling has broad effects on cell survival, tissue growth, and proliferation activities. It controls many genes that are involved in inflammation and thus is a key player in many inflammatory diseases. The elevation of NF-κB activators is associated with elevated mortality, especially in cancer and cardiovascular diseases. The zebrafish has emerged as an important model for whole-organism in vivo modeling in translational research. In vertebrates, in-vivo spatial resolution is limited due to normal opacification of skin and subdermal structure. For in vivo imaging, skin transparency by blocking the pigmentation via chemical inhibition is required and the maintenance of this transparency is vital. The Casper(roy-/-, nacre-/-) mutant of zebrafish maintains this transparency throughout its life and serves as an ideal combination of sensitivity and resolution for in vivo stem cell analyses and imaging. We developed an NF-kB:GFP/Casper transparent transgenic zebrafish cellular phenotype to study inflammatory processes in vivo. We outline the experimental setup to generate a transparent transgenic NF-kB/Casper strain of zebrafish through the cross-breeding of Casper and NF-kB transgenic adult fish and have generated F01 in the form of heterozygous progeny. The transgenic F01 progeny was further inbred to generate heterozygous progenies from F1 to F4 generations. Furthermore, it continued to successfully develop the homozygous strain Tg(6xNF-kB:EGFP); Casper(roy-/-, nacre-/-) in the F05 generation. This novel strain of F05 generation showed 100% homozygosity in the transgenic transparent progeny of Tg(6xNF-kB:EGFP); Casper(roy-/-, nacre-/-). The strain has been confirmed by generating the F06 generation of homozygous progeny and again verified and validated for its homogeneity in the F07 generation. The newly developed novel transparent transgenic strain of the NF-kB reporter line has been coined as "Tg(6xNF-kB:EGFP); Casper(roy-/-, nacre-/-)gmc1". We have established a newly generated phenotype of transparent transgenic zebrafish for time-lapse in vivo confocal microscopy to study the cellular phenotype and pathologies at the cellular level over time. This will allow for quantifying the changes in the NF-kB functional activities over time and allow the comparison of control and cardiac-oncology experimental therapeutics. We validated the newly developed Tg(6xNF-kB:EGFP); Casper(roy-/-, nacre-/-)gmc1 homozygous strain of zebrafish by studying the inflammatory response to bacterial lipopolysaccharide (LPS) exposure, tolerance, and the inhibitory role of a potential novel drug candidate against LPS-induced inflammation. The results establish the unique application of newly developed strains by identifying hit and lead drug candidates for experimental therapeutics.
RESUMO
Introduction: Mesenchymal Stromal/Stem cells (MSCs) are an essential component of the regenerative and immunoregulatory stem cell compartment of the human body and thus of major importance in human physiology. The MSCs elicit their beneficial properties through a multitude of complementary mechanisms, which makes it challenging to assess their phenotype and function in environmental toxicity screening. We here employed the novel combinatorial assays matrix approach/technology to profile the MSC response to the herbicide Atrazine, which is a common environmental xenobiotic, that is in widespread agricultural use in the US and other countries, but banned in the EU. Our here presented approach is representative for screening the impact of environmental xenobiotics and toxins on MSCs as an essential representative component of human physiology and well-being. Methods: We here employed the combinatorial assay matrix approach, including a panel of well standardized assays, such as flow cytometry, multiplex secretome analysis, and metabolic assays, to define the phenotype and functionality of human-donor-derived primary MSCs exposed to the representative xenobiotic Atrazine. This assay matrix approach is now also endorsed for characterization of cell therapies by leading regulatory agencies, such as FDA and EMA. Results: Our results show that the exposure to Atrazine modulates the metabolic activity, size, and granularity of MSCs in a dose and time dependent manner. Intriguingly, Atrazine exposure leads to a broad modulation of the MSCs secretome (both upregulation and downmodulation of certain factors) with the identification of Interleukin-8 as the topmost upregulated representative secretory molecule. Interestingly, Atrazine attenuates IFNγ-induced upregulation of MHC-class-II, but not MHC-class-I, and early phosphorylation signals on MSCs. Furthermore, Atrazine exposure attenuates IFNγ responsive secretome of MSCs. Mechanistic knockdown analysis identified that the Atrazine-induced effector molecule Interleukin-8 affects only certain but not all the related angiogenic secretome of MSCs. Discussion: The here described Combinatorial Assay Matrix Technology identified that Atrazine affects both the innate/resting and cytokine-induced/stimulated assay matrix functionality of human MSCs, as identified through the modulation of selective, but not all effector molecules, thus vouching for the great usefulness of this approach to study the impact of xenobiotics on this important human cellular subset involved in the regenerative healing responses in humans.
Assuntos
Atrazina , Células-Tronco Mesenquimais , Humanos , Atrazina/toxicidade , Interleucina-8 , Xenobióticos , Medula ÓsseaRESUMO
Controlling phenotypical landscapes is of vital interest to modern biology. This task becomes highly demanding because cellular decisions involve complex networks engaging in crosstalk interactions. Previous work on control theory indicates that small sets of compounds can control single phenotypes. However, a dynamic approach is missing to determine the drivers of the whole network dynamics. By analyzing 35 biologically motivated Boolean networks, we developed a method to identify small sets of compounds sufficient to decide on the entire phenotypical landscape. These compounds do not strictly prefer highly related compounds and show a smaller impact on the stability of the attractor landscape. The dynamic driver sets include many intervention targets and cellular reprogramming drivers in human networks. Finally, by using a new comprehensive model of colorectal cancer, we provide a complete workflow on how to implement our approach to shift from in silico to in vitro guided experiments.
RESUMO
BACKGROUND: artificial intelligence (AI) for cellular phenotyping diagnosis of nasal polyps by whole-slide imaging (WSI) is lacking. We aim to establish an AI chronic rhinosinusitis evaluation platform 2.0 (AICEP 2.0) to obtain the proportion of inflammatory cells for cellular phenotyping diagnosis of nasal polyps and to explore the clinical significance of different phenotypes of nasal polyps on the WSI. METHODS: a total of 453 patients were enrolled in our study. For the development of AICEP 2.0, 179 patients (WSIs) were obtained from the Third Affiliated Hospital of Sun Yat-Sen University (3HSYSU) from January 2008 to December 2018. A total of 24,625 patches were automatically extracted from the regions of interest under a 400× HPF by Openslide and the number of inflammatory cells in these patches was counted by two pathologists. For the application of AICEP 2.0 in a prospective cohort, 158 patients aged 14-70 years old with chronic rhinosinusitis with nasal polyps (CRSwNP) who had undergone endoscopic sinus surgery at 3HSYSU from June 2020 to December 2020 were included for preoperative demographic characteristics. For the application of AICEP 2.0 in a retrospective cohort, 116 patients with CRSwNP who had undergone endoscopic sinus surgery from May 2016 to June 2017 were enrolled for the recurrence rate. The proportion of inflammatory cells of these patients on WSI was calculated by our AICEP 2.0. FINDINGS: for AICEP 2.0, the mean absolute errors of the ratios of eosinophils, lymphocytes, neutrophils, and plasma cells were 1.64%, 2.13%, 1.06%, and 1.22%, respectively. The four phenotypes of nasal polyps were significantly different in clinical characteristics (including asthma, itching, sneezing, total IgE, peripheral eosinophils%, tissue eosinophils%, tissue neutrophils%, tissue lymphocytes%, tissue plasma cells%, and recurrence rate; P <0.05), but there were no significant differences in age distribution, onset time, total VAS score, Lund-Kennedy score, or Lund-Mackay score. The percentage of peripheral eosinophils was positively correlated with the percentage of tissue eosinophils (r = 0.560, P <0.001) and negatively correlated with tissue lymphocytes% (r = -0.489, P <0.001), tissue neutrophils% (r = -0.225, P = 0.005), and tissue plasma cells% (r = -0.266, P = 0.001) in WSIs.
Assuntos
Inteligência Artificial , Histocitoquímica , Pólipos Nasais/diagnóstico , Adolescente , Adulto , Idoso , Biologia Computacional/métodos , Aprendizado Profundo , Feminino , Histocitoquímica/métodos , Histocitoquímica/normas , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Pólipos Nasais/etiologia , Pólipos Nasais/patologia , Redes Neurais de Computação , Reprodutibilidade dos Testes , Software , Adulto JovemRESUMO
Fibrosis is a major cause of mortality. Key profibrotic mechanisms are common pathways involved in tumorigenesis. Characterizing the profibrotic phenotype will help reveal the underlying mechanisms of early development and progression of a variety of human diseases, such as fibrosis and cancer. Fibroblasts have been center stage in response to various stimuli, such as viral infections. However, a comprehensive catalog of cell types involved in this process is currently lacking. Here, we deployed single-cell transcriptomic data across multi-organ systems (i.e., heart, kidney, liver, and lung) to identify novel profibrotic cell populations based on ECM pathway activity at single-cell resolution. In addition to fibroblasts, we also reported that epithelial, endothelial, myeloid, natural killer T, and secretory cells, as well as proximal convoluted tubule cells of the nephron, were significantly actively involved. Cell-type-specific gene signatures were enriched in viral infection pathways, enhanced glycolysis, and carcinogenesis, among others; they were validated using independent datasets in this study. By projecting the signatures into bulk TCGA tumor samples, we could predict prognosis in the patients using profibrotic scores. Our profibrotic cellular phenotype is useful for identifying new mechanisms and potential drug targets at the cell-type level for a wide range of diseases involved in ECM pathway activation.
RESUMO
Skeletal muscle regeneration is a complex process influenced by non-myogenic macrophages and fibroblasts, which acquire different phenotypes in response to changes in the injury milieu or changes in experimental conditions. In vitro, serum stimulates the differentiation of fibroblasts into myofibroblasts, while lipopolysaccharide (LPS) stimulates the polarization of unstimulated (M0) macrophages to acquire an M1 pro-inflammatory phenotype. We characterized these phenotypes using morphology (with circularity as shape descriptor; perfect circularity = 1.0) and phenotype-specific markers. Myofibroblasts (high α-smooth muscle actin [SMA] expression) had high circularity (mean 0.60 ± 0.03). Their de-differentiation to fibroblasts (low α-SMA expression) significantly lessened circularity (0.47 ± 0.01 and 0.35 ± 0.02 in 2% or 0% serum culture media respectively (p < 0.05). Unstimulated (M0) macrophages (no CD86 expression) had high circularity (0.72 ± 0.02) which decreased when stimulated to M1 macrophages (CD86 expression) (LPS; 0.61 ± 0.02; p < 0.05). Utilizing these established conditions, we then co-cultured M1 macrophages with myofibroblasts or myoblasts. M1 macrophages significantly decreased relative myofibroblast numbers (from 223 ± 22% to 64 ± 7%), but not myoblast numbers. This pro-inflammatory co-culture model was used to rapidly screen the following four compounds for ability to prevent M1 macrophage-mediated decrease in myofibroblast numbers: L-NAME (inducible nitric oxide synthase inhibitor), SB203580 (p38 mitogen-activated protein kinase inhibitor), SP600125 (c-Jun N-terminal kinase inhibitor) and LY294002 (phosphoinositide 3-kinase [PI3K] inhibitor). We found that LY294002 rescued myofibroblasts and decreased macrophage numbers. Myofibroblast rescue did not occur with L-NAME, SB203580 or SP600125 incubation. In conclusion, these data suggest a PI3K-associated mechanism whereby myofibroblasts can be rescued, despite simulated pro-inflammatory conditions.
Assuntos
Inositol/análogos & derivados , Macrófagos/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/química , Transdução de Sinais/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Inositol/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fosfatidilinositol 3-Quinases/metabolismoRESUMO
The zebrafish provided an excellent platform to study the genetic and molecular approach of cellular phenotype-based cardiac research. We designed a novel protocol to develop the transparent transgenic zebrafish model to study annexin-5 activity in the cardiovascular function by generating homozygous transparent skin Casper(roy-/-,nacre-/-); myl7:RFP; annexin-5:YFP transgenic zebrafish. The skin pigmentation background of any vertebrate model organism is a major obstruction for in vivo confocal imaging to study the transgenic cellular phenotype-based study. By developing Casper(roy-/-,nacre-/-); myl7; annexin-5 transparent transgenic zebrafish strain, we established time-lapse in vivo confocal microscopy to study cellular phenotype/pathologies of cardiomyocytes over time to quantify changes in cardiomyocyte morphology and function over time, comparing control and cardiac injury and cardio-oncology. Casper contributes to the study by integrating a transparent characteristic in adult zebrafish that allows for simpler transparent visualization and observation. The Casper(roy-/-,nacre-/-) transgenic progenies developed through cross-breeding with the transgenic strain of Tg(UAS:SEC-Hsa.ANXA5-YFP,myl7:RFP). Confocal and fluorescent microscopy were being used to obtain accurate, precise imaging and to determine fluorescent protein being activated. This study protocol was conducted under two sections; 1.1: Generation of homozygous Tg(UAS:SEC-Hsa.ANXA5-YFP,myl7:RFP); Casper(roy-/-,nacre-/-) zebrafish (generation F01-F06) and 1.2: Screening and sorting the transparent transgenic progeny and in vivo imaging to validate cardiac morphology through in vivo confocal imaging. We coined the newly developed strain as Tg(UAS:SEC-Hsa.ANXA5-YFP,myl7:RFP); Casper(roy-/-,nacre-/-)gmc1. Thus, the newly developed strain maintains transparency of the skin throughout the entire life of zebrafish and is capable of application of a non-invasive in vivo imaging process. These novel results provide an in vivo whole organism-based platform to design high-throughput screening and establish a new horizon for drug discovery in cardiac cell death and cardio-oncology therapeutics and treatment.