Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Annu Rev Neurosci ; 43: 31-54, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31874068

RESUMO

Many animals use an internal sense of direction to guide their movements through the world. Neurons selective to head direction are thought to support this directional sense and have been found in a diverse range of species, from insects to primates, highlighting their evolutionary importance. Across species, most head-direction networks share four key properties: a unique representation of direction at all times, persistent activity in the absence of movement, integration of angular velocity to update the representation, and the use of directional cues to correct drift. The dynamics of theorized network structures called ring attractors elegantly account for these properties, but their relationship to brain circuits is unclear. Here, we review experiments in rodents and flies that offer insights into potential neural implementations of ring attractor networks. We suggest that a theory-guided search across model systems for biological mechanisms that enable such dynamics would uncover general principles underlying head-direction circuit function.


Assuntos
Cabeça/fisiologia , Neurônios/fisiologia , Orientação/fisiologia , Percepção Espacial/fisiologia , Potenciais de Ação/fisiologia , Animais , Humanos , Modelos Neurológicos
2.
Development ; 151(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230563

RESUMO

An unanswered question in neurobiology is how are diverse neuron cell types generated from a small number of neural stem cells? In the Drosophila larval central brain, there are eight bilateral Type 2 neuroblast (T2NB) lineages that express a suite of early temporal factors followed by a different set of late temporal factors and generate the majority of the central complex (CX) neurons. The early-to-late switch is triggered by the orphan nuclear hormone receptor Seven-up (Svp), yet little is known about how this Svp-dependent switch is involved in specifying CX neuron identities. Here, we: (1) birth date the CX neurons P-EN and P-FN (early and late, respectively); (2) show that Svp is transiently expressed in all early T2NBs; and (3) show that loss of Svp expands the population of early born P-EN neurons at the expense of late born P-FN neurons. Furthermore, in the absence of Svp, T2NBs fail decommissioning and abnormally extend their lineage into week-old adults. We conclude that Svp is required to specify CX neuron identity, as well as to initiate T2NB decommissioning.


Assuntos
Proteínas de Drosophila , Células-Tronco Neurais , Animais , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Drosophila/metabolismo , Linhagem da Célula/fisiologia , Drosophila melanogaster/metabolismo
3.
Semin Cell Dev Biol ; 142: 23-35, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35915026

RESUMO

Proper functioning of the nervous system relies not only on the generation of a vast repertoire of distinct neural cell types but also on the precise neural circuitry within them. How the generation of highly diverse neural populations is regulated during development remains a topic of interest. Landmark studies in Drosophila have identified the genetic and temporal cues regulating neural diversity and thus have provided valuable insights into our understanding of temporal patterning of the central nervous system. The development of the Drosophila central complex, which is mostly derived from type II neural stem cell (NSC) lineages, showcases how a small pool of NSCs can give rise to vast and distinct progeny. Similar to the human outer subventricular zone (OSVZ) neural progenitors, type II NSCs generate intermediate neural progenitors (INPs) to expand and diversify lineages that populate higher brain centers. Each type II NSC has a distinct spatial identity and timely regulated expression of many transcription factors and mRNA binding proteins. Additionally, INPs derived from them show differential expression of genes depending on their birth order. Together type II NSCs and INPs display a combinatorial temporal patterning that expands neural diversity of the central brain lineages. We cover advances in current understanding of type II NSC temporal patterning and discuss similarities and differences in temporal patterning mechanisms of various NSCs with a focus on how cell-intrinsic and extrinsic hormonal cues regulate temporal transitions in NSCs during larval development. Cell extrinsic ligands activate conserved signaling pathways and extrinsic hormonal cues act as a temporal switch that regulate temporal progression of the NSCs. We conclude by elaborating on how a progenitor's temporal code regulates the fate specification and identity of distinct neural types. At the end, we also discuss open questions in linking developmental cues to neural identity, circuits, and underlying behaviors in the adult fly.


Assuntos
Proteínas de Drosophila , Células-Tronco Neurais , Animais , Humanos , Sinais (Psicologia) , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Drosophila/genética , Sistema Nervoso Central/metabolismo , Proteínas de Drosophila/metabolismo
4.
Dev Biol ; 516: 96-113, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39089472

RESUMO

The ellipsoid body (EB) of the insect brain performs pivotal functions in controlling navigation. Input and output of the EB is provided by multiple classes of R-neurons (now referred to as ER-neurons) and columnar neurons which interact with each other in a stereotypical and spatially highly ordered manner. The developmental mechanisms that control the connectivity and topography of EB neurons are largely unknown. One indispensable prerequisite to unravel these mechanisms is to document in detail the sequence of events that shape EB neurons during their development. In this study, we analyzed the development of the Drosophila EB. In addition to globally following the ER-neuron and columnar neuron (sub)classes in the spatial context of their changing environment we performed a single cell analysis using the multi-color flip out (MCFO) system to analyze the developmental trajectory of ER-neurons at different pupal stages, young adults (4d) and aged adults (∼60d). We show that the EB develops as a merger of two distinct elements, a posterior and anterior EB primordium (prEBp and prEBa, respectively. ER-neurons belonging to different subclasses form growth cones and filopodia that associate with the prEBp and prEBa in a pattern that, from early pupal stages onward, foreshadows their mature structure. Filopodia of all ER-subclasses are initially much longer than the dendritic and terminal axonal branches they give rise to, and are pruned back during late pupal stages. Interestingly, extraneous branches, particularly significant in the dendritic domain, are a hallmark of ER-neuron structure in aged brains. Aging is also associated with a decline in synaptic connectivity from columnar neurons, as well as upregulation of presynaptic protein (Brp) in ER-neurons. Our findings advance the EB (and ER-neurons) as a favorable system to visualize and quantify the development and age-related decline of a complex neuronal circuitry.


Assuntos
Envelhecimento , Neurônios , Animais , Neurônios/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Encéfalo/metabolismo , Encéfalo/embriologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Pseudópodes/metabolismo , Pupa/metabolismo , Pupa/crescimento & desenvolvimento , Drosophila/metabolismo , Cones de Crescimento/metabolismo
5.
J Neurosci ; 43(5): 764-786, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535771

RESUMO

The ellipsoid body (EB) is a major structure of the central complex of the Drosophila melanogaster brain. Twenty-two subtypes of EB ring neurons have been identified based on anatomic and morphologic characteristics by light-level microscopy and EM connectomics. A few studies have associated ring neurons with the regulation of sleep homeostasis and structure. However, cell type-specific and population interactions in the regulation of sleep remain unclear. Using an unbiased thermogenetic screen of EB drivers using female flies, we found the following: (1) multiple ring neurons are involved in the modulation of amount of sleep and structure in a synergistic manner; (2) analysis of data for ΔP(doze)/ΔP(wake) using a mixed Gaussian model detected 5 clusters of GAL4 drivers which had similar effects on sleep pressure and/or depth: lines driving arousal contained R4m neurons, whereas lines that increased sleep pressure had R3m cells; (3) a GLM analysis correlating ring cell subtype and activity-dependent changes in sleep parameters across all lines identified several cell types significantly associated with specific sleep effects: R3p was daytime sleep-promoting, and R4m was nighttime wake-promoting; and (4) R3d cells present in 5HT7-GAL4 and in GAL4 lines, which exclusively affect sleep structure, were found to contribute to fragmentation of sleep during both day and night. Thus, multiple subtypes of ring neurons distinctively control sleep amount and/or structure. The unique highly interconnected structure of the EB suggests a local-network model worth future investigation; understanding EB subtype interactions may provide insight how sleep circuits in general are structured.SIGNIFICANCE STATEMENT How multiple brain regions, with many cell types, can coherently regulate sleep remains unclear, but identification of cell type-specific roles can generate opportunities for understanding the principles of integration and cooperation. The ellipsoid body (EB) of the fly brain exhibits a high level of connectivity and functional heterogeneity yet is able to tune multiple behaviors in real-time, including sleep. Leveraging the powerful genetic tools available in Drosophila and recent progress in the characterization of the morphology and connectivity of EB ring neurons, we identify several EB subtypes specifically associated with distinct aspects of sleep. Our findings will aid in revealing the rules of coding and integration in the brain.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Feminino , Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Sono/fisiologia , Neurônios/fisiologia , Nível de Alerta/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
6.
J Neurosci ; 43(26): 4821-4836, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37290936

RESUMO

Relative motion breaks a camouflaged target from a same-textured background, thus eliciting discrimination of a motion-defined object. Ring (R) neurons are critical components in the Drosophila central complex, which has been implicated in multiple visually guided behaviors. Using two-photon calcium imaging with female flies, we demonstrated that a specific population of R neurons that innervate the superior domain of bulb neuropil, termed superior R neurons, encoded a motion-defined bar with high spatial frequency contents. Upstream superior tuberculo-bulbar (TuBu) neurons transmitted visual signals by releasing acetylcholine within synapses connected with superior R neurons. Blocking TuBu or R neurons impaired tracking performance of the bar, which reveals their importance in motion-defined feature encoding. Additionally, the presentation of a low spatial frequency luminance-defined bar evoked consistent excitation in R neurons of the superior bulb, whereas either excited or inhibited responses were evoked in the inferior bulb. The distinct properties of the responses to the two bar stimuli indicate there is a functional division between the bulb subdomains. Moreover, physiological and behavioral tests with restricted lines suggest that R4d neurons play a vital role in tracking motion-defined bars. We conclude that the central complex receives the motion-defined features via a visual pathway from superior TuBu to R neurons and might encode different visual features via distinct response patterns at the population level, thereby driving visually guided behaviors.SIGNIFICANCE STATEMENT Animals could discriminate a motion-defined object that is indistinguishable with a same-textured background until it moves, but little is known about the underlying neural mechanisms. In this study, we identified that R neurons and their upstream partners, TuBu neurons, innervating the superior bulb of Drosophila central brain are involved in the discrimination of high-frequency motion-defined bars. Our study provides new evidence that R neurons receive multiple visual inputs from distinct upstream neurons, indicating a population coding mechanism for the fly central brain to discriminate diverse visual features. These results build progress in unraveling neural substrates for visually guided behaviors.


Assuntos
Drosophila , Percepção de Movimento , Humanos , Animais , Feminino , Vias Visuais/fisiologia , Percepção de Movimento/fisiologia , Neurônios/fisiologia , Encéfalo/fisiologia
7.
Development ; 148(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415334

RESUMO

Gene regulatory mechanisms that specify subtype identity of central complex (CX) neurons are the subject of intense investigation. The CX is a compartment within the brain common to all insect species and functions as a 'command center' that directs motor actions. It is made up of several thousand neurons, with more than 60 morphologically distinct identities. Accordingly, transcriptional programs must effect the specification of at least as many neuronal subtypes. We demonstrate a role for the transcription factor Shaking hands (Skh) in the specification of embryonic CX neurons in Tribolium. The developmental dynamics of skh expression are characteristic of terminal selectors of subtype identity. In the embryonic brain, skh expression is restricted to a subset of neurons, many of which survive to adulthood and contribute to the mature CX. skh expression is maintained throughout the lifetime in at least some CX neurons. skh knockdown results in axon outgrowth defects, thus preventing the formation of an embryonic CX primordium. The previously unstudied Drosophila skh shows a similar embryonic expression pattern, suggesting that subtype specification of CX neurons may be conserved.


Assuntos
Axônios/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/metabolismo , Crescimento Neuronal , Fatores de Transcrição/metabolismo , Tribolium/metabolismo , Animais , Axônios/fisiologia , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Insetos/química , Proteínas de Insetos/genética , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Tribolium/embriologia , Tribolium/genética
8.
Biol Lett ; 20(5): 20230576, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38747685

RESUMO

Neural circuits govern the interface between the external environment, internal cues and outwardly directed behaviours. To process multiple environmental stimuli and integrate these with internal state requires considerable neural computation. Expansion in neural network size, most readily represented by whole brain size, has historically been linked to behavioural complexity, or the predominance of cognitive behaviours. Yet, it is largely unclear which aspects of circuit variation impact variation in performance. A key question in the field of evolutionary neurobiology is therefore how neural circuits evolve to allow improved behavioural performance or innovation. We discuss this question by first exploring how volumetric changes in brain areas reflect actual neural circuit change. We explore three major axes of neural circuit evolution-replication, restructuring and reconditioning of cells and circuits-and discuss how these could relate to broader phenotypes and behavioural variation. This discussion touches on the relevant uses and limitations of volumetrics, while advocating a more circuit-based view of cognition. We then use this framework to showcase an example from the insect brain, the multi-sensory integration and internal processing that is shared between the mushroom bodies and central complex. We end by identifying future trends in this research area, which promise to advance the field of evolutionary neurobiology.


Assuntos
Evolução Biológica , Encéfalo , Cognição , Cognição/fisiologia , Animais , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Insetos/fisiologia , Corpos Pedunculados/fisiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-37095358

RESUMO

The central complex is a brain region in the insect brain that houses a neural network specialized to encode directional information. Directional coding has traditionally been investigated with compass cues that revolve in full rotations and at constant angular velocities around the insect's head. However, these stimulus conditions do not fully simulate an insect's sensory perception of compass cues during navigation. In nature, an insect flight is characterized by abrupt changes in moving direction as well as constant changes in velocity. The influence of such varying cue dynamics on compass coding remains unclear. We performed long-term tetrode recordings from the brain of monarch butterflies to study how central complex neurons respond to different stimulus velocities and directions. As these butterflies derive directional information from the sun during migration, we measured the neural response to a virtual sun. The virtual sun was either presented as a spot that appeared at random angular positions or was rotated around the butterfly at different angular velocities and directions. By specifically manipulating the stimulus velocity and trajectory, we dissociated the influence of angular velocity and direction on compass coding. While the angular velocity substantially affected the tuning directedness, the stimulus trajectory influenced the shape of the angular tuning curve. Taken together, our results suggest that the central complex flexibly adjusts its directional coding to the current stimulus dynamics ensuring a precise compass even under highly demanding conditions such as during rapid flight maneuvers.


Assuntos
Borboletas , Animais , Borboletas/fisiologia , Encéfalo/fisiologia , Cabeça , Interneurônios , Sensação
10.
Artigo em Inglês | MEDLINE | ID: mdl-36790487

RESUMO

Wood ants are excellent navigators, using a combination of innate and learnt navigational strategies to travel between their nest and feeding sites. Visual navigation in ants has been studied extensively, however, we have little direct evidence for the underlying neural mechanisms. Here, we perform lateralized mechanical lesions in the central complex (CX) of wood ants, a midline structure known to allow an insect to keep track of the direction of sensory cues relative to its own orientation and to control movement. We lesioned two groups of ants and observed their behaviour in an arena with a large visual landmark present. The first group of ants were naïve and when intact such ants show a clear innate attraction to the conspicuous landmark. The second group of ants were trained to aim to a food location to the side of the landmark. The general heading of naïve ants towards a visual cue was not altered by the lesions, but the heading of ants trained to a landmark adjacent food position was affected. Thus, CX lesions had a specific impact on learnt visual guidance. We also observed that lateralised lesions altered the fine details of turning with lesioned ants spending less time turning to the side ipsilateral of the lesion. The results confirm the role of the CX in turn control and highlight its important role in the implementation of learnt behaviours that rely on information from other brain regions.


Assuntos
Formigas , Animais , Formigas/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Aprendizagem/fisiologia , Sinais (Psicologia)
11.
Artigo em Inglês | MEDLINE | ID: mdl-36550368

RESUMO

Many arthropods and vertebrates use celestial signals such as the position of the sun during the day or stars at night as compass cues for spatial orientation. The neural network underlying sky compass coding in the brain has been studied in great detail in the desert locust Schistocerca gregaria. These insects perform long-range migrations in Northern Africa and the Middle East following seasonal changes in rainfall. Highly specialized photoreceptors in a dorsal rim area of their compound eyes are sensitive to the polarization of the sky, generated by scattered sunlight. These signals are combined with direct information on the sun position in the optic lobe and anterior optic tubercle and converge from both eyes in a midline crossing brain structure, the central complex. Here, head direction coding is achieved by a compass-like arrangement of columns signaling solar azimuth through a 360° range of space by combining direct brightness cues from the sun with polarization cues matching the polarization pattern of the sky. Other directional cues derived from wind direction and internal self-rotation input are likely integrated. Signals are transmitted as coherent steering commands to descending neurons for directional control of locomotion and flight.


Assuntos
Gafanhotos , Animais , Gafanhotos/fisiologia , Encéfalo/fisiologia , Insetos/fisiologia , Orientação Espacial , Luz Solar
12.
Artigo em Inglês | MEDLINE | ID: mdl-36494572

RESUMO

Efficient spatial orientation in the natural environment is crucial for the survival of most animal species. Cataglyphis desert ants possess excellent navigational skills. After far-ranging foraging excursions, the ants return to their inconspicuous nest entrance using celestial and panoramic cues. This review focuses on the question about how naïve ants acquire the necessary spatial information and adjust their visual compass systems. Naïve ants perform structured learning walks during their transition from the dark nest interior to foraging under bright sunlight. During initial learning walks, the ants perform rotational movements with nest-directed views using the earth's magnetic field as an earthbound compass reference. Experimental manipulations demonstrate that specific sky compass cues trigger structural neuronal plasticity in visual circuits to integration centers in the central complex and mushroom bodies. During learning walks, rotation of the sky-polarization pattern is required for an increase in volume and synaptic complexes in both integration centers. In contrast, passive light exposure triggers light-spectrum (especially UV light) dependent changes in synaptic complexes upstream of the central complex. We discuss a multisensory circuit model in the ant brain for pathways mediating structural neuroplasticity at different levels following passive light exposure and multisensory experience during the performance of learning walks.


Assuntos
Formigas , Animais , Formigas/fisiologia , Aprendizagem/fisiologia , Encéfalo , Sinais (Psicologia) , Caminhada , Comportamento de Retorno ao Território Vital/fisiologia , Clima Desértico
13.
Artigo em Inglês | MEDLINE | ID: mdl-36781446

RESUMO

The recent discovery of the head-direction (HD) system in fruit flies has provided unprecedented insights into the neural mechanisms of spatial orientation. Despite the progress, the neural substance of global inhibition, an essential component of the HD circuits, remains controversial. Some studies suggested that the ring neurons provide global inhibition, while others suggested the Δ7 neurons. In the present study, we provide evaluations from the theoretical perspective by performing systematic analyses on the computational models based on the ring-neuron (R models) and Δ7-neurons (Delta models) hypotheses with modifications according to the latest connectomic data. We conducted four tests: robustness, persistency, speed, and dynamical characteristics. We discovered that the two models led to a comparable performance in general, but each excelled in different tests. The R Models were more robust, while the Delta models were better in the persistency test. We also tested a hybrid model that combines both inhibitory mechanisms. While the performances of the R and Delta models in each test are highly parameter-dependent, the Hybrid model performed well in all tests with the same set of parameters. Our results suggest the possibility of combined inhibitory mechanisms in the HD circuits of fruit flies.


Assuntos
Conectoma , Animais , Neurônios/fisiologia , Drosophila , Orientação Espacial , Percepção Espacial
14.
Artigo em Inglês | MEDLINE | ID: mdl-36932234

RESUMO

The representation and integration of internal and external cues is crucial for any organism to execute appropriate behaviors. In insects, a highly conserved region of the brain, the central complex (CX), functions in the representation of spatial information and behavioral states, as well as the transformation of this information into desired navigational commands. How does this relatively invariant structure enable the incorporation of information from the diversity of anatomical, behavioral, and ecological niches occupied by insects? Here, we examine the input channels to the CX in the context of their development and evolution. Insect brains develop from ~ 100 neuroblasts per hemisphere that divide systematically to form "lineages" of sister neurons, that project to their target neuropils along anatomically characteristic tracts. Overlaying this developmental tract information onto the recently generated Drosophila "hemibrain" connectome and integrating this information with the anatomical and physiological recording of neurons in other species, we observe neuropil and lineage-specific innervation, connectivity, and activity profiles in CX input channels. We posit that the proliferative potential of neuroblasts and the lineage-based architecture of information channels enable the modification of neural networks across existing, novel, and deprecated modalities in a species-specific manner, thus forming the substrate for the evolution and diversification of insect navigational circuits.


Assuntos
Proteínas de Drosophila , Células-Tronco Neurais , Animais , Neurônios/fisiologia , Drosophila/metabolismo , Neurópilo/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas de Drosophila/metabolismo , Encéfalo/fisiologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-36809566

RESUMO

Owing to alignment of rhodopsin in microvillar photoreceptors, insects are sensitive to the oscillation plane of polarized light. This property is used by many species to navigate with respect to the polarization pattern of light from the blue sky. In addition, the polarization angle of light reflected from shiny surfaces such as bodies of water, animal skin, leaves, or other objects can enhance contrast and visibility. Whereas photoreceptors and central mechanisms involved in celestial polarization vision have been investigated in great detail, little is known about peripheral and central mechanisms of sensing the polarization angle of light reflected from objects and surfaces. Desert locusts, like other insects, use a polarization-dependent sky compass for navigation but are also sensitive to polarization angles from horizontal directions. In order to further analyze the processing of polarized light reflected from objects or water surfaces, we tested the sensitivity of brain interneurons to the angle of polarized blue light presented from ventral direction in locusts that had their dorsal eye regions painted black. Neurons encountered interconnect the optic lobes, invade the central body, or send descending axons to the ventral nerve cord but are not part of the polarization vision pathway involved in sky-compass coding.


Assuntos
Encéfalo , Gafanhotos , Animais , Encéfalo/fisiologia , Neurônios/fisiologia , Interneurônios , Gafanhotos/fisiologia , Insetos , Água
16.
J Exp Biol ; 226(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36700409

RESUMO

The parasitoid wasp Ampulex compressa hunts down its host, the American cockroach (Periplaneta americana), and envenomates its brain to make it a behaviorally compliant food supply for its offspring. The primary target of the wasp sting is a locomotory command center called the central complex (CX). In the present study, we employ, for the first time, chronic recordings of patterned cockroach CX activity in real time as the brain is infused with wasp venom. CX envenomation is followed by sequential changes in the pattern of neuronal firing that can be divided into three distinct temporal phases during the 2 h interval after venom injection: (1) reduction in neuronal activity for roughly 10 min immediately after venom injection; (2) rebound of activity lasting up to 25 min; (3) reduction of ongoing activity for up to 2 h. Long-term reduction of CX activity after venom injection is accompanied by decreased activity of both descending interneurons projecting to thoracic locomotory circuitry (DINs) and motor output. Thus, in this study, we provide a plausible chain of events starting in the CX that leads to decreased host locomotion following brain envenomation. We propose that these events account for the onset and maintenance of the prolonged hypokinetic state observed in stung cockroaches.


Assuntos
Baratas , Mordeduras e Picadas de Insetos , Periplaneta , Vespas , Animais , Vespas/fisiologia , Venenos de Vespas , Baratas/fisiologia , Encéfalo
17.
Proc Natl Acad Sci U S A ; 117(41): 25810-25817, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989147

RESUMO

Many animals use celestial cues for spatial orientation. These include the sun and, in insects, the polarization pattern of the sky, which depends on the position of the sun. The central complex in the insect brain plays a key role in spatial orientation. In desert locusts, the angle of polarized light in the zenith above the animal and the direction of a simulated sun are represented in a compass-like fashion in the central complex, but how both compasses fit together for a unified representation of external space remained unclear. To address this question, we analyzed the sensitivity of intracellularly recorded central-complex neurons to the angle of polarized light presented from up to 33 positions in the animal's dorsal visual field and injected Neurobiotin tracer for cell identification. Neurons were polarization sensitive in large parts of the virtual sky that in some cells extended to the horizon in all directions. Neurons, moreover, were tuned to spatial patterns of polarization angles that matched the sky polarization pattern of particular sun positions. The horizontal components of these calculated solar positions were topographically encoded in the protocerebral bridge of the central complex covering 360° of space. This whole-sky polarization compass does not support the earlier reported polarization compass based on stimulation from a small spot above the animal but coincides well with the previously demonstrated direct sun compass based on unpolarized light stimulation. Therefore, direct sunlight and whole-sky polarization complement each other for robust head direction coding in the locust central complex.


Assuntos
Gafanhotos/fisiologia , Gafanhotos/efeitos da radiação , Animais , Encéfalo/fisiologia , Encéfalo/efeitos da radiação , Orientação Espacial , Sistema Solar , Percepção Espacial , Luz Solar
18.
Proc Biol Sci ; 289(1967): 20212499, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35078368

RESUMO

Many animals use celestial cues for impressive navigational performances in challenging habitats. Since the position of the sun and associated skylight cues change throughout the day and season, it is crucial to correct for these changes. Cataglyphis desert ants possess a time-compensated skylight compass allowing them to navigate back to their nest using the shortest way possible. The ants have to learn the sun's daily course (solar ephemeris) during initial learning walks (LW) before foraging. This learning phase is associated with substantial structural changes in visual neuronal circuits of the ant's brain. Here, we test whether the rotation of skylight polarization during LWs is the necessary cue to induce learning-dependent rewiring in synaptic circuits in high-order integration centres of the ant brain. Our results show that structural neuronal changes in the central complex and mushroom bodies are triggered only when LWs were performed under a rotating skylight polarization pattern. By contrast, when naive ants did not perform LWs, but were exposed to skylight cues, plasticity was restricted to light spectrum-dependent changes in synaptic complexes of the lateral complex. The results identify sky-compass cues triggering learning-dependent versus -independent neuronal plasticity during the behavioural transition from interior workers to outdoor foragers.


Assuntos
Formigas , Animais , Formigas/fisiologia , Sinais (Psicologia) , Comportamento de Retorno ao Território Vital/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Rotação
19.
Artigo em Inglês | MEDLINE | ID: mdl-35157117

RESUMO

The polarization pattern of the sky is exploited by many insects for spatial orientation and navigation. It derives from Rayleigh scattering in the atmosphere and depends directly on the position of the sun. In the insect brain, the central complex (CX) houses neurons tuned to the angle of polarization (AoP), that together constitute an internal compass for celestial navigation. Polarized light is not only characterized by the AoP, but also by the degree of polarization (DoP), which can be highly variable, depending on sky conditions. Under a clear sky, the DoP of polarized sky light may reach up to 0.75 but is usually much lower especially when light is scattered by clouds or haze. To investigate how the polarization-processing network of the CX copes with low DoPs, we recorded intracellularly from neurons of the locust CX at different stages of processing, while stimulating with light of different DoPs. Significant responses to polarized light occurred down to DoPs of 0.05 indicating reliable coding of the AoP even at unfavorable sky conditions. Moreover, we found that the activity of neurons at the CX input stage may be strongly influenced by nearly unpolarized light, while the activity of downstream neurons appears less affected.


Assuntos
Gafanhotos , Animais , Encéfalo/fisiologia , Gafanhotos/fisiologia , Insetos , Neurônios/fisiologia , Orientação Espacial , Percepção Espacial
20.
J Exp Biol ; 225(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35320357

RESUMO

The subjugation strategy employed by the jewel wasp is unique in that it manipulates the behavior of its host, the American cockroach, rather than inducing outright paralysis. Upon envenomation directly into the central complex (CX), a command center in the brain for motor behavior, the stung cockroach initially engages in intense grooming behavior, then falls into a lethargic sleep-like state referred to as hypokinesia. Behavioral changes evoked by the sting are due at least in part to the presence of the neurotransmitter dopamine in the venom. In insects, dopamine receptors are classified as two families, the D1-like and the D2-like receptors. However, specific roles played by dopamine receptor subtypes in venom-induced behavioral manipulation by the jewel wasp remain largely unknown. In the present study, we used a pharmacological approach to investigate roles of D1-like and D2-like receptors in behaviors exhibited by stung cockroaches, focusing on grooming. Specifically, we assessed behavioral outcomes of focal CX injections of dopamine receptor agonists and antagonists. Both specific and non-specific compounds were used. Our results strongly implicate D1-like dopamine receptors in venom-induced grooming. Regarding induction of hypokinesia, our findings demonstrate that dopamine signaling is necessary for induction of long-lasting hypokinesia caused by brain envenomation.


Assuntos
Baratas , Vespas , Animais , Comportamento Animal , Baratas/fisiologia , Dopamina/farmacologia , Agonistas de Dopamina/farmacologia , Humanos , Hipocinesia/induzido quimicamente , Instinto , Receptores Dopaminérgicos , Receptores de Dopamina D1 , Venenos de Vespas/efeitos adversos , Vespas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA