Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Epilepsia ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845459

RESUMO

Neuromodulation therapies offer an efficacious treatment alternative for patients with drug-resistant epilepsy (DRE), particularly those unlikely to benefit from surgical resection. Here we present our retrospective single-center case series of patients with pediatric-onset DRE who underwent responsive neurostimulation (RNS) depth electrode implantation targeting the bilateral centromedian nucleus (CM) of the thalamus between October 2020 and October 2022. Sixteen patients were identified; seizure outcomes, programming parameters, and complications at follow-up were reviewed. The median age at implantation was 13 years (range 3.6-22). Six patients (38%) were younger than 12 years of age at the time of implantation. Ictal electroencephalography (EEG) patterns during patients' most disabling seizures were reliably detected. Ten patients (62%) achieved 50% or greater reduction in seizure frequency at a median 1.3 years (range 0.6-2.6) of follow-up. Eight patients (50%) experienced sensorimotor side effects, and three patients (19%) had superficial pocket infection, prompting the removal of the RNS device. Side effects of stimulation were experienced mostly in monopolar-cathodal configuration and alleviated with programming change to bipolar configuration or low-frequency stimulation. Closed-loop neurostimulation using RNS targeting bilateral CM is a feasible and useful therapy for patients with pediatric-onset DRE.

2.
Neurol Neurochir Pol ; 58(3): 256-273, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38864766

RESUMO

INTRODUCTION: Drug-resistant epilepsy (DRE) remains poorly-controlled in c.33% of patients, and up to 50% of patients suffering from DRE are deemed not to be suitable candidates for resective surgery. For these patients, deep brain stimulation (DBS) may constitute the last resort in the treatment of DRE. STATE OF THE ART: We undertook a systematic review of the current literature on DBS efficacy and the safety of two thalamic nuclei-anterior nucleus of the thalamus (ANT) and the centromedian nucleus of the thalamus in the management of patients with DRE. A search using two electronic databases, the Medical Literature, Analysis, and Retrieval System on-line (MEDLINE) and the Cochrane Central Register of Controlled Trials (CEN-TRAL) was conducted. CLINICAL IMPLICATIONS: We found 30 articles related to ANT DBS and 13 articles related to CMN DBS which were further analysed. Based on the clinical research articles, we found a mean seizure frequency reduction for both thalamic nuclei. For ANT DBS, the mean seizure frequency reduction ranged from 48% to 75%, and for CMN DBS from 46.7% to 91%. The responder rate (defined as at least 50% reduction in seizure frequency) was reported to be 53.2-75% for patients after ANT DBS and 50-90% for patients after CMN DBS. FUTURE DIRECTIONS: ANT and CMN DBS appear to be safe and efficacious treatments, particularly in patients with refractory partial seizures and primary generalised seizures. ANT DBS reduces most effectively seizures originating in the temporal and frontal lobes. CMN DBS reduces mostly primary generalised tonic-clonic and atypical absences and atonic seizures. Seizures related to Lennox-Gastaut syndrome respond very favourably to CMN DBS.


Assuntos
Núcleos Anteriores do Tálamo , Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Núcleos Intralaminares do Tálamo , Humanos , Estimulação Encefálica Profunda/métodos , Epilepsia Resistente a Medicamentos/terapia , Resultado do Tratamento
3.
Neurobiol Dis ; 179: 106045, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36809846

RESUMO

Neuromodulation (neurostimulation) is a relatively new and rapidly growing treatment for refractory epilepsy. Three varieties are approved in the US: vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). This article reviews thalamic DBS for epilepsy. Among many thalamic sub-nuclei, DBS for epilepsy has been targeted to the anterior nucleus (ANT), centromedian nucleus (CM), dorsomedial nucleus (DM) and pulvinar (PULV). Only ANT is FDA-approved, based upon a controlled clinical trial. Bilateral stimulation of ANT reduced seizures by 40.5% at three months in the controlled phase (p = .038) and 75% by 5 years in the uncontrolled phase. Side effects related to paresthesias, acute hemorrhage, infection, occasional increased seizures, and usually transient effects on mood and memory. Efficacy was best documented for focal onset seizures in temporal or frontal lobe. CM stimulation may be useful for generalized or multifocal seizures and PULV for posterior limbic seizures. Mechanisms of DBS for epilepsy are largely unknown, but animal work points to changes in receptors, channels, neurotransmitters, synapses, network connectivity and neurogenesis. Personalization of therapies, in terms of connectivity of the seizure onset zone to the thalamic sub- nucleus and individual characteristics of the seizures, might lead to improved efficacy. Many questions remain about DBS, including the best candidates for different types of neuromodulation, the best targets, the best stimulation parameters, how to minimize side effects and how to deliver current noninvasively. Despite the questions, neuromodulation provides useful new opportunities to treat people with refractory seizures not responding to medicines and not amenable to resective surgery.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Epilepsia , Animais , Epilepsia/terapia , Tálamo , Convulsões/terapia
4.
Epilepsia ; 64(11): 3025-3035, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37607249

RESUMO

OBJECTIVE: Thalamic deep brain stimulation (DBS) is an effective therapeutic option in patients with drug-resistant epilepsy. Recent DBS devices with sensing capabilities enable chronic, outpatient local field potential (LFP) recordings. Whereas beta oscillations have been demonstrated to be a useful biomarker in movement disorders, the clinical utility of DBS sensing in epilepsy remains unclear. Our aim was to determine LFP features that distinguish ictal from inter-ictal states, which may aid in tracking seizure outcomes with DBS. METHODS: Electrophysiology data were obtained from DBS devices implanted in the anterior nucleus (N = 12) or centromedian nucleus (N = 2) of the thalamus. Power spectra recorded during patient/caregiver-marked seizure events were analyzed with a method that quantitatively separates the oscillatory and non-oscillatory/aperiodic components of the LFP using non-parametric statistics, without the need for pre-specification of the frequency bands of interest. Features of the LFP parameterized using this algorithm were compared with those from inter-ictal power spectra recorded in clinic. RESULTS: Oscillatory activity in multiple canonical frequency bands was identified from the power spectra in 86.48% of patient-marked seizure events. Delta oscillations were present in all patients, followed by theta (N = 10) and beta (N = 9). Although there were no differences in oscillatory LFP features between the ictal and inter-ictal states, there was a steeper decline in the 1/f slope of the aperiodic component of the LFP during seizures. SIGNIFICANCE: Our work highlights the potential and shortcomings of chronic LFP recordings in thalamic DBS for epilepsy. Findings suggest that no single frequency band in isolation clearly differentiates seizures, and that features of aperiodic LFP activity may be clinically-relevant biomarkers of seizures.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Epilepsia , Núcleos Intralaminares do Tálamo , Humanos , Estimulação Encefálica Profunda/métodos , Epilepsia/terapia , Convulsões/terapia , Epilepsia Resistente a Medicamentos/terapia
5.
Stereotact Funct Neurosurg ; 101(2): 75-85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36731446

RESUMO

Responsive neurostimulation (RNS) has well-established efficacy in patients with identifiable seizure foci. Emerging evidence suggests the feasibility of expanding this treatment to patients with nonfocal or multifocal epileptic profiles with thalamic targeting. Our institution performed two successful implantations of thalamic RNS (tRNS) targeting the centromedian nucleus of the thalamus (CMT), and 1-year postoperative outcomes are provided. Additionally, a literature review of all reported tRNS was conducted. Publications were excluded if they did not include demographic data and/or epilepsy outcomes at follow-up. In the literature, 19 adult and 3 pediatric cases were identified. These cases were analyzed for outcome, indications, previous operations, and surgical practice variations. Both of our patients had failed multiple previous pharmacological and neurosurgical interventions for epilepsy. Case #1 underwent tRNS with bilateral CMT stimulation. Case #2 underwent tRNS with simultaneous right CMT and right insular stimulation, although an additional lead was placed in the left CMT and left capped for potential future use. Each has achieved ≥90% reduction in seizure burden and approach seizure freedom. 71% of patients in the literature review had multifocal, bilateral, or cryptogenic seizure onset. Three patients were implanted for Lennox Gastaut (2 of 3 are pediatric). 16 patients underwent an average of 1.6 failed procedures prior to successful tRNS implantation. Taken together, the 21 adult patients reviewed have experienced an average seizure reduction of 77% at the latest follow-up. 95% of the adult patients reported in the literature experienced >50% reduction in seizure activity following tRNS and 52% experienced ≥90% reduction in seizure burden following tRNS. Pediatric patients have experienced 70-100% improvement.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Epilepsia , Núcleos Intralaminares do Tálamo , Humanos , Criança , Adulto , Estimulação Encefálica Profunda/métodos , Epilepsia/terapia , Convulsões/terapia , Procedimentos Neurocirúrgicos , Epilepsia Resistente a Medicamentos/terapia
6.
Neuromodulation ; 26(3): 601-606, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35840521

RESUMO

OBJECTIVE: The antiseizure effects of vagus nerve stimulation (VNS) are thought to be mediated by the modulation of afferent thalamocortical circuitry. Cross-frequency phase-amplitude coupling (PAC) is a mechanism of hierarchical network coordination across multiple spatiotemporal scales. In this study, we leverage local field potential (LFP) recordings from the centromedian (CM) (n = 3) and anterior (ATN) (n = 2) nuclei in five patients with tandem thalamic deep brain stimulation and VNS to study neurophysiological changes in the thalamus in response to VNS. MATERIALS AND METHODS: Bipolar LFP data were recorded from contact pairs spanning target nuclei in VNS "on" and "off" states. RESULTS: Active VNS was associated with increased PAC between theta, alpha, and beta phase and gamma amplitude in CM (q < 0.05). Within the ATN, PAC changes also were observed, although these were less robust. In both nuclei, active VNS also modulated interhemispheric bithalamic functional connectivity. CONCLUSIONS: We report that VNS is associated with enhanced PAC and coordinated interhemispheric interactions within and between thalamic nuclei, respectively. These findings advance understanding of putative neurophysiological effects of acute VNS and contextualize previous animal and human studies showing distributed cortical synchronization after VNS.


Assuntos
Estimulação do Nervo Vago , Animais , Humanos , Tálamo
7.
Eur J Neurosci ; 53(7): 2254-2277, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32564449

RESUMO

Action selection has been hypothesized to be a key function of the basal ganglia, yet the nuclei involved, their interactions and the importance of the direct/indirect pathway segregation in such process remain debated. Here, we design a spiking computational model of the monkey basal ganglia derived from a previously published population model, initially parameterized to reproduce electrophysiological activity at rest and to embody as much quantitative anatomical data as possible. As a particular feature, both models exhibit the strong overlap between the direct and indirect pathways that has been documented in non-human primates. Here, we first show how the translation from a population to an individual neuron model was achieved, with the addition of a minimal number of parameters. We then show that our model performs action selection, even though it was built without any assumption on the activity carried out during behaviour. We investigate the mechanisms of this selection through circuit disruptions and found an instrumental role of the off-centre/on-surround structure of the MSN-STN-GPi circuit, as well as of the MSN-MSN and FSI-MSN projections. This validates their potency in enabling selection. We finally study the pervasive centromedian and parafascicular thalamic inputs that reach all basal ganglia nuclei and whose influence is therefore difficult to anticipate. Our model predicts that these inputs modulate the responsiveness of action selection, making them a candidate for the regulation of the speed-accuracy trade-off during decision-making.


Assuntos
Gânglios da Base , Tálamo , Animais , Redes Neurais de Computação , Vias Neurais , Primatas
8.
Epilepsy Behav ; 114(Pt A): 107560, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33243680

RESUMO

OBJECTIVE: To determine the usefulness and efficacy of radiofrequency ablations (RFA) of the Centromedian thalamic nucleus (CMN) to control primarily generalized or multifocal seizures in refractory epilepsy. METHODS: Six patients with clinical diagnosis of multifocal or primarily generalized drug-resistant epilepsy were included. Bilateral RFA of the CMN was performed through a monopolar 1.8 mm. tip electrode with a temperature of 80 °C during 90 seconds. Patients were followed in every 3 months visit for 20 to 36 months and kept a monthly seizure count calendar. We also compared maximal paroxysmal electroencephalogram (EEG) activity and neuropsychological evaluation pre and 6 months postoperatively. RESULTS: A significant reduction in the number of generalized seizures was observed in all subjects in the range of 79-98%, starting the first post-operative month. Although focal aware seizures remained unchanged throughout follow-up, there was an important reduction on paroxysmal activity between the pre and postoperative EEG. No major changes on cognitive status were detected. There was post-operative dysphagia and odynophagia lasting one week and there was no mortality in this group of patients. CONCLUSION: Preliminary results of CMN RFA suggest safety and a trend toward reduction of some seizure types, it may reduce the seizure frequency like other palliative procedures since the first post-operative month, but a larger, controlled study would be needed to establish the value of this therapy.


Assuntos
Epilepsia Resistente a Medicamentos , Núcleos Intralaminares do Tálamo , Preparações Farmacêuticas , Ablação por Radiofrequência , Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia , Humanos
9.
J Physiol ; 598(12): 2397-2414, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144956

RESUMO

KEY POINTS: The major electrophysiological hallmarks of absence seizures are spike and wave discharges (SWDs), consisting of a sharp spike component and a slow wave component. In a widely accepted scheme, these components are functionally coupled and reflect an iterative progression of neuronal excitation during the spike and post-excitatory silence during the wave. In a genetic rat model of absence epilepsy, local pharmacological inhibition of the centromedian thalamus (CM) selectively suppressed the spike component, leaving self-contained waves in epidural recordings. Thalamic inputs induced activity in cortical microcircuits underlying the spike component, while intracortical oscillations generated the wave component. Based on these findings, we propose a model in which oscillatory waves provide adequate time windows for integration of thalamocortical inputs and feedback responses during generation of a synchronized SWD. ABSTRACT: Spike and wave discharges (SWDs) are the electrographic hallmark of absence seizures and the major diagnostic criterion for childhood absence epilepsy (CAE). In a widely accepted scheme, the alternating sequence of spikes and waves reflects an iterative progression of neuronal excitation during the spike component and post-excitatory silence during the wave component. Here we challenge this view by showing that these two components are not necessarily coupled. In a genetic rat model of CAE, self-contained waves occurred in motor cortex in synchrony with SWDs in the somatosensory system during blockade of afferent input from the thalamus. Current-source density analyses of multi-site local field potentials (LFPs) revealed layer-specific activity, in which thalamic inputs induced a sequence of cellular-synaptic events underlying the spike component, while intracortical oscillations generated the wave component. These findings indicate novel principles of SWDs, where oscillatory cortical waves provide adequate time windows for integration of thalamocortical inputs and feedback responses during generation of seizure activity.


Assuntos
Epilepsia Tipo Ausência , Animais , Córtex Cerebral , Criança , Eletroencefalografia , Humanos , Neurônios , Alta do Paciente , Ratos , Convulsões , Tálamo
10.
Epilepsia ; 61(10): 2214-2223, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32944944

RESUMO

OBJECTIVE: We aimed to assess the roles of the cortex and thalamus (centromedian nucleus [CM]) during epileptic activity in Lennox-Gastaut syndrome (LGS) patients undergoing deep brain stimulation (DBS) surgery as part of the ESTEL (Electrical Stimulation of the Thalamus for Epilepsy of Lennox-Gastaut Phenotype) trial. METHODS: Twelve LGS patients (mean age = 26.8 years) underwent bilateral CM-DBS implantation. Intraoperatively, simultaneous electroencephalogram (EEG) was recorded (range = 10-34 minutes) from scalp electrodes and bilateral thalamic DBS electrodes. Temporal onsets of epileptic discharges (generalized paroxysmal fast activity [GPFA] and slow spike-and-wave [SSW]) were manually marked on recordings from scalp (ie, "cortex") and thalamus (ie, CM-DBS electrodes). Phase transfer entropy (PTE) analysis quantified the degree of information transfer from cortex to thalamus within different frequency bands around GPFA events. RESULTS: GPFA was captured in eight of 12 patients (total event number across patients = 168, cumulative duration = 358 seconds). Eighty-six percent of GPFA events were seen in both scalp and thalamic recordings. In most events (83%), onset occurred first at scalp, with thalamic onset lagging by a median of 98 milliseconds (interquartile range = 78.5 milliseconds). Results for SSW were more variable and seen in 11 of 12 patients; 25.4% of discharges were noted in both scalp and thalamus. Of these, 74.5% occurred first at scalp, with a median lag of 75 milliseconds (interquartile range = 228 milliseconds). One to 0.5 seconds and 0.5-0 seconds before GPFA onset, PTE analysis showed significant energy transfer from scalp to thalamus in the delta (1-3 Hz) frequency band. For alpha (8-12 Hz) and beta (13-30 Hz) frequencies, PTE was greatest 1-0.5 seconds before GPFA onset. SIGNIFICANCE: Epileptic activity is detectable in CM of thalamus, confirming that this nucleus participates in the epileptic network of LGS. Temporal onset of GPFA mostly occurs earlier at the scalp than in the thalamus. This supports our prior EEG-functional magnetic resonance imaging results and provides further evidence for a cortically driven process underlying GPFA in LGS.


Assuntos
Córtex Cerebral/fisiopatologia , Eletroencefalografia/métodos , Epilepsia Generalizada/fisiopatologia , Monitorização Neurofisiológica Intraoperatória/métodos , Síndrome de Lennox-Gastaut/fisiopatologia , Núcleo Mediodorsal do Tálamo/fisiopatologia , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/cirurgia , Estimulação Encefálica Profunda/métodos , Epilepsia Generalizada/diagnóstico por imagem , Epilepsia Generalizada/cirurgia , Feminino , Humanos , Síndrome de Lennox-Gastaut/diagnóstico por imagem , Síndrome de Lennox-Gastaut/cirurgia , Masculino , Núcleo Mediodorsal do Tálamo/diagnóstico por imagem , Núcleo Mediodorsal do Tálamo/cirurgia , Tomografia Computadorizada por Raios X/métodos , Adulto Jovem
11.
Epilepsy Behav ; 112: 107354, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32919199

RESUMO

OBJECTIVE: The aim of the study was to determine if corticothalamic responsive stimulation targeting the centromedian nucleus of the thalamus (CMT) is a potential treatment for neocortical epilepsies with regional onsets. METHODS: We assessed efficacy and safety of CMT and neocortical responsive stimulation, detection, and stimulation programming, methods for implantation, and location and patterns of electrographic seizure onset and spread in 7 patients with medically intractable focal seizures with a regional neocortical onset. RESULTS: The median follow-up duration was 17 months (average: 17 months, range: 8-28 months). The median % reduction in disabling seizures (excludes auras) in the 7 patients was 88% (mean: 80%, range: 55-100%). The median % reduction in all seizure types (disabling + auras) was 73% (mean: 67%, range: 15-94%). There were no adverse events related to implantation of the responsive neurostimulator and leads or related to the delivery of responsive stimulation. Stimulation-related contralateral paresthesias were addressed by adjusting stimulation parameters in the clinic during stimulation testing. Electrographic seizures were detected in the CMT and neocortex in all seven patients. Four patients had simultaneous or near simultaneous seizure onsets in the neocortex and CMT and three had onsets in the neocortex with spread to the CMT. CONCLUSION: In this small series of patients with medically intractable focal seizures and regional neocortical onset, responsive neurostimulation to the neocortex and CMT improved seizure control and was well tolerated. SIGNIFICANCE: Responsive corticothalamic neurostimulation of the CMT and neocortex is a potential treatment for patients with regional neocortical epilepsies.


Assuntos
Estimulação Encefálica Profunda , Epilepsia , Núcleos Intralaminares do Tálamo , Neocórtex , Epilepsia/terapia , Humanos , Técnicas Estereotáxicas
12.
Neurosurg Focus ; 48(4): E2, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32234983

RESUMO

OBJECTIVE: Despite numerous imaging studies highlighting the importance of the thalamus in a patient's surgical prognosis, human electrophysiological studies involving the limbic thalamic nuclei are limited. The objective of this study was to evaluate the safety and accuracy of robot-assisted stereotactic electrode placement in the limbic thalamic nuclei of patients with suspected temporal lobe epilepsy (TLE). METHODS: After providing informed consent, 24 adults with drug-resistant, suspected TLE undergoing evaluation with stereoelectroencephalography (SEEG) were enrolled in the prospective study. The trajectory of one electrode planned for clinical sampling of the operculoinsular cortex was modified to extend it to the thalamus, thereby preventing the need for additional electrode placement for research. The anterior nucleus of the thalamus (ANT) (n = 13) and the medial group of thalamic nuclei (MED) (n = 11), including the mediodorsal and centromedian nuclei, were targeted. The postimplantation CT scan was coregistered to the preoperative MR image, and Morel's thalamic atlas was used to confirm the accuracy of implantation. RESULTS: Ten (77%) of 13 patients in the ANT group and 10 (91%) of 11 patients in the MED group had electrodes accurately placed in the thalamic nuclei. None of the patients had a thalamic hemorrhage. However, trace asymptomatic hemorrhages at the cortical-level entry site were noted in 20.8% of patients, who did not require additional surgical intervention. SEEG data from all the patients were interpretable and analyzable. The trajectories for the ANT implant differed slightly from those of the MED group at the entry point-i.e., the precentral gyrus in the former and the postcentral gyrus in the latter. CONCLUSIONS: Using judiciously planned robot-assisted SEEG, the authors demonstrate the safety of electrophysiological sampling from various thalamic nuclei for research recordings, presenting a technique that avoids implanting additional depth electrodes or compromising clinical care. With these results, we propose that if patients are fully informed of the risks involved, there are potential benefits of gaining mechanistic insights to seizure genesis, which may help to develop neuromodulation therapies.


Assuntos
Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia , Epilepsias Parciais/cirurgia , Robótica , Adulto , Núcleos Anteriores do Tálamo/cirurgia , Estimulação Encefálica Profunda/métodos , Eletroencefalografia/métodos , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Técnicas Estereotáxicas/efeitos adversos
13.
Neurosurg Focus ; 49(1): E6, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32610297

RESUMO

The development of closed-loop deep brain stimulation (DBS) systems represents a significant opportunity for innovation in the clinical application of neurostimulation therapies. Despite the highly dynamic nature of neurological diseases, open-loop DBS applications are incapable of modifying parameters in real time to react to fluctuations in disease states. Thus, current practice for the designation of stimulation parameters, such as duration, amplitude, and pulse frequency, is an algorithmic process. Ideal stimulation parameters are highly individualized and must reflect both the specific disease presentation and the unique pathophysiology presented by the individual. Stimulation parameters currently require a lengthy trial-and-error process to achieve the maximal therapeutic effect and can only be modified during clinical visits. The major impediment to the development of automated, adaptive closed-loop systems involves the selection of highly specific disease-related biomarkers to provide feedback for the stimulation platform. This review explores the disease relevance of neurochemical and electrophysiological biomarkers for the development of closed-loop neurostimulation technologies. Electrophysiological biomarkers, such as local field potentials, have been used to monitor disease states. Real-time measurement of neurochemical substances may be similarly useful for disease characterization. Thus, the introduction of measurable neurochemical analytes has significantly expanded biomarker options for feedback-sensitive neuromodulation systems. The potential use of biomarker monitoring to advance neurostimulation approaches for treatment of Parkinson's disease, essential tremor, epilepsy, Tourette syndrome, obsessive-compulsive disorder, chronic pain, and depression is examined. Further, challenges and advances in the development of closed-loop neurostimulation technology are reviewed, as well as opportunities for next-generation closed-loop platforms.


Assuntos
Encéfalo/fisiopatologia , Estimulação Encefálica Profunda , Doenças do Sistema Nervoso/terapia , Transtorno Obsessivo-Compulsivo/terapia , Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Humanos , Doença de Parkinson/terapia , Síndrome de Tourette/fisiopatologia
14.
Neurosurg Focus ; 45(2): E5, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30064324

RESUMO

OBJECTIVE The field of deep brain stimulation (DBS) for epilepsy has grown tremendously since its inception in the 1970s and 1980s. The goal of this review is to identify and evaluate all studies published on the topic of open-loop DBS for epilepsy over the past decade (2008 to present). METHODS A PubMed search was conducted to identify all articles reporting clinical outcomes of open-loop DBS for the treatment of epilepsy published since January 1, 2008. The following composite search terms were used: ("epilepsy" [MeSH] OR "seizures" [MeSH] OR "kindling, neurologic" [MeSH] OR epilep* OR seizure* OR convuls*) AND ("deep brain stimulation" [MeSH] OR "deep brain stimulation" OR "DBS") OR ("electric stimulation therapy" [MeSH] OR "electric stimulation therapy" OR "implantable neurostimulators" [MeSH]). RESULTS The authors identified 41 studies that met the criteria for inclusion. The anterior nucleus of the thalamus, centromedian nucleus of the thalamus, and hippocampus were the most frequently evaluated targets. Among the 41 articles, 19 reported on stimulation of the anterior nucleus of the thalamus, 6 evaluated stimulation of the centromedian nucleus of the thalamus, and 9 evaluated stimulation of the hippocampus. The remaining 7 articles reported on the evaluation of alternative DBS targets, including the posterior hypothalamus, subthalamic nucleus, ventral intermediate nucleus of the thalamus, nucleus accumbens, caudal zone incerta, mammillothalamic tract, and fornix. The authors evaluated each study for overall epilepsy response rates as well as adverse events and other significant, nonepilepsy outcomes. CONCLUSIONS Level I evidence supports the safety and efficacy of stimulating the anterior nucleus of the thalamus and the hippocampus for the treatment of medically refractory epilepsy. Level III and IV evidence supports stimulation of other targets for epilepsy. Ongoing research into the efficacy, adverse effects, and mechanisms of open-loop DBS continues to expand the knowledge supporting the use of these treatment modalities in patients with refractory epilepsy.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos/terapia , Epilepsia/terapia , Convulsões/cirurgia , Estimulação Encefálica Profunda/métodos , Hipocampo/cirurgia , Humanos , Resultado do Tratamento
15.
Neurosurg Focus ; 45(2): E4, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30064326

RESUMO

Antiepileptic drugs prevent morbidity and death in a large number of patients suffering from epilepsy. However, it is estimated that approximately 30% of epileptic patients will not have adequate seizure control with medication alone. Resection of epileptogenic cortex may be indicated in medically refractory cases with a discrete seizure focus in noneloquent cortex. For patients in whom resection is not an option, deep brain stimulation (DBS) may be an effective means of seizure control. Deep brain stimulation targets for treating seizures primarily include the thalamic nuclei, hippocampus, subthalamic nucleus, and cerebellum. A variety of stimulation parameters have been studied, and more recent advances in electrical stimulation to treat epilepsy include responsive neurostimulation. Data suggest that DBS is effective for treating drug-resistant epilepsy.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos/terapia , Epilepsia/terapia , Convulsões/terapia , Córtex Cerebral/cirurgia , Hipocampo/cirurgia , Humanos
16.
Neurosurg Focus ; 45(2): E7, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30064322

RESUMO

OBJECTIVE Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a promising therapy for refractory epilepsy. Unfortunately, the variability in outcomes from ANT DBS is not fully understood. In this pilot study, the authors assess potential differences in functional connectivity related to the volume of tissue activated (VTA) in ANT DBS responders and nonresponders as a means for better understanding the mechanism of action and potentially improving DBS targeting. METHODS This retrospective analysis consisted of 6 patients who underwent ANT DBS for refractory epilepsy. Patients were classified as responders (n = 3) if their seizure frequency decreased by at least 50%. The DBS electrodes were localized postoperatively and VTAs were computationally generated based on DBS programming settings. VTAs were used as seed points for resting-state functional MRI connectivity analysis performed using a control dataset. Differences in cortical connectivity to the VTA were assessed between the responder and nonresponder groups. RESULTS The ANT DBS responders showed greater positive connectivity with the default mode network compared to nonresponders, including the posterior cingulate cortex, medial prefrontal cortex, inferior parietal lobule, and precuneus. Interestingly, there was also a consistent anticorrelation with the hippocampus seen in responders that was not present in nonresponders. CONCLUSIONS Based on their pilot study, the authors observed that successful ANT DBS in patients with epilepsy produces increased connectivity in the default mode network, which the authors hypothesize increases the threshold for seizure propagation. Additionally, an inhibitory effect on the hippocampus mediated through increased hippocampal γ-aminobutyric acid (GABA) concentration may contribute to seizure suppression. Future studies are planned to confirm these findings.


Assuntos
Núcleos Anteriores do Tálamo/cirurgia , Biomarcadores , Estimulação Encefálica Profunda , Epilepsia/terapia , Adulto , Feminino , Hipocampo/cirurgia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Retrospectivos
17.
Neurosurg Focus ; 45(2): E6, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30064328

RESUMO

When medically intractable epilepsy is multifocal or focal but poorly localized, neuromodulation can be useful therapy. One such technique is deep brain stimulation (DBS) targeting the anterior nucleus of the thalamus (ANT). Unfortunately, the ANT is difficult to visualize in standard MRI sequences and its indirect targeting is difficult because of thalamic variability and atrophy in patients with epilepsy. The following study describes the novel use of the fast gray matter acquisition T1 inversion recovery (FGATIR) MRI sequence to delineate the mammillothalamic tract for direct targeting of the ANT through visualizing the termination of the mammillothalamic tract in the ANT. The day prior to surgery in a 19-year-old, right-handed woman with a 5-year history of epilepsy, MRI was performed on a 3-T Siemens Prisma scanner (Siemens AG, Healthcare Sector) using a 64-channel head and neck coil. As part of the imaging protocol, noncontrast magnetization-prepared rapid gradient echo (MP-RAGE) and diffusion tensor imaging (DTI) sequences were obtained for targeting purposes. The ANT was directly targeted using the FGATIR sequence, and bilateral Medtronic 3389 leads were placed. At the last follow-up (2 months), the patient reported an approximate 75% decrease in seizure frequency, as well as a decrease in seizure severity.


Assuntos
Núcleos Anteriores do Tálamo , Estimulação Encefálica Profunda , Epilepsia/terapia , Substância Cinzenta/cirurgia , Adulto , Estimulação Encefálica Profunda/métodos , Imagem de Tensor de Difusão/métodos , Eletrodos Implantados , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Substância Branca
18.
Acta Neurochir (Wien) ; 159(5): 789-793, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28303332

RESUMO

The centromedian nucleus (CM) of the thalamus is an important site with anatomical connections to different cortical and subcortical motor areas; however, its role in tremor disorders is not clear, although deep brain stimulation (DBS) of the CM has been described to be effective in the treatment of parkinsonian tremor. We report a case of a patient with medication-refractory essential tremor (ET) who had excellent tremor suppression with DBS of the CM. The CM and the nearby region should be explored as a potential target for the treatment of ET and other forms of tremor.


Assuntos
Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Núcleos Intralaminares do Tálamo , Idoso , Humanos , Masculino
19.
Brain Inj ; 30(13-14): 1731-1736, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27680211

RESUMO

BACKGROUND: Insufficient understanding of the mechanisms of consciousness can make unconsciousness a diagnostic challenge, directly effecting the treatment and the outcome of the patient. Consciousness is a product of brainstem arousal (wakefulness, the level of consciousness) and cortical information integration (awareness, the contents of consciousness). The thalamus serves as a critical hub in the arousal pathway. The nuclei within the internal medullary lamina, together with the associated thalamocortical connections, have been implicated as being especially important for human consciousness. CASE STUDY: A 17-year old male migraineur developed a sudden episode of unconsciousness after receiving a single dose of intranasal sumatriptan for the treatment of prolonged migraine-associated symptoms. Diffusion-weighted magnetic resonance imaging revealed a small bilateral thalamic infarction affecting the centromedian and parafascicular nuclei and the associated non-specific thalamocortical connections as the likely reason for the impairment of consciousness. With the exception of occasional fatigue due to a persistent lesion on the left thalamus, the patient experienced full recovery. Corresponding to the injury, diffusion tensor tractography imaging revealed a distinctive defect on the thalamocortical fibres originating from the left centromedian/parafascicular nuclei complex. CONCLUSIONS: The presented case offers an outstanding example of the importance of the arousal system and non-specific thalamocortical connectivity for normal waking consciousness.


Assuntos
Nível de Alerta/efeitos dos fármacos , Sumatriptana/efeitos adversos , Inconsciência/induzido quimicamente , Vasoconstritores/efeitos adversos , Adolescente , Imagem de Tensor de Difusão , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Transtornos de Enxaqueca/tratamento farmacológico , Tálamo/diagnóstico por imagem , Tálamo/efeitos dos fármacos , Inconsciência/diagnóstico por imagem
20.
Neurosurg Focus ; 38(6): E2, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26030702

RESUMO

Fossil records showing trephination in the Stone Age provide evidence that humans have sought to influence the mind through physical means since before the historical record. Attempts to treat psychiatric disease via neurosurgical means in the 20th century provided some intriguing initial results. However, the indiscriminate application of these treatments, lack of rigorous evaluation of the results, and the side effects of ablative, irreversible procedures resulted in a backlash against brain surgery for psychiatric disorders that continues to this day. With the advent of psychotropic medications, interest in invasive procedures for organic brain disease waned. Diagnosis and classification of psychiatric diseases has improved, due to a better understanding of psychiatric patho-physiology and the development of disease and treatment biomarkers. Meanwhile, a significant percentage of patients remain refractory to multiple modes of treatment, and psychiatric disease remains the number one cause of disability in the world. These data, along with the safe and efficacious application of deep brain stimulation (DBS) for movement disorders, in principle a reversible process, is rekindling interest in the surgical treatment of psychiatric disorders with stimulation of deep brain sites involved in emotional and behavioral circuitry. This review presents a brief history of psychosurgery and summarizes the development of DBS for psychiatric disease, reviewing the available evidence for the current application of DBS for disorders of the mind.


Assuntos
Estimulação Encefálica Profunda/métodos , Transtornos Mentais/terapia , Estimulação Encefálica Profunda/normas , Estimulação Encefálica Profunda/tendências , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA