Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stud Mycol ; 104: 87-148, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37351543

RESUMO

Fusarium species are important cereal pathogens that cause severe production losses to major cereal crops such as maize, rice, and wheat. However, the causal agents of Fusarium diseases on cereals have not been well documented because of the difficulty in species identification and the debates surrounding generic and species concepts. In this study, we used a citizen science initiative to investigate diseased cereal crops (maize, rice, wheat) from 250 locations, covering the major cereal-growing regions in China. A total of 2 020 Fusarium strains were isolated from 315 diseased samples. Employing multi-locus phylogeny and morphological features, the above strains were identified to 43 species, including eight novel species that are described in this paper. A world checklist of cereal-associated Fusarium species is provided, with 39 and 52 new records updated for the world and China, respectively. Notably, 56 % of samples collected in this study were observed to have co-infections of more than one Fusarium species, and the detailed associations are discussed. Following Koch's postulates, 18 species were first confirmed as pathogens of maize stalk rot in this study. Furthermore, a high-confidence species tree was constructed in this study based on 1 001 homologous loci of 228 assembled genomes (40 genomes were sequenced and provided in this study), which supported the "narrow" generic concept of Fusarium (= Gibberella). This study represents one of the most comprehensive surveys of cereal Fusarium diseases to date. It significantly improves our understanding of the global diversity and distribution of cereal-associated Fusarium species, as well as largely clarifies the phylogenetic relationships within the genus. Taxonomic novelties: New species: Fusarium erosum S.L. Han, M.M. Wang & L. Cai, Fusarium fecundum S.L. Han, M.M. Wang & L. Cai, Fusarium jinanense S.L. Han, M.M. Wang & L. Cai, Fusarium mianyangense S.L. Han, M.M. Wang & L. Cai, Fusarium nothincarnatum S.L. Han, M.M. Wang & L. Cai, Fusarium planum S.L. Han, M.M. Wang & L. Cai, Fusarium sanyaense S.L. Han, M.M. Wang & L. Cai, Fusarium weifangense S.L. Han, M.M. Wang & L. Cai. Citation: Han SL, Wang MM, Ma ZY, Raza M, Zhao P, Liang JM, Gao M, Li YJ, Wang JW, Hu DM, Cai L (2023). Fusarium diversity associated with diseased cereals in China, with an updated phylogenomic assessment of the genus. Studies in Mycology 104: 87-148. doi: 10.3114/sim.2022.104.02.

2.
Mol Plant Microbe Interact ; 35(12): 1061-1066, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36445162

RESUMO

Functional characterization of effector proteins of fungal obligate biotrophic pathogens, especially confirmation of avirulence (Avr) properties, has been notoriously difficult, due to the experimental intractability of many of these organisms. Previous studies in wheat have shown promising data suggesting the type III secretion system (T3SS) of bacteria may be a suitable surrogate for delivery and detection of Avr properties of fungal effectors. However, these delivery systems were tested in the absence of confirmed Avr effectors. Here, we tested two previously described T3SS-mediated delivery systems for their suitability when delivering two confirmed Avr effectors from two fungal pathogens of wheat, Puccinia graminis f. sp. tritici and Magnaporthe oryzae pathotype tritici. We showed that both effectors (AvrSr50 and AvrRmg8) were unable to elicit a hypersensitive response on wheat seedlings with the corresponding resistance gene when expressed by the Pseudomonas fluorescens "Effector to Host Analyser" (EtHAn) system. Furthermore, we found the utility of Burkholderia glumae for screening Avr phenotypes is severely limited, as the wild-type strain elicits nonhost cell death in multiple wheat accessions. These results provide valuable insight into the suitability of these systems for screening fungal effectors for Avr properties that may help guide further development of surrogate bacterial delivery systems in wheat. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Bactérias , Triticum , Triticum/microbiologia , Doenças das Plantas/microbiologia
3.
BMC Genomics ; 17(1): 1014, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27938326

RESUMO

BACKGROUND: The Fusarium graminearum species complex is composed of many distinct fungal species that cause several diseases in economically important crops, including Fusarium Head Blight of wheat. Despite being closely related, these species and individuals within species have distinct phenotypic differences in toxin production and pathogenicity, with some isolates reported as non-pathogenic on certain hosts. In this report, we compare genomes and gene content of six new isolates from the species complex, including the first available genomes of F. asiaticum and F. meridionale, with four other genomes reported in previous studies. RESULTS: A comparison of genome structure and gene content revealed a 93-99% overlap across all ten genomes. We identified more than 700 k base pairs (kb) of single nucleotide polymorphisms (SNPs), insertions, and deletions (indels) within common regions of the genome, which validated the species and genetic populations reported within species. We constructed a non-redundant pan gene list containing 15,297 genes from the ten genomes and among them 1827 genes or 12% were absent in at least one genome. These genes were co-localized in telomeric regions and select regions within chromosomes with a corresponding increase in SNPs and indels. Many are also predicted to encode for proteins involved in secondary metabolism and other functions associated with disease. Genes that were common between isolates contained high levels of nucleotide variation and may be pseudogenes, allelic, or under diversifying selection. CONCLUSIONS: The genomic resources we have contributed will be useful for the identification of genes that contribute to the phenotypic variation and niche specialization that have been reported among members of the F. graminearum species complex.


Assuntos
Fusarium/classificação , Fusarium/genética , Genoma Fúngico , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Alelos , Biologia Computacional/métodos , Fusarium/metabolismo , Genes Fúngicos , Variação Genética , Genômica/métodos , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Pseudogenes , Metabolismo Secundário , Seleção Genética
4.
Adv Appl Microbiol ; 90: 29-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25596029

RESUMO

Fungicides are widely used in developed agricultural systems to control disease and safeguard crop yield and quality. Over time, however, resistance to many of the most effective fungicides has emerged and spread in pathogen populations, compromising disease control. This review describes the development of resistance using case histories based on four important diseases of temperate cereal crops: eyespot (Oculimacula yallundae and Oculimacula acuformis), Septoria tritici blotch (Zymoseptoria tritici), powdery mildew (Blumeria graminis), and Fusarium ear blight (a complex of Fusarium and Microdochium spp). The sequential emergence of variant genotypes of these pathogens with reduced sensitivity to the most active single-site fungicides, methyl benzimidazole carbamates, demethylation inhibitors, quinone outside inhibitors, and succinate dehydrogenase inhibitors illustrates an ongoing evolutionary process in response to the introduction and use of different chemical classes. Analysis of the molecular mechanisms and genetic basis of resistance has provided more rapid and precise methods for detecting and monitoring the incidence of resistance in field populations, but when or where resistance will occur remains difficult to predict. The extent to which the predictability of resistance evolution can be improved by laboratory mutagenesis studies and fitness measurements, comparison between pathogens, and reconstruction of evolutionary pathways is discussed. Risk models based on fungal life cycles, fungicide properties, and exposure to the fungicide are now being refined to take account of additional traits associated with the rate of pathogen evolution. Experimental data on the selection of specific mutations or resistant genotypes in pathogen populations in response to fungicide treatments can be used in models evaluating the most effective strategies for reducing or preventing resistance. Resistance management based on robust scientific evidence is vital to prolong the effective life of fungicides and safeguard their future use in crop protection.


Assuntos
Evolução Biológica , Produtos Agrícolas/microbiologia , Farmacorresistência Fúngica , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Fungos/genética , Fungos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA