Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Sensors (Basel) ; 24(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39066031

RESUMO

OBJECTIVE: Motivated by Health Care 4.0, this study aims to reducing the dimensionality of traditional EEG features based on manual extracted features, including statistical features in the time and frequency domains. METHODS: A total of 22 multi-scale features were extracted from the UNM and Iowa datasets using a 4th order Butterworth filter and wavelet packet transform. Based on single-channel validation, 29 channels with the highest R2 scores were selected from a pool of 59 common channels. The proposed channel selection scheme was validated on the UNM dataset and tested on the Iowa dataset to compare its generalizability against models trained without channel selection. RESULTS: The experimental results demonstrate that the proposed model achieves an optimal classification accuracy of 100%. Additionally, the generalization capability of the channel selection method is validated through out-of-sample testing based on the Iowa dataset Conclusions: Using single-channel validation, we proposed a channel selection scheme based on traditional statistical features, resulting in a selection of 29 channels. This scheme significantly reduced the dimensionality of EEG feature vectors related to Parkinson's disease by 50%. Remarkably, this approach demonstrated considerable classification performance on both the UNM and Iowa datasets. For the closed-eye state, the highest classification accuracy achieved was 100%, while for the open-eye state, the highest accuracy reached 93.75%.


Assuntos
Eletroencefalografia , Doença de Parkinson , Humanos , Eletroencefalografia/métodos , Doença de Parkinson/diagnóstico , Doença de Parkinson/fisiopatologia , Algoritmos , Processamento de Sinais Assistido por Computador , Masculino , Feminino , Pessoa de Meia-Idade , Análise de Ondaletas
2.
Sensors (Basel) ; 24(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794022

RESUMO

The widely adopted paradigm in brain-computer interfaces (BCIs) involves motor imagery (MI), enabling improved communication between humans and machines. EEG signals derived from MI present several challenges due to their inherent characteristics, which lead to a complex process of classifying and finding the potential tasks of a specific participant. Another issue is that BCI systems can result in noisy data and redundant channels, which in turn can lead to increased equipment and computational costs. To address these problems, the optimal channel selection of a multiclass MI classification based on a Fusion convolutional neural network with Attention blocks (FCNNA) is proposed. In this study, we developed a CNN model consisting of layers of convolutional blocks with multiple spatial and temporal filters. These filters are designed specifically to capture the distribution and relationships of signal features across different electrode locations, as well as to analyze the evolution of these features over time. Following these layers, a Convolutional Block Attention Module (CBAM) is used to, further, enhance EEG signal feature extraction. In the process of channel selection, the genetic algorithm is used to select the optimal set of channels using a new technique to deliver fixed as well as variable channels for all participants. The proposed methodology is validated showing 6.41% improvement in multiclass classification compared to most baseline models. Notably, we achieved the highest results of 93.09% for binary classes involving left-hand and right-hand movements. In addition, the cross-subject strategy for multiclass classification yielded an impressive accuracy of 68.87%. Following channel selection, multiclass classification accuracy was enhanced, reaching 84.53%. Overall, our experiments illustrated the efficiency of the proposed EEG MI model in both channel selection and classification, showing superior results with either a full channel set or a reduced number of channels.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Eletroencefalografia , Redes Neurais de Computação , Humanos , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Imaginação/fisiologia , Atenção/fisiologia
3.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 398-405, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38686423

RESUMO

The electroencephalogram (EEG) signal is the key signal carrier of the brain-computer interface (BCI) system. The EEG data collected by the whole-brain electrode arrangement is conducive to obtaining higher information representation. Personalized electrode layout, while ensuring the accuracy of EEG signal decoding, can also shorten the calibration time of BCI and has become an important research direction. This paper reviews the EEG signal channel selection methods in recent years, conducts a comparative analysis of the combined effects of different channel selection methods and different classification algorithms, obtains the commonly used channel combinations in motor imagery, P300 and other paradigms in BCI, and explains the application scenarios of the channel selection method in different paradigms are discussed, in order to provide stronger support for a more accurate and portable BCI system.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Eletroencefalografia , Processamento de Sinais Assistido por Computador , Humanos , Encéfalo/fisiologia , Eletrodos , Potenciais Evocados P300/fisiologia , Imaginação/fisiologia
4.
Sensors (Basel) ; 23(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36850512

RESUMO

Because of its ability to objectively reflect people's emotional states, electroencephalogram (EEG) has been attracting increasing research attention for emotion classification. The classification method based on spatial-domain analysis is one of the research hotspots. However, most previous studies ignored the complementarity of information between different frequency bands, and the information in a single frequency band is not fully mined, which increases the computational time and the difficulty of improving classification accuracy. To address the above problems, this study proposes an emotion classification method based on dynamic simplifying graph convolutional (SGC) networks and a style recalibration module (SRM) for channels, termed SGC-SRM, with multi-band EEG data as input. Specifically, first, the graph structure is constructed using the differential entropy characteristics of each sub-band and the internal relationship between different channels is dynamically learned through SGC networks. Second, a convolution layer based on the SRM is introduced to recalibrate channel features to extract more emotion-related features. Third, the extracted sub-band features are fused at the feature level and classified. In addition, to reduce the redundant information between EEG channels and the computational time, (1) we adopt only 12 channels that are suitable for emotion classification to optimize the recognition algorithm, which can save approximately 90.5% of the time cost compared with using all channels; (2) we adopt information in the θ, α, ß, and γ bands, consequently saving 23.3% of the time consumed compared with that in the full bands while maintaining almost the same level of classification accuracy. Finally, a subject-independent experiment is conducted on the public SEED dataset using the leave-one-subject-out cross-validation strategy. According to experimental results, SGC-SRM improves classification accuracy by 5.51-15.43% compared with existing methods.


Assuntos
Algoritmos , Eletroencefalografia , Humanos , Emoções , Entropia , Raios gama
5.
Sensors (Basel) ; 23(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37299873

RESUMO

It is becoming increasingly attractive to detect human emotions using electroencephalography (EEG) brain signals. EEG is a reliable and cost-effective technology used to measure brain activities. This paper proposes an original framework for usability testing based on emotion detection using EEG signals, which can significantly affect software production and user satisfaction. This approach can provide an in-depth understanding of user satisfaction accurately and precisely, making it a valuable tool in software development. The proposed framework includes a recurrent neural network algorithm as a classifier, a feature extraction algorithm based on event-related desynchronization and event-related synchronization analysis, and a new method for selecting EEG sources adaptively for emotion recognition. The framework results are promising, achieving 92.13%, 92.67%, and 92.24% for the valence-arousal-dominance dimensions, respectively.


Assuntos
Aprendizado Profundo , Design Centrado no Usuário , Humanos , Interface Usuário-Computador , Emoções , Eletroencefalografia/métodos , Software
6.
Behav Res Methods ; 55(4): 1980-2003, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35794417

RESUMO

Channel selection is a critical part of the classification procedure for multichannel electroencephalogram (EEG)-based brain-computer interfaces (BCI). An optimized subset of electrodes reduces computational complexity and optimizes accuracy. Different tasks activate different sources in the brain and are characterized by distinctive channels. The goal of the current review is to define a subset of electrodes for each of four popular BCI paradigms: motor imagery, motor execution, steady-state visual evoked potentials and P300. Twenty-one studies have been reviewed to identify the most significant activations of cortical sources. The relevant EEG sensors are determined from the reported 3D Talairach coordinates. They are scored by their weighted mean Cohen's d and its confidence interval, providing the magnitude of the corresponding effect size and its statistical significance. Our goal is to create a knowledge-based channel selection framework with a sufficient statistical power. The core channel selection (CCS) could be used as a reference by EEG researchers and would have the advantages of practicality and rapidity, allowing for an easy implementation of semiparametric algorithms.


Assuntos
Interfaces Cérebro-Computador , Humanos , Potenciais Evocados Visuais , Eletroencefalografia/métodos , Algoritmos , Encéfalo/fisiologia
7.
Sensors (Basel) ; 22(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35408190

RESUMO

Brain-computer interface (BCI) systems based on functional near-infrared spectroscopy (fNIRS) have been used as a way of facilitating communication between the brain and peripheral devices. The BCI provides an option to improve the walking pattern of people with poor walking dysfunction, by applying a rehabilitation process. A state-of-the-art step-wise BCI system includes data acquisition, pre-processing, channel selection, feature extraction, and classification. In fNIRS-based BCI (fNIRS-BCI), channel selection plays a vital role in enhancing the classification accuracy of the BCI problem. In this study, the concentration of blood oxygenation (HbO) in a resting state and in a walking state was used to decode the walking activity and the resting state of the subject, using channel selection by Least Absolute Shrinkage and Selection Operator (LASSO) homotopy-based sparse representation classification. The fNIRS signals of nine subjects were collected from the left hemisphere of the primary motor cortex. The subjects performed the task of walking on a treadmill for 10 s, followed by a 20 s rest. Appropriate filters were applied to the collected signals to remove motion artifacts and physiological noises. LASSO homotopy-based sparse representation was used to select the most significant channels, and then classification was performed to identify walking and resting states. For comparison, the statistical spatial features of mean, peak, variance, and skewness, and their combination, were used for classification. The classification results after channel selection were then compared with the classification based on the extracted features. The classifiers used for both methods were linear discrimination analysis (LDA), support vector machine (SVM), and logistic regression (LR). The study found that LASSO homotopy-based sparse representation classification successfully discriminated between the walking and resting states, with a better average classification accuracy (p < 0.016) of 91.32%. This research provides a step forward in improving the classification accuracy of fNIRS-BCI systems. The proposed methodology may also be used for rehabilitation purposes, such as controlling wheelchairs and prostheses, as well as an active rehabilitation training technique for patients with motor dysfunction.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Humanos , Imaginação , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Máquina de Vetores de Suporte , Caminhada
8.
Entropy (Basel) ; 24(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36554127

RESUMO

Device-to-device (D2D) technology enables direct communication between devices, which can effectively solve the problem of insufficient spectrum resources in 5G communication technology. Since the channels are shared among multiple D2D user pairs, it may lead to serious interference between D2D user pairs. In order to reduce interference, effectively increase network capacity, and improve wireless spectrum utilization, this paper proposed a distributed resource allocation algorithm with the joint of a deep Q network (DQN) and an unsupervised learning network. Firstly, a DQN algorithm was constructed to solve the channel allocation in the dynamic and unknown environment in a distributed manner. Then, a deep power control neural network with the unsupervised learning strategy was constructed to output an optimized channel power control scheme to maximize the spectrum transmit sum-rate through the corresponding constraint processing. As opposed to traditional centralized approaches that require the collection of instantaneous global network information, the algorithm proposed in this paper used each transmitter as a learning agent to make channel selection and power control through a small amount of state information collected locally. The simulation results showed that the proposed algorithm was more effective in increasing the convergence speed and maximizing the transmit sum-rate than other traditional centralized and distributed algorithms.

9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(6): 1173-1180, 2022 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-36575087

RESUMO

Aiming at the problem of low recognition accuracy of motor imagery electroencephalogram signal due to individual differences of subjects, an individual adaptive feature representation method of motor imagery electroencephalogram signal is proposed in this paper. Firstly, based on the individual differences and signal characteristics in different frequency bands, an adaptive channel selection method based on expansive relevant features with label F (ReliefF) was proposed. By extracting five time-frequency domain observation features of each frequency band signal, ReliefF algorithm was employed to evaluate the effectiveness of the frequency band signal in each channel, and then the corresponding signal channel was selected for each frequency band. Secondly, a feature representation method of common space pattern (CSP) based on fast correlation-based filter (FCBF) was proposed (CSP-FCBF). The features of electroencephalogram signal were extracted by CSP, and the best feature sets were obtained by using FCBF to optimize the features, so as to realize the effective state representation of motor imagery electroencephalogram signal. Finally, support vector machine (SVM) was adopted as a classifier to realize identification. Experimental results show that the proposed method in this research can effectively represent the states of motor imagery electroencephalogram signal, with an average identification accuracy of (83.0±5.5)% for four types of states, which is 6.6% higher than the traditional CSP feature representation method. The research results obtained in the feature representation of motor imagery electroencephalogram signal lay the foundation for the realization of adaptive electroencephalogram signal decoding and its application.


Assuntos
Interfaces Cérebro-Computador , Imaginação , Humanos , Processamento de Sinais Assistido por Computador , Eletroencefalografia/métodos , Imagens, Psicoterapia , Algoritmos
10.
J Med Internet Res ; 23(3): e24945, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33687342

RESUMO

BACKGROUND: Existing health education and communication research routinely measures online channel use as a whole by, for example, evaluating how frequently people use the internet to search for health information. This approach fails to capture the complexity and diversity of online channel use in health information seeking. The measurement of generic online channel use may cause too much error, and it lends no support to media planning in public health promotion campaigns or scholarly research involving online channel use. OBJECTIVE: This study intends to present a thorough picture of patterns of online health information channel use and classify the use of various types of online health information channels, including WeChat, microblogs, web portals, search engines, mobile apps, and online forums. Under the framework of the risk information seeking and processing model, this study also analyzes the differences in individuals' motivations for channel selection to offer further evidence to validate the classification scheme. METHODS: This study sampled 542 Chinese internet users in Beijing. The average age of the respondents was 33 years, female respondents accounted for 52.0% (282/542) of the sample, and the average monthly income ranged from US $900 to $1200. The study surveyed the use of 13 commonly used online health information channels and various sociopsychological factors associated with online health information seeking. RESULTS: This study derived 3 categories of online health information channels: searching, browsing, and scanning channels. It was found that the use of online searching channels was affect driven (B=0.11; ß=0.10; P=.02) and characterized by a stronger need for health knowledge (B=0.09; ß=0.01; P<.001). The use of browsing channels was directly influenced by informational subjective norms (B=0.33; ß=0.15; P=.004) and perceived current knowledge (B=0.007; ß=0.09; P=.003). The use of scanning channels was mainly influenced by informational subjective norms (B=0.29; ß=0.15; P=.007). CONCLUSIONS: The results of this study suggest that health communication practitioners and scholars may consider measuring the use of internet, new media, or online media more precisely instead of simply asking the public about the frequency of online channel use or internet use in the acquisition of health information. Scholars and practitioners may consider measuring the use of online health information channels by using the 3-category scheme described in this study. Future research is encouraged to further explore how people process health information when using different online channels.


Assuntos
Comunicação em Saúde , Motivação , Adulto , Estudos Transversais , Feminino , Humanos , Comportamento de Busca de Informação , Internet , Inquéritos e Questionários
11.
Sensors (Basel) ; 21(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804832

RESUMO

Bluetooth Low Energy (BLE) is a popular wireless communication protocol heavily used in Internet of Things applications. Nowadays, robustness is considered a key requirement in wireless communication. However, radio interference from various sources may affect the performance of BLE devices, leading to channel congestion. Therefore, there is a broadly recognized need of methodologies capable of sensing and avoiding interference. In this paper, two improvements at the data link layer for interference detection and channel selection are proposed to enhance the BLE connection robustness. This paper also presents a wide range of experimental evaluations aiming at validating the improvements and providing insights on both these improvements. Particularly, the communication performance of the BLE link layer is assessed in terms of channel usage distribution, supervision timeout ratio (STR) and packet loss rate (PLR) under different interference environments. Results from these experiments (reliability over 97% and 99% under two different harsh environments) highlight the effects of both improvements on the BLE robustness. Meanwhile, the authority of scheduling the whole mechanism is given to the link layer and even the higher application layer. This paper provides a set of solutions for BLE confronting interference in link layer.

12.
Sensors (Basel) ; 21(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34883976

RESUMO

The key research aspects of detecting and predicting epileptic seizures using electroencephalography (EEG) signals are feature extraction and classification. This paper aims to develop a highly effective and accurate algorithm for seizure prediction. Efficient channel selection could be one of the solutions as it can decrease the computational loading significantly. In this research, we present a patient-specific optimization method for EEG channel selection based on permutation entropy (PE) values, employing K nearest neighbors (KNNs) combined with a genetic algorithm (GA) for epileptic seizure prediction. The classifier is the well-known support vector machine (SVM), and the CHB-MIT Scalp EEG Database is used in this research. The classification results from 22 patients using the channels selected to the patient show a high prediction rate (average 92.42%) compared to the SVM testing results with all channels (71.13%). On average, the accuracy, sensitivity, and specificity with selected channels are improved by 10.58%, 23.57%, and 5.56%, respectively. In addition, four patient cases validate over 90% accuracy, sensitivity, and specificity rates with just a few selected channels. The corresponding standard deviations are also smaller than those used by all channels, demonstrating that tailored channels are a robust way to optimize the seizure prediction.


Assuntos
Eletroencefalografia , Epilepsia , Algoritmos , Entropia , Epilepsia/diagnóstico , Epilepsia/genética , Humanos , Convulsões/diagnóstico , Convulsões/genética , Máquina de Vetores de Suporte
13.
Sensors (Basel) ; 21(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922677

RESUMO

In this paper, we propose a new algorithm for distributed spectrum sensing and channel selection in cognitive radio networks based on consensus. The algorithm operates within a multi-agent reinforcement learning scheme. The proposed consensus strategy, implemented over a directed, typically sparse, time-varying low-bandwidth communication network, enforces collaboration between the agents in a completely decentralized and distributed way. The motivation for the proposed approach comes directly from typical cognitive radio networks' practical scenarios, where such a decentralized setting and distributed operation is of essential importance. Specifically, the proposed setting provides all the agents, in unknown environmental and application conditions, with viable network-wide information. Hence, a set of participating agents becomes capable of successful calculation of the optimal joint spectrum sensing and channel selection strategy even if the individual agents are not. The proposed algorithm is, by its nature, scalable and robust to node and link failures. The paper presents a detailed discussion and analysis of the algorithm's characteristics, including the effects of denoising, the possibility of organizing coordinated actions, and the convergence rate improvement induced by the consensus scheme. The results of extensive simulations demonstrate the high effectiveness of the proposed algorithm, and that its behavior is close to the centralized scheme even in the case of sparse neighbor-based inter-node communication.

14.
Entropy (Basel) ; 23(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924528

RESUMO

With the rapid development of modern social science and technology, the pace of life is getting faster, and brain fatigue has become a sub-health state that seriously affects the normal life of people. Electroencephalogram (EEG) signals reflect changes in the central nervous system. Using EEG signals to assess mental fatigue is a research hotspot in related fields. Most existing fatigue detection methods are time-consuming or don't achieve satisfactory results due to insufficient features extracted from EEG signals. In this paper, a 2-back task is designed to induce fatigue. The weight value of each channel under a single feature is calculated by ReliefF algorithm. The classification accuracy of each channel under the corresponding features is analyzed. The classification accuracy of each single channel is combined to perform weighted summation to obtain the weight value of each channel. The first half channels sorted in descending order based on the weight value is chosen as the common channels. Multi-features in frequency and time domains are extracted from the common channel data, and the sparse representation method is used to perform feature fusion to obtain sparse fused features. Finally, the SRDA classifier is used to detect the fatigue state. Experimental results show that the proposed methods in our work effectively reduce the number of channels for computation and also improve the mental fatigue detection accuracy.

15.
Entropy (Basel) ; 23(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34828252

RESUMO

The paper presents a method of selecting an optical channel for transporting the double-sideband radio-frequency-over-fiber (DSB-RFoF) radio signal over the optical fronthaul path, avoiding the dispersion-induced power penalty (DIPP) phenomenon. The presented method complements the possibilities of a short-range optical network working in the flexible dense wavelength division multiplexing (DWDM) format, where chromatic dispersion compensation is not applied. As part of the study, calculations were made that indicate the limitations of the proposed method and allow for the development of an algorithm for effective optical channel selection in the presence of the DIPP phenomenon experienced in the optical link working in the intensity modulation-direct detection (IM-DD) technique. Calculations were made for three types of single-mode optical fibers and for selected microwave radio carriers that are used in current systems or will be used in next-generation wireless communication systems. In order to verify the calculations and theoretical considerations, a computer simulation was performed for two types of optical fibers and for two selected radio carriers. In the modulated radio signal, the cyclic-prefix orthogonal frequency division multiplexing (CP-OFDM) format and the 5G numerology were used.

16.
Sensors (Basel) ; 21(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383753

RESUMO

LoRaWAN is a popular internet of things (IoT) solution over the unlicensed radio band. It sustains low-cost, durable, and long range IoT wireless communications. Nonetheless, with over 24 billion connected IoT devices being expected by the end of the year, and over 50 billion by 2025, the concurrent and legacy approaches to spreading factor and channel assignment in LoRaWAN networks can no longer keep up. This is exacerbated with the growing densification of IoT device deployments and, with the increasing requirements for better throughput and packet delivery ratios. In this paper, we propose a proportional fair-based joint optimal formulation for spreading factor and channel assignment in multi-operator LoRaWAN deployments. The objective of this problem is to maximize the total sum of the logarithmic normalized throughput. We split the problem into two subproblems, and propose a game theoretic approach to solving them. We prove that our games converge towards a pure Nash equilibrium and, afterwards, solve the optimization problems using both semi-distributed and completely distributed algorithms. Via simulations, we show that our algorithms greatly improve the total normalized throughput for LoRaWAN as well as the packet success rate, in comparison to the legacy approaches.

17.
Sensors (Basel) ; 20(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867378

RESUMO

Accurate and real-time estimation of force from surface electromyogram (EMG) signals enables a variety of applications. We developed and validated new approaches for selecting subsets of high-density (HD) EMG channels for improved and lower-dimensionality force estimation. First, a large dataset was recorded from a number of participants performing isometric contractions in different postures, while simultaneously recording HD-EMG channels and ground-truth force. The EMG signals were acquired from three linear surface electrode arrays, each with eight monopolar channels, and were placed on the long head and short head of the biceps brachii and brachioradialis. After data collection and pre-processing, fast orthogonal search (FOS) was employed for force estimation. To select a subset of channels, principal component analysis (PCA) in the frequency domain and a novel index called the power-correlation ratio (PCR), which maximizes the spectral power while minimizing similarity to other channels, were used. These approaches were compared to channel selection using time-domain PCA. We selected one, two, and three channels per muscle from the original seven differential channels to reduce the redundancy and correlation in the dataset. In the best case, we achieved an approximate improvement of 30% for force estimation while reducing the dimensionality by 57% for a subset of three channels.


Assuntos
Eletromiografia , Contração Isométrica , Músculo Esquelético/fisiologia , Braço , Humanos , Análise de Componente Principal
18.
Sensors (Basel) ; 20(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252366

RESUMO

In this paper, a new small antenna is suggested for 5G Sub-6-GHz band mobile communication. It can change the channel among the three given bands (called the 3.5-GHz area), as a wide-band antenna is connected to a small multiplexer comprising three metamaterial channel filters. The function of channel selection of this antenna system is experimentally demonstrated to prove the validity of the presented scheme. The channel selection for 5G mobile communication is conducted from f1 (channel 1) through f2 (channel 2) to f3 (channel 3), when TX and RX antennas with gains over 0 dBi and S11 less than -10 dB are located far-field apart (RFar ≫ 2.1 cm), and result in the transmission coefficient (S21) being the greatest at the selected channel, which is detected by a vector network analyzer.

19.
Sensors (Basel) ; 20(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297516

RESUMO

A state-of-the-art brain-computer interface (BCI) system includes brain signal acquisition, noise removal, channel selection, feature extraction, classification, and an application interface. In functional near-infrared spectroscopy-based BCI (fNIRS-BCI) channel selection may enhance classification performance by identifying suitable brain regions that contain brain activity. In this study, the z-score method for channel selection is proposed to improve fNIRS-BCI performance. The proposed method uses cross-correlation to match the similarity between desired and recorded brain activity signals, followed by forming a vector of each channel's correlation coefficients' maximum values. After that, the z-score is calculated for each value of that vector. A channel is selected based on a positive z-score value. The proposed method is applied to an open-access dataset containing mental arithmetic (MA) and motor imagery (MI) tasks for twenty-nine subjects. The proposed method is compared with the conventional t-value method and with no channel selected, i.e., using all channels. The z-score method yielded significantly improved (p < 0.0167) classification accuracies of 87.2 ± 7.0%, 88.4 ± 6.2%, and 88.1 ± 6.9% for left motor imagery (LMI) vs. rest, right motor imagery (RMI) vs. rest, and mental arithmetic (MA) vs. rest, respectively. The proposed method is also validated on an open-access database of 17 subjects, containing right-hand finger tapping (RFT), left-hand finger tapping (LFT), and dominant side foot tapping (FT) tasks.The study shows an enhanced performance of the z-score method over the t-value method as an advancement in efforts to improve state-of-the-art fNIRS-BCI systems' performance.

20.
J Integr Neurosci ; 18(2): 141-152, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31321955

RESUMO

The number of electrode channels in a brain-computer interface affects not only its classification performance, but also its convenience in practical applications. However, an effective method for determining the number of channels has not yet been established for motor imagery-based brain-computer interfaces. This paper proposes a novel evolutionary search algorithm, binary quantum-behaved particle swarm optimization, for channel selection, which is implemented in a wrapping manner, coupling common spatial pattern for feature extraction, and support vector machine for classification. The fitness function of binary quantum-behaved particle swarm optimization is defined as the weighted sum of classification error rate and relative number of channels. The classification performance of the binary quantum-behaved particle swarm optimization-based common spatial pattern was evaluated on an electroencephalograph data set and an electrocorticography data set. It was subsequently compared with that of other three common spatial pattern methods: using the channels selected by binary particle swarm optimization, all channels in raw data sets, and channels selected manually. Experimental results showed that the proposed binary quantum-behaved particle swarm optimization-based common spatial pattern method outperformed the other three common spatial pattern methods, significantly decreasing the classification error rate and number of channels, as compared to the common spatial pattern method using whole channels in raw data sets. The proposed method can significantly improve the practicability and convenience of a motor imagery-based brain-computer interface system.


Assuntos
Interfaces Cérebro-Computador , Encéfalo/fisiologia , Desempenho Psicomotor/fisiologia , Processamento de Sinais Assistido por Computador , Algoritmos , Eletroencefalografia , Humanos , Imaginação , Movimento , Teoria Quântica , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA