Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 245: 114122, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183425

RESUMO

The natural selenium (Se)-rich areas in China are generally characterized by high geological background of cadmium (Cd) which poses potential risks to human health. Therefore, immobilization of Cd is the prerequisite to ensure the safe utilization of natural seleniferous soil resources. A pot experiment was conducted to compare the effects of indigenous earthworm (Amynthas hupeiensis) and its gut bacteria (Citrobacter freundii DS strain) on the remediation of Cd-contaminated seleniferous soil with two traditional chemical amendments. The results indicated that earthworms and DS strain decreased DGT-extractable Cd by 25.52 - 41.53% and reduced Cd accumulation in lettuce leaves by 20.83 - 37.50% compared with control through converting the exchangeable Cd (EX-Cd) into residual Cd (RE-Cd) fractions. Overall, earthworms and DS strain were more effective in Cd immobilization, growth and quality promotion, oxidative stress alleviation, Cd accumulation and bioaccessibility reduction in the soil-lettuce-human continuum than biochar and lime. Moreover, all amendments induced the antagonism between Se and Cd through increasing bioavailable Se/Cd molar ratios in soil. However, all the Cd concentrations in lettuce exceeded the maximum permissible limit of Cd for leaf vegetables, indicating that soil amendment alone could not ensure food safety. This study confirmed that biological amendments were superior to chemical amendments in the remediation of Cd-contaminated seleniferous soil.


Assuntos
Oligoquetos , Oryza , Selênio , Poluentes do Solo , Animais , Bactérias , Cádmio/análise , Carvão Vegetal/química , Humanos , Lactuca , Selênio/farmacologia , Solo/química , Poluentes do Solo/análise
2.
Ecotoxicol Environ Saf ; 191: 110185, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31986455

RESUMO

Landscaping of sludge is a kind of recycling disposal, but the potential heavy metal risks limit its application. In this paper, the sludge soil was remediated by ryegrass, and the effect of ethylene diamine tetraacetic acid (EDTA) was studied through pot experiments. Italian ryegrass was planted in the sludge soil treated with six gradients concentrations of 0, 1, 2, 3, 4, 5 mmol kg-1 of EDTA, and the planting conditions were kept the same. After 45 days of planting, compared with the control group (without EDTA treated), the application of 1-5 mmol kg-1 EDTA decreased ryegrass biomass by 2-43%, reduced soil pH value by 0.21-0.34 unit, and reduced 4.1-9.7% capacity of exchange cation, but increased 1.4-8.6% soil organic matter. After growing ryegrass, the contents of heavy metals decreased by 10% for Cu, 15% for Zn, 6% for Ni, 14% for Cd and 44% for Pb; and after spraying EDTA decreased again by 33% for Cu, 31% for Zn, 56% for Ni, 24% for Cd, and 68% for Pb. In ryegrass, the uptake heavy metals were enhanced, and bio-concentration factor of Cu, Zn, Ni, Cd, and Pb of EDTA treated groups were 1.9, 1.6, 4.1, 2.7, and 4.8 times of the control group, respectively. However, EDTA only significantly increased transfer factor values of Cu and Zn, and made bio-extraction factor value of Cu greater than 1. The remediation factor values were used to comprehensive assess accumulation capacity of heavy metals by ryegrass under EDTA treating, and they ordered in Zn > Cu > Ni > Cd > Pb, and the best dose was 2 mmol kg-1 EDTA. Prediction models for bio-concentration factor were established by using stepwise multiple linear regression, explaining 94.9-99.3% of the corresponding elements with soil organic matter, EDTA dosage, and/or pH value (p < 0.005). This paper provided effective heavy metals remediation data for municipal sludge landscape and the prediction models.


Assuntos
Ácido Edético/química , Lolium/metabolismo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Biomassa , Itália , Lolium/crescimento & desenvolvimento , Metais Pesados/análise , Metais Pesados/química , Esgotos/química , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/química
3.
Int J Phytoremediation ; 22(11): 1156-1167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32202138

RESUMO

The seed germination plant growth parameters and level of heavy metal accumulation were investigated in pakchoi cultured in four contaminated soils with different levels of heavy metals supplemented with citric acid (CA) or calcium phosphate (CP). Results showed that the seed germination energy, germination percentage and germination index parameters were similar, while the seed vigor (SV) significantly (p < 0.05) decreased as the soil pollution level increased. The lengths of the shoots and roots presented the same trend as SV. All the seedlings grew in heavily polluted soil without any amendments before harvesting; therefore, no plant material was available for subsequent analyses. The photosynthesis parameters of pakchoi cultured in lightly polluted soil without amendment (LPS), lightly polluted soil with CA (LPSA) and moderately polluted soil with CP (MPSP) were similar. The concentrations of Pb, Zn, Mn, Cu and Cd in the shoots, roots and whole plants were in the order of MPSP > LPSA > LPS. Pakchoi cultured in MPSP showed the most promising results in terms of plant height, biomass and heavy metal accumulation. Pakchoi presented the highest translocation and bioaccumulation factors for Cd and the lowest for Pb.HighlightsSoil pollution and the type of chemical amendment had no effect on the seed germination of pakchoi.Citric acid addition in lightly polluted soil improved pakchoi growth and heavy metal extraction.Pakchoi cultured in moderately polluted soil with calcium phosphate amendment presented the highest biomass and heavy metal concentration.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Biodegradação Ambiental , Germinação , Sementes , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA