Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Semin Cancer Biol ; 86(Pt 2): 69-80, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36064086

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy characterized by high resistance and poor response to chemotherapy. In addition, the poorly immunogenic pancreatic tumors constitute an immunosuppressive tumor microenvironment (TME) that render immunotherapy-based approaches ineffective. Understanding the mechanisms of therapy resistance, identifying new targets, and developing effective strategies to overcome resistance can significantly impact the management of PDAC patients. Chemokines are small soluble factors that are significantly deregulated during PDAC pathogenesis, contributing to tumor growth, metastasis, immune cell trafficking, and therapy resistance. Thus far, different chemokine pathways have been explored as therapeutic targets in PDAC, with some promising results in recent clinical trials. Particularly, immunotherapies such as immune check point blockade therapies and CAR-T cell therapies have shown promising results when combined with chemokine targeted therapies. Considering the emerging pathological and clinical significance of chemokines in PDAC, we reviewed major chemokine-regulated pathways leading to therapy resistance and the ongoing endeavors to target chemokine signaling in PDAC. This review discusses the role of chemokines in regulating therapy resistance in PDAC and highlights the continuing efforts to target chemokine-regulated pathways to improve the efficacy of various treatment modalities.


Assuntos
Carcinoma Ductal Pancreático , Quimiocinas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Quimiocinas/genética , Quimiocinas/imunologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Neoplasias Pancreáticas
2.
Am J Obstet Gynecol ; 228(1): 73.e1-73.e18, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35868418

RESUMO

BACKGROUND: Spontaneous preterm birth accounts for most preterm births and leads to significant morbidity in the newborn and childhood period. This subtype of preterm birth represents an increasing proportion of all preterm births when compared with medically indicated preterm birth, yet it is understudied in omics analyses. The placenta is a key regulator of fetal and newborn health, and the placental transcriptome can provide insight into pathologic changes that lead to spontaneous preterm birth. OBJECTIVE: This analysis aimed to identify genes for which placental expression was associated with spontaneous preterm birth (including early preterm and late preterm birth). STUDY DESIGN: The ECHO PATHWAYS consortium extracted RNA from placental samples collected from the Conditions Affecting Neurocognitive Development and Learning in Early Childhood and the Global Alliance to Prevent Prematurity and Stillbirth studies. Placental transcriptomic data were obtained by RNA sequencing. Linear models were fit to estimate differences in placental gene expression between term birth and spontaneous preterm birth (including gestational age subgroups defined by the American College of Obstetricians and Gynecologists). Models were adjusted for numerous confounding variables, including labor status, cohort, and RNA sequencing batch. This analysis excluded patients with induced labor, chorioamnionitis, multifetal gestations, or medical indications for preterm birth. Our combined cohort contained gene expression data for 14,023 genes in 48 preterm and 540 term samples. Genes and pathways were considered statistically significantly different at false discovery rate-adjusted P value of <.05. RESULTS: In total, we identified 1728 genes for which placental expression was associated with spontaneous preterm birth with more differences in expression in early preterm samples than late preterm samples when compared with full-term samples. Of those, 9 genes were significantly decreased in both early and late spontaneous preterm birth, and the strongest associations involved placental expression of IL1B, ALPL, and CRLF1. In early and late preterm samples, we observed decreased expression of genes involved in immune signaling, signal transduction, and endocrine function. CONCLUSION: This study provides a comprehensive assessment of the differences in the placental transcriptome associated with spontaneous preterm birth with robust adjustment for confounding. Results of this study are in alignment with the known etiology of spontaneous preterm birth, because we identified multiple genes and pathways for which the placental and chorioamniotic membrane expression was previously associated with prematurity, including IL1B. We identified decreased expression in key signaling pathways that are essential for placental growth and function, which may be related to the etiology of spontaneous preterm birth. We identified increased expression of genes within metabolic pathways associated exclusively with early preterm birth. These signaling and metabolic pathways may provide clinically targetable pathways and biomarkers. The findings presented here can be used to understand underlying pathologic changes in premature placentas, which can inform and improve clinical obstetrics practice.


Assuntos
Corioamnionite , Nascimento Prematuro , Pré-Escolar , Recém-Nascido , Gravidez , Feminino , Humanos , Nascimento Prematuro/genética , Placenta/patologia , Transcriptoma , Recém-Nascido Prematuro , Corioamnionite/genética , Corioamnionite/patologia
3.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(6): 829-836, 2023 Jun 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37587067

RESUMO

OBJECTIVES: This study aims to investigate the genome-wide DNA methylation and transcriptome expression profiles of peripheral blood mononuclear cells (PBMCs) in patients with systemic sclerosis (SSc) with interstitial lung disease (ILD), and to analyze the effects of DNA methylation on Wnt/ß-catenin and chemokine signaling pathways. METHODS: PBMCs were collected from 19 patients with SSc (SSc group) and 18 healthy persons (control group). Among SSc patients, there were 10 patients with ILD (SSc with ILD subgroup) and 9 patients without ILD (SSc without ILD subgroup). The genome-wide DNA methylation and gene expression level were analyzed by using Illumina 450K methylation chip and Illumina HT-12 v4.0 gene expression profiling chip. The effect of DNA methylation on Wnt/ß-catenin and chemokine signal pathways was investigated. RESULTS: Genome-wide DNA methylation analysis identified 71 hypermethylated CpG sites and 98 hypomethylated CpG sites in the SSc with ILD subgroup compared with the SSc without ILD subgroup. Transcriptome analysis distinguished 164 upregulated genes and 191 downregulated genes in the SSc with ILD subgroup as compared with the SSc without ILD subgroup. In PBMCs of the SSc group, 35 genes in Wnt/ß-catenin signaling pathway were hypomethylated, while frizzled-1 (FZD1), mitogen-activated protein kinase 9 (MAPK9), mothers against DPP homolog 2 (SMAD2), transcription factor 7-like 2 (TCF7L2), and wingless-type MMTV integration site family, member 5B (WNT5B) mRNA expressions were upregulated as compared with the control group (all P<0.05). Compared with the SSc without ILD subgroup, the mRNA expressions of dickkopf homolog 2 (DKK2), FZD1, MAPK9 were upregulated in the SSc with ILD subgroup, but the differences were not statistically significant (all P>0.05). In PBMCs of the SSc group, 38 genes in chemokine signaling pathway were hypomethylated, while ß-arrestin 1 (ARRB1), C-X-C motif chemokine ligand 10 (CXCL10), C-X-C motif chemokine ligand 16 (CXCL16), FGR, and neutrophil cytosolic factor 1C (NCF1C) mRNA expressions were upregulated as compared with the control group (all P<0.05). Compared with the SSc without ILD subgroup, the mRNA expressions of ARRB1, CXCL10, CXCL16 were upregulated in the SSc with ILD subgroup, but the differences were not statistically significant (all P>0.05). CONCLUSIONS: There are differences in DNA methylation and transcriptome profiles between SSc with ILD and SSc without ILD. The expression levels of multiple genes in Wnt/ß- catenin and chemokine signaling pathways are upregulated, which might be associatea with the pathogenesis of SSc.


Assuntos
Metilação de DNA , Transcriptoma , Humanos , beta Catenina , Leucócitos Mononucleares , Ligantes , DNA , RNA Mensageiro/genética
4.
Exp Eye Res ; 203: 108424, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33373623

RESUMO

Chronic oxidative stress and immune dysregulation are key mechanisms involved in the pathogenesis of most retinal degenerative diseases, including age-related macular degeneration. The Ccl2-/-/Cx3cr1-/-/Crb1rd8/rd8 mouse model develops a progressive degeneration phenotype, with photoreceptor atrophy, drusen-like lesions or pigment alterations at an early age; however, the role of oxidative stress and immune function in the pathogenesis of the model is poorly understood. We performed a comprehensive characterization of the Ccl2-/-/Cx3cr1-/-/Crb1rd8/rd8 mouse to evaluate how these pathways influence pathogenesis. We generated a Ccl2-/-/Cx3cr1-/- double-knockout (DKO) mouse on a C57BL/6N background (with the rd8 mutation of the Crb1 gene), assessed its retina status and function during 9 months in both in vivo and post-mortem analysis, and performed a comprehensive transcriptomic analysis. DKOrd8 mice presented focal retinal lesions with increased infiltration of microglia and involvement of Müller cells. Lesions progressed to thinning of the photoreceptor nuclear layer, causing a loss in retinal function. Transcriptomics analysis revealed major differential expression of genes involved in oxidative stress and neuronal function, in particular genes related to the mitochondrial electron transport chain and antioxidant cellular response. Our results suggest that alterations in chemokine signaling combined with the rd8 mutation in Ccl2-/-/Cx3cr1-/-/Crb1rd8/rd8 mice involve early changes in several pathways associated with age-related macular degeneration, highlighting the relevance of these processes in the pathological retinal degeneration in the DKOrd8 model.


Assuntos
Receptor 1 de Quimiocina CX3C/genética , Quimiocina CCL2/genética , Proteínas do Tecido Nervoso/genética , Degeneração Retiniana/genética , Degeneração Retiniana/fisiopatologia , Transcriptoma/genética , Animais , Western Blotting , Modelos Animais de Doenças , Eletrorretinografia , Regulação da Expressão Gênica/fisiologia , Técnicas de Genotipagem , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Retina/fisiopatologia , Epitélio Pigmentado da Retina/patologia , Tomografia de Coerência Óptica
5.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30209167

RESUMO

Human cytomegalovirus (HCMV) is a widespread pathogen that modulates host chemokine signaling during persistent infection in the host. HCMV encodes four proteins with homology to the chemokine receptor family of G protein-coupled receptors (GPCRs): US27, US28, UL33, and UL78. Each of the four receptors modulates host CXCR4 signaling. US28, UL33, and UL78 impair CXCR4 signaling outcomes, while US27 enhances signaling, as evidenced by increased calcium mobilization and cell migration to CXCL12. To investigate the effects of US27 on CXCR4 during virus infection, fibroblasts were infected with bacterial artificial chromosome-derived clinical strain HCMV TB40/E-mCherry (wild type [WT]), mutants lacking US27 (TB40/E-mCherry-US27Δ [US27Δ]) or all four GPCRs (TB40 E-mCherry-allΔ), or mutants expressing only US27 but not US28, UL33, or UL78 (TB40/E-mCherry-US27wt [US27wt]). CXCR4 gene expression was significantly higher in WT- and US27wt-infected fibroblasts. This effect was evident at 3 h postinfection, suggesting that US27 derived from the parental virion enhanced CXCR4 expression. Reporter gene assays demonstrated that US27 increased transcriptional activity regulated by the antioxidant response element (ARE), and small interfering RNA treatment indicated that this effect was mediated by NRF-1, the primary transcription factor for CXCR4. Increased translocation of NRF-1 into the nucleus of WT-infected cells compared to mock- or US27Δ-infected cells was confirmed by immunofluorescence microscopy. Chemical inhibitors targeting Gßγ and phosphoinositide 3-kinase (PI3K) ablated the increase in ARE-driven transcription, implicating these proteins as mediators of US27-stimulated gene transcription. This work identifies the first signaling pathway activated by HCMV US27 and may reveal a novel regulatory function for this orphan viral receptor in stimulating stress response genes during infection.IMPORTANCE Human cytomegalovirus (HCMV) is the most common congenital infection worldwide, causing deafness, blindness, and other serious birth defects. CXCR4 is a human chemokine receptor that is crucial for both fetal development and immune responses. We found that the HCMV protein US27 stimulates increased expression of CXCR4 through activation of the transcription factor nuclear respiratory factor 1 (NRF-1). NRF-1 regulates stress response genes that contain the antioxidant response element (ARE), and HCMV infection is associated with increased expression of many stress response genes when US27 is present. Our results show that the US27 protein activates the NRF-1/ARE pathway, stimulating higher expression of CXCR4 and other stress response genes, which is likely to be beneficial for virus replication and/or immune evasion.


Assuntos
Elementos de Resposta Antioxidante , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Fator 1 Nuclear Respiratório/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Receptores CXCR4/genética , Receptores de Quimiocinas/metabolismo , Proteínas Virais/metabolismo , Movimento Celular , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Células HEK293 , Humanos , Fator 1 Nuclear Respiratório/genética , Fosfatidilinositol 3-Quinase/genética , Regiões Promotoras Genéticas , Ligação Proteica , Receptores CXCR4/metabolismo , Receptores de Quimiocinas/genética , Transdução de Sinais , Proteínas Virais/genética , Replicação Viral
6.
Biochem Biophys Res Commun ; 485(2): 529-534, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179147

RESUMO

The CXC chemokine receptor 2 (CXCR2) is a G protein coupled receptor mediating interleukin-8 chemotactic signaling and plays an important role in neutrophil mobility and tumor migration. However, efficient CXCR2 signaling requires PDZ domain-mediated scaffolding of signaling complexes at the plasma membrane and functional coupling of the signaling to specific downstream signaling pathways, in which only one PDZ protein has been characterized to interact with CXCR2. Here, we identified five novel CXCR2-binding PDZ-containing proteins, among which PDZ-RhoGEF is of particular interest because this PDZ and RGS-containing guanine nucleotide exchange factor (GEF) is also involved in cell signaling and mobility. To reveal the molecular basis of the interaction, we solved the crystal structure of PDZ-RhoGEF PDZ domain in complex with the CXCR2 C-terminal PDZ binding motif. The structure reveals that the PDZ-CXCR2 binding specificity is achieved by numerous hydrogen bonds and hydrophobic contacts with the last four CXCR2 residues contributing to specific interactions. Structural comparison of CXCR2-binding PDZ domains and PDZ-RhoGEF PDZ bound with different ligands reveals PDZ- and ligand-specific interactions that may underlie the ability of promiscuous CXCR2 binding by different PDZ domains and PDZ binding promiscuity. The structure also reveals an unexpected asymmetric disulfide bond-linked PDZ dimer that allows simultaneous parallel binding of CXCR2 to two PDZ domains. This study provides not only the structural basis for PDZ-mediated CXCR2-PDZ-RhoGEF interaction, but also a new mode of PDZ dimerization, which both could prove valuable in understanding signaling complex scaffolding in CXCR2 signaling and coupling to specific signaling pathways.


Assuntos
Domínios PDZ , Multimerização Proteica , Receptores de Interleucina-8B/química , Fatores de Troca de Nucleotídeo Guanina Rho/química , Sequência de Aminoácidos , Sítios de Ligação/genética , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Moleculares , Ligação Proteica , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Homologia de Sequência de Aminoácidos
7.
Tumour Biol ; 37(5): 6787-99, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26662306

RESUMO

The role and clinical implication of the WWP2 E3 ubiquitin ligase in liver cancer are poorly understood. In the current study, we investigated the expression level of WWP2 and its functions in cell adhesion, invasion, and migration in liver cancer. We used real-time PCR to detect the expression of WWP2 in liver cancer and adjacent samples from the People's Hospital of Lishui and also analyzed The Cancer Genome Atlas (TCGA) RNA-seq data by bioinformatics. Migration and invasion were detected by transwell analysis. We detected a strong WWP2 expression in tumor tissues of the People's Hospital of Lishui, and the survival rate was significantly higher in patients with lower WWP2-expressing tumors. WWP2 small hairpin RNA (shRNA) lentivirus stably infected cells (shWWP2), Huh7, showed slower growth speed compared with scramble control-infected cells in a xenograft mouse model. Knockdown of WWP2 Huh7 and BEL-7404 cells demonstrated a reduction in adhesion, invasion, and migration. Gene set enrichment analysis (GSEA) showed that WWP2 is positively correlated to cancer-related pathways including the chemokine signaling pathway. WWP2 also regulated MMP-9, caspase-9, CXCR3, and CCR5 expression in liver cancer cells. In addition, knockdown of CXCR3 and CCR5 significantly inhibited cell proliferation, adhesion, invasion, and migration in Huh7 and BEL-7404 cells. Our data suggest that targeting of WWP2 may be a therapeutic strategy for liver cancer treatment.


Assuntos
Inativação Gênica , Neoplasias Hepáticas/genética , Ubiquitina-Proteína Ligases/genética , Animais , Apoptose/genética , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Sobrevivência Celular/genética , Quimiocinas/genética , Quimiocinas/metabolismo , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos , Prognóstico , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transdução de Sinais
8.
J Control Release ; 365: 358-368, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016488

RESUMO

Blood vessel functionality is crucial for efficient tumor-targeted drug delivery. Heterogeneous distribution and perfusion of angiogenic blood vessels contribute to suboptimal accumulation of (nano-) therapeutics in tumors and metastases. To attenuate pathological angiogenesis, an L-RNA aptamer inhibiting the CC motif chemokine ligand 2 (CCL2) was administered to mice bearing orthotopic 4T1 triple-negative breast cancer tumors. The effect of CCL2 inhibition on tumor blood vessel functionality and tumor-targeted drug delivery was evaluated via multimodal and multiscale optical imaging, employing fluorophore-labeled polymeric (10 nm) and liposomal (100 nm) nanocarriers. Anti-CCL2 treatment induced a dose-dependent anti-angiogenic effect, reflected by a decreased relative blood volume, increased blood vessel maturity and functionality, and reduced macrophage infiltration, accompanied by a shift in the polarization of tumor-associated macrophages (TAM) towards a less M2-like and more M1-like phenotype. In line with this, CCL2 inhibitor treatment improved the delivery of polymers and liposomes to tumors, and enhanced the antitumor efficacy of free and liposomal doxorubicin. Together, these findings demonstrate that blocking the CCL2-CCR2 axis modulates TAM infiltration and polarization, resulting in vascular normalization and improved tumor-targeted drug delivery.


Assuntos
Quimiocina CCL2 , Neoplasias , Camundongos , Animais , Quimiocina CCL2/farmacologia , Ligantes , Nanomedicina , Neoplasias/patologia , Macrófagos , Linhagem Celular Tumoral
9.
Cancer Med ; 13(4): e6940, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38457216

RESUMO

BACKGROUND: Tumor metastasis is responsible for the high mortality rate of patients with oral squamous cell carcinoma (OSCC). Although many hypotheses have been proposed to elucidate the mechanism of tumor metastasis, the origin of the metastatic tumor cells remains unclear. In this study, we explored the role of cell fusion in the formation of OSCC metastatic tumor cells. METHODS: Murine OSCC tumor cells and macrophages were fused in vitro, and the cell proliferation, migration, and phagocytosis abilities of hybrid cells and parental cells were compared. Subsequently, we compared the transcriptome differences between hybrid and parental cells. RESULTS: Murine OSCC tumor cells and macrophages were successfully fused in vitro. The cytological and molecular experimental results revealed that OSCC tumor cells obtained a migration-related phenotype after fusion with macrophages, and the migration ability of hybrid cells was related to the activation of the "chemokine signal pathway". CONCLUSION: After fusion with macrophages, the chemokine signaling pathway in OSCC tumor cells was activated, leading to metastasis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias Bucais/patologia , Fusão Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Transdução de Sinais/genética , Macrófagos/metabolismo , Quimiocinas/metabolismo , Neoplasias de Cabeça e Pescoço/patologia
10.
J Ethnopharmacol ; 332: 118245, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38679399

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The process of atherosclerosis (AS) is complicated. Transcriptomics technology can assist in discovering the underlying mechanisms and exploring the key targets of Traditional Chinese Medicine (TCM) against atherosclerosis. AIM: This study aimed to investigate targets and signaling pathways significantly related to AS and the potential intervention targets of Xuefu Zhuyu decoction by transcriptomics. MATERIALS AND METHODS: AS models were established by subjecting ApoE-/-mice to an 8-week high-fat diet. Structural changes and plaque formation in the aortic root were observed using hematoxylin-eosin staining (HE staining), while Oil Red O staining was employed to visualize lipid deposition within the aortic root plaque. Movat staining and immunohistochemical staining were conducted to examine the components present in the aortic root plaque. Macrophage content within the plaque was observed through immunofluorescence. Additionally, mRNA sequencing was performed on aortic tissues to identify differentially expressed genes. Enrichment analysis was performed using GO and KEGG analysis. Visualization of the protein-protein interaction (PPI) network was achieved using Cytoscape 3.7.1 and STRING. Western blotting (WB) was employed to assess the protein expression of major differentially expressed genes in the aortic tissue. The drug freeze-dried powder of Xuefu Zhuyu decoction was prepared and the RAW264.7 cells were induced by lipopolysaccharide (LPS) to build an in vitro model. Real-time quantitative PCR was employed to measure the mRNA expression of major differential genes. RESULTS: After ApoE-/- mice were fed with an 8-week high-fat diet, observable changes included the thinning of the aortic root wall, the accumulation of foam cells within the plaque, and the formation of cholesterol crystals in the model group. Treatment with Xuefu Zhuyu (XFZY) decoction for 12 weeks significantly reduced the lipid deposition and the number of macrophages (P < 0.05) and significantly increased the collagen content within the plaque (P < 0.01). Enrichment analysis revealed a high enrichment of the Cytokine-cytokine receptor interaction pathway and Chemokine signaling pathway. Noteworthy genes involved in this response included Ccl12, Ccl22, Cx3cr1, Ccr7, Ccr2, Tnfrsf25, and Gdf5. Xuefu Zhuyu decoction significantly downregulated the expression of CX3CL1 and CX3CR1 (P < 0.05) and upregulated the expression of GDF5 (P < 0.01). Compared with control group, in cell models, the mRNA expressions of Ccl12, Ccl22, and Ccr2 were significantly upregulated (P < 0.05 or P < 0.01). Xuefu Zhuyu decoction significantly downregulated the expression of Ccl12, Ccl22, Cx3cr1, Ccr7 and Ccr2 (P < 0.05 or P < 0.01). CONCLUSION: Xuefu Zhuyu decoction demonstrates effective regulation of plaque components, retarding plaque progression and preserving plaque stability by modulating lipid metabolism and inflammatory responses. Subsequent transcriptome analysis identified the Cytokine-cytokine receptor interaction and Chemokine signaling pathway as potential key pathways for the therapeutic effects of Xuefu Zhuyu decoction. This insight not only provides crucial avenues for further exploration into the mechanisms underlying Xuefu Zhuyu decoction but also offers valuable perspectives and hypotheses for enhancing disease prevention and treatment strategies.


Assuntos
Aterosclerose , Dieta Hiperlipídica , Medicamentos de Ervas Chinesas , Transdução de Sinais , Animais , Medicamentos de Ervas Chinesas/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Dieta Hiperlipídica/efeitos adversos , Quimiocinas/metabolismo , Quimiocinas/genética , Perfilação da Expressão Gênica/métodos , Camundongos Knockout para ApoE , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/tratamento farmacológico , Modelos Animais de Doenças , Transcriptoma/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Apolipoproteínas E/genética , Aorta/efeitos dos fármacos , Aorta/patologia
11.
Toxicology ; 507: 153888, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019315

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) can reduce sperm number, but the mechanisms of defective spermatogenesis induced by TiO2 NPs have not been studied through cell-cell interactions at present. A kind of biomimetic three-dimensional blood-testis barrier microfluidic chip capable of intercellular communication was constructed with soft lithography techniques, including Sertoli cell (TM4), spermatogonia (GC-1) and vascular endothelial cell units, to study the mechanisms of TiO2 NPs-induced defective spermatogenesis. TM4 and GC-1 cells cultured in TiO2 NPs exposure and control chips were collected for transcriptomics and metabonomics analysis, and key proteins and metabolites in changed biological processes were validated. In TM4 cells, TiO2 NPs suppressed glucose metabolism, especially lactate production, which reduced energy substrate supply for spermatogenesis. TiO2 NPs also decreased the levels of key proteins and metabolites of lactate production. In GC-1 cells, TiO2 NPs disturbed chemokine signaling pathways regulating cell proliferation and interfered with glutathione metabolism. The Cxcl13, Stat3 and p-Stat3 levels and cell proliferation rate were decreased, and the GSR, GPX4 and GSH contents were increased in GC-1 cells in chips under TiO2 NPs treatment. The decrease in energy substrate supply for spermatogenesis and inhibition of spermatogonia proliferation could be the main mechanisms of defective spermatogenesis induced by TiO2 NPs.


Assuntos
Barreira Hematotesticular , Células de Sertoli , Espermatogênese , Espermatogônias , Titânio , Masculino , Titânio/toxicidade , Espermatogênese/efeitos dos fármacos , Animais , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Barreira Hematotesticular/efeitos dos fármacos , Camundongos , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Espermatogônias/patologia , Linhagem Celular , Nanopartículas Metálicas/toxicidade , Dispositivos Lab-On-A-Chip , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Comunicação Celular/efeitos dos fármacos
12.
Acta Pharm Sin B ; 14(3): 905-952, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486980

RESUMO

Cancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy. Small molecules targeting PRR-associated pathways, immune checkpoints, oncogenic signaling, metabolic pathways, cytokine/chemokine signaling, and immune-related kinases have been extensively investigated. Monotherapy of small-molecule immunotherapeutic drugs and their combinations with other antitumor modalities are under active clinical investigations to overcome immune tolerance and circumvent immune checkpoint inhibitor resistance. Here, we review the latest development of small-molecule agents for cancer immunotherapy by targeting defined pathways and highlighting their progress in recent clinical investigations.

13.
bioRxiv ; 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37745440

RESUMO

Endothelial cell (EC)-pericyte interactions are known to remodel in response to hemodynamic forces, yet there is a lack of mechanistic understanding of the signaling pathways that underlie these events. Here, we have identified a novel signaling network regulated by blood flow in ECs-the chemokine receptor, CXCR3, and one of its ligands, CXCL11-that delimits EC angiogenic potential and suppresses pericyte recruitment during development through regulation of pdgfb expression in ECs. In vitro modeling of EC-pericyte interactions demonstrates that suppression of EC-specific CXCR3 signaling leads to loss of pericyte association with EC tubes. In vivo, phenotypic defects are particularly noted in the cranial vasculature, where we see a loss of pericyte association with and expansion of the vasculature in zebrafish treated with the Cxcr3 inhibitor AMG487. We also demonstrate using flow modeling platforms that CXCR3-deficient ECs are more elongated, move more slowly, and have impaired EC-EC junctions compared to their control counterparts. Together these data suggest that CXCR3 signaling in ECs drives vascular stabilization events during development.

14.
BMC Med Genomics ; 16(1): 180, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537613

RESUMO

BACKGROUND: Osteosarcoma, as the most common primary bone malignancy, is urgent to be well-studied on the biomarkers and therapeutic targets to improve the five-year survival rate. Transcriptomic analysis using single-cell RNA or bulk RNA sequencing has been developed to detect biomarkers in various cancer types. METHODS AND RESULTS: We applied Scissor to combine single-cell RNA-seq data and bulk transcriptome data of osteosarcoma, providing cell-level information and sample phenotypes to identify the survival-associated cell subpopulations. By investigating the differences between the survival-associated cell subpopulations, we identified CCL21, CCL22, CCL24, CXCL11, CXCL12, CXCL13, GNAI2, and RAC2 in the proliferating cells that are significantly associated with osteosarcoma patient outcome. Then we assigned the risk score for each sample based on the cell proportion-normalized gene expression and validated it in the public dataset. CONCLUSIONS: This study provides the clinical insight that chemokine signaling pathway genes (CCL21, CCL22, CCL24, CXCL11, CXCL12, CXCL13, GNAI2, and RAC2) in proliferating cells might be the potential biomarkers for treatment of osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Osteossarcoma/genética , Osteossarcoma/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Transcriptoma , Biomarcadores , Transdução de Sinais
15.
Autoimmunity ; 56(1): 2194584, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36999276

RESUMO

Impaired insulin secretion due to pancreatic ß-cell injury is an important cause of type 2 diabetes (T2D). Regulators of guanine nucleotide binding protein (G protein) signaling proteins played a key role in regulating insulin sensitivity in vivo. To explore the role of RGS7 on palmitic acid-induced pancreatic ß-cell injury, pancreatic ß-cells Beta-TC-6 and Min6 were treated with palmitic acid (PA) to similar type 2 diabetes (T2D) injury in vitro. The 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry were used to analyze cell viability, proliferation, and apoptosis, respectively. Enzyme-linked immunosorbent assay (ELISA) kits were used to analyze the changes of inflammation-related cytokines. The expression of gene and protein was measured by quantitative real-time PCR (qRT-PCR) and western blot. PA modeling induced apoptosis, increased levels of inflammation-related cytokines, and suppressed cell viability and proliferation of pancreatic ß-cells. RGS7 silence markedly alleviated the cell injury induced by PA. RGS7 overexpression further aggravated apoptosis and inflammatory response in PA-induced pancreatic ß-cells and inhibited cell viability and proliferation. It is worth noting that RGS7 activated the chemokine signaling pathway. Silence of the key gene of the chemokine signaling pathway could eliminate the negative effect of RGS7 on PA-induced pancreatic ß-cells. RGS7 silence protects pancreatic ß-cells from PA-induced injury by inactivating the chemokine signaling pathway.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Proteínas RGS , Humanos , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo , Transdução de Sinais , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Apoptose/genética , Citocinas/metabolismo , Inflamação/metabolismo , Quimiocinas , Proteínas RGS/genética , Proteínas RGS/metabolismo , Proteínas RGS/farmacologia
16.
Artif Cells Nanomed Biotechnol ; 51(1): 1-12, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36562095

RESUMO

We intended to identify favourable metabolite(s) and pharmacological mechanism(s) of gut microbiota (GM) for liver regeneration (LR) through network pharmacology. We utilized the gutMGene database to obtain metabolites of GM, and targets associated with metabolites as well as LR-related targets were identified using public databases. Furthermore, we performed a molecular docking assay on the active metabolite(s) and target(s) to verify the network pharmacological concept. We mined a total of 208 metabolites in the gutMGene database and selected 668 targets from the SEA (1,256 targets) and STP (947 targets) databases. Finally, 13 targets were identified between 61 targets and the gutMGene database (243 targets). Protein-protein interaction network analysis showed that AKT1 is a hub target correlated with 12 additional targets. In this study, we describe the potential microbe from the microbiota (E. coli), chemokine signalling pathway, AKT1 and myricetin that accelerate LR, providing scientific evidence for further clinical trials.


Assuntos
Microbioma Gastrointestinal , Escherichia coli , Regeneração Hepática , Simulação de Acoplamento Molecular , Farmacologia em Rede
17.
Biomedicines ; 11(2)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36831001

RESUMO

Allocryptopine (ALL) is an isoquinoline alkaloid extracted from Macleaya cordata(Willd). R. Br., which has been claimed to have anti-inflammatory and neuroprotection properties. However, the mechanism by which ALL ameliorates inflammatory bowel disease (IBD) remains unclear. Here, we used network pharmacology and quantitative proteomic approaches to investigate the effect of ALL on IBD pathogenesis. Network pharmacology predicted potential targets and signaling pathways of ALL's anti-IBD effects. As predicted by network pharmacology, gene ontology (GO) analysis, in terms of the proteomic results, showed that the immune response in mucosa and antimicrobial humoral response were enriched. Further study revealed that the ALL-related pathways were the chemokine signaling pathway and apoptosis in the Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, we identified AKT1 as a hub for the critical pathways through protein-protein interaction (PPI) network analysis. Similar to mesalazine (MES), Western blot verified that ALL downregulated upstream chemokine CX3CL1 and GNB5 content to reduce phosphorylation of AKT and NF-κB, as well as the degree of apoptosis, to improve inflammatory response in the colon. Our research may shed light on the mechanism by which ALL inhibits the CX3CL1/GNB5/AKT2/NF-κB/apoptosis pathway and improves the intestinal barrier to reduce colitis response and act on the CX3CL1-CX3CR1 axis to achieve neuroprotection.

18.
Immunol Res ; 70(3): 331-340, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35064448

RESUMO

Circular RNAs (circRNAs) have been revealed as being abundantly expressed in a variety of tissues and have been found to contribute to the regulation of many autoimmune diseases. Although previous studies demonstrated that the pathogenesis of Hashimoto's thyroiditis (HT) is related with epigenetic dysregulation, the exact mechanism remains unclear. The important role of thyroid-specific circRNAs in HT attracted much attention but without any report revealed their expression profile and function in plasma of HT. In this study, the circRNA expression profile in plasma of HT was explored for the first time by using Arraystar CircRNA Microarray technology. We obtained 22 differentially expressed circRNAs (fold change ≥ 2.0 or ≤ - 2.0, p < 0.05) in plasma of HT, including 7 upregulated circRNAs and 15 downregulated circRNAs. By constructing circRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network, we found that upregulated circRNAs may function as ceRNAs and affect the occurrence or development of HT through chemokine signaling pathway (p < 0.0001), HIF-1 signaling pathway (p = 0.02), and FoxO signaling pathway (p = 0.04). Notably, hsa_circ_0008193 verified by RT-qPCR were the major upregulation circRNAs involved in the chemokine signaling pathway. These results provide a comprehensive circRNA resource for further in-depth study of the regulatory mechanisms of circRNA in HT and may provide new insight into HT.


Assuntos
Doença de Hashimoto , MicroRNAs , RNA Circular , Quimiocinas , Doença de Hashimoto/genética , Humanos , MicroRNAs/genética , RNA Circular/sangue , RNA Circular/genética , RNA Mensageiro/genética
19.
Front Pharmacol ; 13: 850167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160448

RESUMO

Aims: To evaluate the effectiveness and potential mechanism of calcium dobesilate (CaD) in diabetic kidney disease (DKD) patients. Methods: We searched for available randomized controlled studies on DKD patients' treatment with CaD through open databases. Continuous variables were expressed as standardized mean difference (SMD) with a 95% confidence interval (CI). The putative targets and possible pathways of CaD on DKD were analyzed by network pharmacology. Molecular docking was employed to verify the match between CaD and the target genes. Results: In the meta-analysis, 42 trials were included, involving 3,671 DKD patients, of which 1,839 received CaD treatment in addition to conventional treatment, while 1,832 received conventional treatment. Compared with routine therapy, the levels of serum creatinine (Scr) and blood urea nitrogen (BUN) significantly decreased in the CaD treatment (early stage of DKD, Scr: p < 0.00001; BUN: p < 0.0001; clinical stage of DKD, Scr: p < 0.00001; BUN: p < 0.00001; kidney failure stage, Scr: p = 0.001; BUN: p = 0.004). The levels of serum cystatin C (Cys-C), urine levels of molecules reflecting kidney function (urinary albumin excretion rate (UAER) and micro glycoprotein), and inflammatory factors [hypersensitive c-reactive protein (hs-CRP)] were reduced compared with control groups, while glomerular filtration rate (GFR) was increased in patients treated with CaD for 12 weeks. CaD also showed a better effect on improving endothelial function. Network pharmacology results showed that the interaction pathway between CaD and DKD was mainly enriched in MAPK and chemokine signaling pathways. AKT1, CASP3, IGF1, MAPK8, and CCL5 might be the key targets for CaD in treating DKD. Conclusion: Combination with CaD is effective and safe in patients with DKD. Inhibition of MAPK and chemokine signaling pathways might be vital in treating CaD in DKD patients.

20.
Front Genet ; 13: 921837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118890

RESUMO

Background: The chemokine signaling pathway plays an essential role in the development, progression, and immune surveillance of lung squamous cell carcinoma (LUSC). Our study aimed to systematically analyze chemokine signaling-related genes (CSRGs) in LUSC patients with stage I-III disease and develop a prediction model to predict the prognosis and therapeutic response. Methods: A total of 610 LUSC patients with stage I-III disease from three independent cohorts were included in our study. Least absolute shrinkage and selection operator (LASSO) and stepwise multivariate Cox regression analyses were used to develop a CSRG-related signature. GSVA and GSEA were performed to identify potential biological pathways. The ESTIMATE algorithm, ssGSEA method, and CIBERSORT analyses were applied to explore the correlation between the CSRG signature and the tumor immune microenvironment. The TCIA database and pRRophetic algorithm were utilized to predict responses to immunochemotherapy and targeted therapy. Results: A signature based on three CSRGs (CCL15, CXCL7, and VAV2) was developed in the TCGA training set and validated in the TCGA testing set and GEO external validation sets. A Kaplan-Meier survival analysis revealed that patients in the high-risk group had significantly shorter survival than those in the low-risk group. A nomogram combined with clinical parameters was established for clinical OS prediction. The calibration and DCA curves confirmed that the prognostic nomogram had good discrimination and accuracy. An immune cell landscape analysis demonstrated that immune score and immune-related functions were abundant in the high-risk group. Interestingly, the proportion of CD8 T-cells was higher in the low-risk group than in the high-risk group. Immunotherapy response prediction indicated that patients in the high-risk group had a better response to CTLA-4 inhibitors. We also found that patients in the low-risk group were more sensitive to first-line chemotherapeutic treatment and EGFR tyrosine kinase inhibitors. In addition, the expression of genes in the CSRG signature was validated by qRT‒PCR in clinical tumor specimens. Conclusion: In the present study, we developed a CSRG-related signature that could predict the prognosis and sensitivity to immunochemotherapy and targeted therapy in LUSC patients with stage I-III disease. Our study provides an insight into the multifaceted role of the chemokine signaling pathway in LUSC and may help clinicians implement optimal individualized treatment for patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA