Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Chembiochem ; 25(6): e202300722, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38235523

RESUMO

We report the first biocatalytic modification of sesquiterpene lactones (STLs) found in the chicory plants, specifically lactucin (Lc), 11ß,13-dihydrolactucin (DHLc), lactucopicrin (Lp), and 11ß,13-dihydrolactucopicrin (DHLp). The selective O-acylation of their primary alcohol group was carried out by the lipase B from Candida antarctica (CAL-B) using various aliphatic vinyl esters as acyl donors. Perillyl alcohol, a simpler monoterpenoid, served as a model to set up the desired O-acetylation reaction by comparing the use of acetic acid and vinyl acetate as acyl donors. Similar conditions were then applied to DHLc, where five novel ester chains were selectively introduced onto the primary alcohol group, with conversions going from >99 % (acetate and propionate) to 69 % (octanoate). The synthesis of the corresponding O-acetyl esters of Lc, Lp, and DHLp was also successfully achieved with near-quantitative conversion. Molecular docking simulations were then performed to elucidate the preferred enzyme-substrate binding modes in the acylation reactions with STLs, as well as to understand their interactions with crucial amino acid residues at the active site. Our methodology enables the selective O-acylation of the primary alcohol group in four different STLs, offering possibilities for synthesizing novel derivatives with significant potential applications in pharmaceuticals or as biocontrol agents.


Assuntos
Cichorium intybus , Sesquiterpenos , Ésteres/química , Simulação de Acoplamento Molecular , Acilação , Lactonas
2.
Anim Biotechnol ; 35(1): 2286610, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38006583

RESUMO

Orychophragmus violaceus (OV) and chicory (Cichorium intybus L., CC) can be used as fresh or dry forage for animals. To determine whether OV and/or CC have beneficial effects on performance and egg quality, a total of 1212 28-wk-old Beijing You Chicken (BYC) laying hens with similar performance were randomly allocated to 4 groups with 3 replicate pens per group, and 101 birds per pen. The birds were fed a basal diet (control), the basal diet + OV (3.507 kg/d/pen), the basal diet + CC (2.525 kg/d/pen), and the basal diet + OV + CC (OVC, 1.7535 kg/d/pen OV + 1.2625 kg/d/pen CC) for 3 wks after one wk of adaptation. The results showed that egg-laying rate was not affected by OV, CC and OVC (p > 0.05), but weekly average egg mass was significantly increased by OV and CC (p < 0.05). The feed egg ratio in the CC group (2.82) was significantly lower than that in the other three groups (p < 0.05). The eggshell thickness (EST), albumen height (AH) and Haugh unit (HU) were decreased by OV and CC (p < 0.05); while yolk color (YC) was increased in the CC and OVC groups (p < 0.05). Egg grade was decreased by OV (p < 0.05). Sensory evaluation showed that there was a trend for increased YC in OV, CC and OVC (p = 0.089). Serum total protein was significantly lower in OV group than those in the control and CC group (p < 0.05); serum albumin content was significantly decreased in OV, CC and OVC groups (p = 0.006). Serum glutathione peroxidase activity in CC and OVC groups was significantly higher than that in the control group (p < 0.05). In conclusion, the present study suggests that CC had a better effect on the performance of the native laying hens than OV. The OV and CC affected egg quality, while YC was increased in CC and OVC groups. The OVC improved YC and serum antioxidative properties of native laying hens without affecting the performance.


Assuntos
Antioxidantes , Cichorium intybus , Animais , Feminino , Galinhas , Ração Animal/análise , Óvulo , Dieta/veterinária , Suplementos Nutricionais
3.
BMC Biol ; 21(1): 138, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316905

RESUMO

BACKGROUND: The influence of diet on immune function and resistance to enteric infection and disease is becoming ever more established. Highly processed, refined diets can lead to inflammation and gut microbiome dysbiosis, whilst health-promoting dietary components such as phytonutrients and fermentable fibres are thought to promote a healthy microbiome and balanced mucosal immunity. Chicory (Cichorium intybus) is a leafy green vegetable rich in fibres and bioactive compounds that may promote gut health. RESULTS: Unexpectedly, we here show that incorporation of chicory into semisynthetic AIN93G diets renders mice susceptible to infection with enteric helminths. Mice fed a high level of chicory leaves (10% dry matter) had a more diverse gut microbiota, but a diminished type-2 immune response to infection with the intestinal roundworm Heligmosomoides polygyrus. Furthermore, the chicory-supplemented diet significantly increased burdens of the caecum-dwelling whipworm Trichuris muris, concomitant with a highly skewed type-1 immune environment in caecal tissue. The chicory-supplemented diet was rich in non-starch polysaccharides, particularly uronic acids (the monomeric constituents of pectin). In accordance, mice fed pectin-supplemented AIN93G diets had higher T. muris burdens and reduced IgE production and expression of genes involved in type-2 immunity. Importantly, treatment of pectin-fed mice with exogenous IL-25 restored type-2 responses and was sufficient to allow T. muris expulsion. CONCLUSIONS: Collectively, our data suggest that increasing levels of fermentable, non-starch polysaccharides in refined diets compromises immunity to helminth infection in mice. This diet-infection interaction may inform new strategies for manipulating the gut environment to promote resistance to enteric parasites.


Assuntos
Dieta , Infecções por Nematoides , Animais , Camundongos , Polissacarídeos , Suplementos Nutricionais , Pectinas
4.
Environ Toxicol ; 39(3): 1666-1681, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38031637

RESUMO

The prevalence of chronic kidney disease (CKD) is in progress that causes kidney failure, leading to global problems. This manuscript investigated the nephroprotective effects of chicory (CLE) and/or artichoke (ALE) leaves extracts on carbon tetrachloride (CCl4 ) and gamma-irradiation (Rad)-induced chronic nephrotoxicity in rats. Rats were divided into 10 groups (10 animals/group): group 1: control, groups 2-7 rats were treated with CLE, ALE, CLE/ALE, CCl4 , Rad, and CCl4 /Rad, respectively. Groups 8 to 10, rats were intoxicated with CCl4 /Rad, and treated with CLE, ALE, and CLE/ALE extracts, respectively, for 4 weeks. The data demonstrated that CCl4 administration or Rad exposure induced high levels of urea and creatinine, with low levels of total protein and albumin in the serum. However, high levels of malondialdehyde (MDA), nitric oxide (NO), hydrogen peroxide (H2 O2 ), some pro-inflammatory markers such as interleukins (IL-1ß, IL-2, IL-6), TNF-α, NF-κB, the fibrotic marker; TGF-ß1, calcium, and copper, low contents of reduced glutathione (GSH), iron, and zinc, and suppression of the antioxidant enzymes' activity, superoxide dismutase (SOD), and catalase (CAT) were observed. In addition, the Wnt and ß-catenin protein expression ratios were up-regulated in the kidney tissues of the CCl4 , and Rad intoxicated animals. However, the combined treatment CCl4 /Rad augmented these measurements. On the other hand, CLE, ALE, and CLE/ALE treatments demonstrated nephroprotection in the kidney tissues of CCl4 /Rad intoxicated animals, in the order of CLE/ALE>ALE>CLE by ameliorating the investigated parameters. Kidney tissues' histopathological examinations confirmed these results. In conclusion, CLE and/or ALE demonstrated nephroprotection against CCl4 /Rad co-toxicity mediated by down-regulation of renal Wnt/ß-catenin protein expressions.


Assuntos
Cichorium intybus , Cynara scolymus , Insuficiência Renal , Ratos , Animais , Tetracloreto de Carbono/toxicidade , Estresse Oxidativo , Cynara scolymus/metabolismo , Antioxidantes/metabolismo , Insuficiência Renal/metabolismo , Insuficiência Renal/patologia , Extratos Vegetais/farmacologia , Cateninas/metabolismo , Cateninas/farmacologia , Fígado
5.
Molecules ; 29(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38398580

RESUMO

A composite of chitosan-supported ZnO nanoparticles (ZnO/CS) was green-synthesized via an easy and cost-effective method using Chicory (Cichorium intybus) plant extract. The synthesis was confirmed using uv-vis spectrometry at a λmax of 380 nm, and the surface of the material was characterized via FT-IR spectroscopy, and finally via SEM, which confirmed the distribution of ZnO nanoparticles on the surface of chitosan biopolymer (CS). The synthesized material was applied in the adsorptive removal of residues of the pyridoxine hydrochloride (vitamin B6) pharmaceutical drug from aqueous media using the batch technique. The material's removal capacity was studied through several adjustable parameters including pH, contact time, the dose of the adsorbent, and the capacity for drug adsorption under the optimal conditions. Langmuir and Freundlich isotherms were applied to describe the adsorption process. The removal was found to obey the Freundlich model, which refers to a chemisorption process. Different kinetic models were also studied for the removal process and showed that the pseudo-second-order model was more fitted, which indicates that the removal was a chemisorption process. Thermodynamic studies were also carried out. The maximum removal of vitamin B6 by the nano-ZnO/CS composite was found to be 75% at optimal conditions. The results were compared to other reported adsorbents. Reusability tests showed that the nano-ZnO/CS composite can be efficiently reused up to seven times for the removal of PDX drugs from aqueous media.


Assuntos
Quitosana , Poluentes Químicos da Água , Óxido de Zinco , Quitosana/química , Piridoxina , Vitamina B 6 , Óxido de Zinco/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
6.
New Phytol ; 238(3): 1245-1262, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36751914

RESUMO

Fructans in angiosperms play essential roles in physiological functions and environmental adaptations. As a major source of industrial fructans (especially inulin-type), chicory (Cichorium intybus L.) is a model species for studying fructan biosynthesis. However, the genes underlying this process and their evolutionary history in angiosperms remain elusive. We combined multiple sequencing technologies to assemble and annotate the chicory genome and scan its (epi)genomic features, such as genomic components, DNA methylation, and three-dimensional (3D) structure. We also performed a comparative genomics analysis to uncover the associations between key traits and gene families. We achieved a nearly complete chicory genome assembly and found that continuous bursts of a few highly active retrotransposon families largely shaped the (epi)genomic characteristics. The highly methylated genome with its unique 3D structure potentially influences critical biological processes. Our comprehensive comparative genomics analysis deciphered the genetic basis for the rich sesquiterpene content in chicory and indicated that the fructan-accumulating trait resulted from convergent evolution in angiosperms due to shifts in critical sites of fructan-active enzymes. The highly characterized chicory genome provides insight into Asteraceae evolution and fructan biosynthesis in angiosperms.


Assuntos
Cichorium intybus , Frutanos , Magnoliopsida , Asteraceae/genética , Metabolismo dos Carboidratos , Cichorium intybus/genética , Frutanos/biossíntese , Magnoliopsida/genética
7.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511422

RESUMO

Cichorium intybus L. is the most economically important species of its genus and among the most important of the Asteraceae family. In chicory, many linkage maps have been produced, several sets of mapped and unmapped markers have been developed, and dozens of genes linked to traits of agronomic interest have been investigated. This treasure trove of information, properly cataloged and organized, is of pivotal importance for the development of superior commercial products with valuable agronomic potential in terms of yield and quality, including reduced bitter taste and increased inulin production, as well as resistance or tolerance to pathogens and resilience to environmental stresses. For this reason, a systematic review was conducted based on the scientific literature published in chicory during 1980-2023. Based on the results obtained from the meta-analysis, we created two consensus maps capable of supporting marker-assisted breeding (MAB) and marker-assisted selection (MAS) programs. By taking advantage of the recently released genome of C. intybus, we built a 639 molecular marker-based consensus map collecting all the available mapped and unmapped SNP and SSR loci available for this species. In the following section, after summarizing and discussing all the genes investigated in chicory and related to traits of interest such as reproductive barriers, sesquiterpene lactone biosynthesis, inulin metabolism and stress response, we produced a second map encompassing 64 loci that could be useful for MAS purposes. With the advent of omics technologies, molecular data chaos (namely, the situation where the amount of molecular data is so complex and unmanageable that their use becomes challenging) is becoming far from a negligible issue. In this review, we have therefore tried to contribute by standardizing and organizing the molecular data produced thus far in chicory to facilitate the work of breeders.


Assuntos
Asteraceae , Cichorium intybus , Cichorium intybus/genética , Inulina , Melhoramento Vegetal , Mapeamento Cromossômico , Asteraceae/genética
8.
Molecules ; 28(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37764478

RESUMO

Plant bioactive phenolic metabolites have recently attracted the attention of researchers due to their numerous health advantages. Therefore, this study aimed to investigate with advanced techniques the bioactive metabolites and antioxidant and antidiabetic capacity of four unconventional edible plant leaves: lemongrass (Cymbopogon citratus (DC.) Stapf), chicory (Cichorium intybus L.), moringa (Moringa oleifera Lam.), and ryegrass (Lolium perenne L.). The extraction process was optimized using different solvents. These plants' phenolic composition, identification, and characterization have been determined herein using LCESI-QTOF-MS/MS. This research identified 85 phenolic compounds, including 24 phenolic acids, 31 flavonoids, 7 stilbenes and lignans, and 17 other metabolites. Moreover, the study determined that moringa has the highest total phenolic content (TPC; 18.5 ± 1.01 mg GAE/g), whereas ryegrass has the lowest (3.54 ± 0.08 mg GAE/g) among the selected plants. It seems that, compared to other plants, moringa was found to have the highest antioxidant potential and antidiabetic potential. In addition, twenty-two phenolic compounds were quantified in these chosen edible plants. Rosmarinic acid, chlorogenic acid, chicoric acid, ferulic acid, protocatechuic acid, and caffeic acid were the most abundant phenolic acids. In silico molecular docking was also conducted to investigate the structure-function relationship of phenolic compounds to inhibit the alpha-glucosidase. Finally, the simulated pharmacokinetic characteristics of the most common substances were also predicted. In short, this investigation opens the way for further study into these plants' pharmaceutical and dietary potential.

9.
J Exp Bot ; 73(5): 1602-1622, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34750605

RESUMO

Fructan metabolism in bacteria and plants relies on fructosyltransferases and fructanases. Plant fructanases (fructan exohydrolase, FEH) only hydrolyse terminal fructose residues. Levan (ß-2,6 linkages) is the most abundant fructan type in bacteria. Dicot fructan accumulators, such as chicory (Cichorium intybus), accumulate inulin (ß-2,1 linkages), harbouring several 1-FEH isoforms for their degradation. Here, a novel chicory fructanase with high affinity for levan was characterized, providing evidence that such enzymes widely occur in higher plants. It is adapted to common microbial fructan profiles, but has low affinity towards chicory inulin, in line with a function in trimming of microbial fructans in the extracellular environment. Docking experiments indicate the importance of an N-glycosylation site close to the active site for substrate specificity. Optimal pH and temperature for levan hydrolysis are 5.0 and 43.7 °C, respectively. Docking experiments suggested multiple substrate binding sites and levan-mediated enzyme dimerization, explaining the observed positive cooperativity. Alignments show a single amino acid shift in the position of a conserved DXX(R/K) couple, typical for sucrose binding in cell wall invertases. A possible involvement of plant fructanases in levan trimming is discussed, in line with the emerging 'fructan detour' concepts, suggesting that levan oligosaccharides act as signalling entities during plant-microbial interactions.


Assuntos
Cichorium intybus , Sequência de Aminoácidos , Cichorium intybus/metabolismo , Frutanos/metabolismo , Glicosídeo Hidrolases/metabolismo , beta-Frutofuranosidase/metabolismo
10.
J Nutr ; 152(10): 2209-2217, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524685

RESUMO

BACKGROUND: Adherence to a Mediterranean dietary pattern can protect against atherosclerosis in part by reducing intestinal permeability and gut microbial LPS production. Brussels chicory, a typical Mediterranean vegetable, has been shown to inhibit the formation of early-stage atherosclerosis in mice. OBJECTIVES: We evaluated whether Brussels chicory affects advanced atherosclerosis progression, intestinal permeability, and gut microbial LPS production. METHODS: Thirty-week-old male apoE-deficient mice with unstable atherosclerotic plaques in the brachiocephalic artery were fed the AIN-93G diet alone (control) or supplemented with 0.5% freeze-dried Brussels chicory for 20 wk. Plaque volume and features of plaque stability, plaque macrophage polarization, fecal and serum LPS concentrations, serum lipid profiles and inflammation-related cytokines, and gut microbial profiles were measured. RESULTS: Compared with the control treatment, Brussels chicory consumption did not significantly change plaque volume and serum lipid profiles. However, it increased plaque stability (P < 0.05), as evidenced by reduced necrotic core size (42.3%), and increased fibrous cap thickness (55.0%) and collagen content (68.4%). Moreover, Brussels chicory consumption reduced intestinal permeability (56.3%), fecal and serum LPS concentrations (52.2% and 39.4%), serum IL1ß and TNFα (52.0% and 33.8%), promoted plaque macrophage polarization towards the M2-like phenotype, and altered gut microbial composition, the latter indicated by increased relative abundance of certain members of the Ruminococcaceae family, such as Ruminiclostridium_9, Ruminiclostridium_5, and Intestinimonas (P < 0.05). Spearman correlation analyses further showed that these bacterial genera were significantly correlated with intestinal permeability, fecal and serum LPS, serum proinflammatory cytokines, and several features of plaque stability. CONCLUSIONS: Brussels chicory might help stabilize atherosclerotic plaques in mice by reducing intestinal permeability and gut microbial LPS production. This study provides a promising approach to slow the progression of atherosclerosis.


Assuntos
Aterosclerose , Cichorium intybus , Microbioma Gastrointestinal , Placa Aterosclerótica , Animais , Apolipoproteínas E/genética , Aterosclerose/sangue , Colágeno , Dieta , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Placa Aterosclerótica/genética , Fator de Necrose Tumoral alfa
11.
Plant Biotechnol J ; 19(12): 2442-2453, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34270859

RESUMO

Chicory (Cichorium intybus var. sativum) is an industrial crop species cultivated for the production of a fructose polymer inulin, which is used as a low-calorie sweetener and prebiotic. Besides, inulin chicory taproots also accumulate sesquiterpene lactones (STLs). These are bitter tasting compounds, which need to be removed during inulin extraction, resulting in additional costs. In this work, we describe chicory lines where STL accumulation is almost completely eliminated. Genome editing using the CRISPR/Cas9 system was used to inactivate four genes that encode the enzyme that performs the first dedicated step in STL synthesis, germacrene A synthase (CiGAS). Chicory lines were obtained that carried null mutations in all four CiGAS genes. Lines lacking functional CiGAS alleles showed a normal phenotype upon greenhouse cultivation and show nearly complete elimination of the STL synthesis in the roots. It was shown that the reduction in STLs could be attributed to mutations in genetically linked copies of the CiGAS-short gene and not the CiGAS-long gene, which is relevant for breeding the trait into other cultivars. The inactivation of the STL biosynthesis pathway led to increase in phenolic compounds as well as accumulation of squalene in the chicory taproot, presumably due to increased availability of farnesyl pyrophosphate (FFP). These results demonstrate that STLs are not essential for chicory growth and that the inhibition of the STL biosynthesis pathway reduced the STL levels chicory which will facilitate inulin extraction.


Assuntos
Cichorium intybus , Sesquiterpenos , Sistemas CRISPR-Cas/genética , Cichorium intybus/genética , Cichorium intybus/metabolismo , Lactonas/metabolismo , Lactonas/farmacologia , Melhoramento Vegetal , Sesquiterpenos/metabolismo , Sesquiterpenos de Germacrano
12.
Molecules ; 26(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833867

RESUMO

Anthocyanins are the largest group of polyphenolic pigments in the plant kingdom. These non-toxic, water-soluble compounds are responsible for the pink, red, purple, violet, and blue colors of fruits, vegetables, and flowers. Anthocyanins are widely used in the production of food, cosmetic and textile products, in the latter case to replace synthetic dyes with natural and sustainable alternatives. Here, we describe an environmentally benign method for the extraction of anthocyanins from red chicory and their characterization by HPLC-DAD and UPLC-MS. The protocol does not require hazardous solvents or chemicals and relies on a simple and scalable procedure that can be applied to red chicory waste streams for anthocyanin extraction. The extracted anthocyanins were characterized for stability over time and for their textile dyeing properties, achieving good values for washing fastness and, as expected, a pink-to-green color change that is reversible and can therefore be exploited in the fashion industry.


Assuntos
Antocianinas , Corantes , Flores/química , Têxteis , Antocianinas/química , Antocianinas/isolamento & purificação , Cromatografia Líquida , Corantes/química , Corantes/isolamento & purificação , Espectrometria de Massas em Tandem
13.
New Phytol ; 228(3): 922-931, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32729968

RESUMO

The presence of acrylamide (AA), a potentially carcinogenic and neurotoxic compound, in food has become a major concern for public health. AA in plant-derived food mainly arises from the reaction of the amino acid asparagine (Asn) and reducing sugars during processing of foodstuffs at high temperature. Using a selection of genotypes from the chicory (Cichorium intybus L.) germplasm, we performed Asn measurements in storage roots and leaves to identify genotypes contrasting for Asn accumulation. We combined molecular analysis and grafting experiments to show that leaf to root translocation controls Asn biosynthesis and accumulation in chicory storage roots. We could demonstrate that Asn accumulation in storage roots depends on Asn biosynthesis and transport from the leaf, and that a negative feedback loop by Asn on CiASN1 expression impacts Asn biosynthesis in leaves. Our results provide a new model for Asn biosynthesis in root crop species and highlight the importance of characterizing and manipulating Asn transport to reduce AA content in processed plant-based foodstuffs.


Assuntos
Cichorium intybus , Asparagina , Cichorium intybus/genética , Retroalimentação , Folhas de Planta , Plantas
14.
J Appl Microbiol ; 129(6): 1693-1705, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32356327

RESUMO

AIM: Chicory fibre (CF) is rich in fructan, which always functions as a quality dietary fibre source during mammalian pregnancy; however, its effect on reproductive performance remains unclear. METHODS AND RESULTS: 40 pregnant SD rats were randomly allotted to receive one of four diets: basal diet (control group), basal diet + 5% CF, basal diet + 10% CF, and basal diet + 15% CF, respectively. We found that CF significantly increased the number born alive and total litter birth weight (P < 0·05), increased the expression of intestinal tight junction proteins, mucins and antimicrobial peptides, accompanied by the increase of villi height and the decrease of crypts depth of pregnant SD rats (P < 0·05). We also observed that CF markedly increased the acetic acid, propanoic acid, butyric acid and total SCFAs concentrations in caecum contents and promoted the expression of SCFAs-related receptors (P < 0·05). Notably, rats fed CF increased the relative abundance of Bacteroidetes (P < 0·001), decreased the relative abundance of Firmicutes and Proteobacteria, while markedly lowered the Firmicutes/ Bacteroidetes ratio (F/B ratio) (P < 0·05). Intriguingly, the number born alive and total litter birth weight were positively correlated with some probiotics and negatively correlated with other harmful bacteria by Pearson correlation analysis. CONCLUSION: Collectively, CF can enhance intestinal barrier function and maintain intestinal health, and may improve reproductive performance by altering intestinal microbiota composition. SIGNIFICANCE AND IMPACT OF THE STUDY: Adding suitable dietary fibre to the diet can improve the reproductive performance of sows. Indeed, there exist various problems in the application of traditional dietary fibres, including high insoluble fibre content and anti-nutritional factor level, and mycotoxin contamination. This study demonstrates that dietary CF supplementation improves reproductive performance and intestinal health. Thus, CF can be applied in pregnancy animals as a new dietary fibre additive in animal husbandry.


Assuntos
Cichorium intybus/química , Fibras na Dieta/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Prenhez/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Animais , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Dieta , Fibras na Dieta/metabolismo , Suplementos Nutricionais , Feminino , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Gravidez , Ratos , Ratos Sprague-Dawley
15.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722000

RESUMO

Some studies have ascribed a protective effect against neurodegenerative diseases to the ß-carbolines harman (H) and norharman (NH), which occur mostly in coffee and coffee substitutes. We determined the concentrations of ß-carbolines and undesirable compounds (such as acrylamide) in roasted coffee substitute ingredients and found that chicory coffee was optimal. Two in vivo experiments were conducted with seventeen-month-old male Sprague Dawley rats fed a diet with the addition of pure carboline standards in the first stage, and chicory in the second. We observed an increase in the level of H and NH in blood plasma, as well as higher activity of animals in the battery behavioral test, particularly in the second stage. The results of in vitro studies-particularly the level of the expression in brain tissue of genes associated with aging processes and neurodegenerative diseases-clearly show the benefits of a diet rich in ß-carbolines.


Assuntos
Encéfalo/metabolismo , Carbolinas , Regulação da Expressão Gênica/efeitos dos fármacos , Harmina/análogos & derivados , Doenças Neurodegenerativas/metabolismo , Animais , Carbolinas/química , Carbolinas/farmacocinética , Carbolinas/farmacologia , Cichorium intybus/química , Café/química , Harmina/química , Harmina/farmacocinética , Harmina/farmacologia , Masculino , Doenças Neurodegenerativas/prevenção & controle , Ratos , Ratos Sprague-Dawley
16.
Physiol Genomics ; 51(10): 488-499, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31373884

RESUMO

Characterization of genetic variants affecting genome-wide gene expression levels (expression quantitative trait loci or eQTLs) in pig testes may improve our understanding of genetic architecture of boar taint (an animal welfare trait) and helps in genome-assisted or genomic selection programs. The aims of this study were to identify eQTLs associated with androstenone, to find candidate eQTLs for low androstenone, and to validate the top eQTL by reverse transcriptase quantitative PCR (RT-qPCR). Gene expression profiles were obtained by RNA sequencing in testis from Danish cross-bred pigs and genotype data by 80K single nucleotide polymorphism panel. A total of 262 eQTLs [false discovery rate (FDR) < 0.05] were identified by using two software packages: Matrix eQTL and Krux eQTL. Of these, 149 cis-acting eQTLs were significantly associated with androstenone concentrations and gene expression (FDR < 0.05). The eQTLs were associated with several genes of boar taint relevance including CYP1A2, CYB5D1, and SPHK2. One eQTL gene, AMPH, was differentially expressed (FDR < 0.05) and affected by chicory. Five candidate eQTLs associated with low androstenone concentrations were discovered, including the top eQTL associated with CYP1A2. RT-qPCR confirmed target gene expression to be significantly (P < 0.05) different based on eQTL genotypes. Furthermore, eQTLs were enriched as QTLs for 15 boar taint related traits from the PigQTLdb. This is the first study to report eQTLs in testes of commercial crossbred pigs used in pork production and to reveal genetic architecture of boar taint. Potential applications include development of a DNA test and in advanced genomic selection models for boar taint.


Assuntos
Androsterona/química , Odorantes/prevenção & controle , Locos de Características Quantitativas/genética , RNA-Seq , Sus scrofa/genética , Testículo , Bem-Estar do Animal , Animais , Cruzamento , Cichorium intybus/química , DNA/genética , Feminino , Genótipo , Masculino , Orquiectomia/veterinária , Concentração Osmolar , Extratos Vegetais/farmacologia , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
BMC Biotechnol ; 19(1): 65, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31510982

RESUMO

BACKGROUND: A frequent problem associated with the tissue culture of Compositae species such as chicory (Cichorium intybus L.) and lettuce (Lactuca sativa L.) is the premature bolting to in vitro flowering of regenerated plants. Plants exhibiting such phase changes have poor survival and poor seed set upon transfer from tissue culture to greenhouse conditions. This can result in the loss of valuable plant lines following applications of cell and tissue culture for genetic manipulation. RESULTS: This study demonstrates that chicory and lettuce plants exhibiting stable in vitro flowering can be rejuvenated by a further cycle of adventitious shoot regeneration from cauline leaves. The resulting rejuvenated plants exhibit substantially improved performance following transfer to greenhouse conditions, with increased frequency of plant survival, a doubling of the frequency of plants that flowered, and substantially increased seed production. CONCLUSION: As soon as in vitro flowering is observed in unique highly-valued chicory and lettuce lines, a further cycle of adventitious shoot regeneration from cauline leaves should be implemented to induce rejuvenation. This re-establishes a juvenile phase accompanied by in vitro rosette formation, resulting in substantially improved survival, flowering and seed set in a greenhouse, thereby ensuring the recovery of future generations from lines genetically manipulated in cell and tissue culture.


Assuntos
Cichorium intybus/fisiologia , Lactuca/fisiologia , Cichorium intybus/citologia , Lactuca/citologia , Folhas de Planta/citologia , Folhas de Planta/fisiologia , Rejuvenescimento/fisiologia , Técnicas de Cultura de Tecidos/métodos
18.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635386

RESUMO

The effect of high levels of dietary chicory roots (25%) and intracecal exogenous butyrate infusion on skatole formation and gut microbiota was investigated in order to clarify the mechanisms underlying the known reducing effect of chicory roots on skatole production in entire male pigs. A Latin square design with 3 treatments (control, chicory, and butyrate), 3 periods, and 6 animals was carried out. Chicory roots showed the lowest numerical levels of skatole in both feces and plasma and butyrate infusion the highest. In the chicory group, an increased abundance of the skatole-producing bacterium Olsenella scatoligenes compared to the control group (P = 0.06), and a numerically higher relative abundance of Olsenella than for the control and butyrate groups, was observed. Regarding butyrate-producing bacteria, the chicory group had lower abundance of Roseburia but a numerically higher abundance of Megasphaera than the control group. Lower species richness was found in the chicory group than in the butyrate group. Moreover, beta diversity revealed that the chicory group formed a distinct cluster, whereas the control and butyrate groups clustered more closely to each other. The current data indicated that the skatole-reducing effect of chicory roots is neither via inhibition of cell apoptosis by butyrate nor via suppression of skatole-producing bacteria in the pig hindgut. Thus, the mode of action is most likely through increased microbial activity with a corresponding high incorporation of amino acids into bacterial biomass, and thereby suppressed conversion of tryptophan into skatole, as indicated in the literature.IMPORTANCE Castration is practiced to avoid the development of boar taint, which negatively affects the taste and odor of pork, and undesirable aggressive behavior. Due to animal welfare issues, alternatives to surgical castration are sought, though. Boar taint is a result of high concentrations of skatole and androstenone in back fat. Skatole is produced by microbial fermentation in the large intestine, and therefore, its production can be influenced by manipulation of the microbiota. Highly fermentable dietary fiber reduces skatole production. However, various theories have been proposed to explain the mode of action. In order to search for other alternatives, more efficient or less expensive, to reduce skatole via feeding, it is important to elucidate the mechanism behind the observed effect of highly fermentable dietary fiber on skatole. Our results indicate that highly fermentable dietary fiber does not affect skatole production by reducing the number of skatole-producing bacteria or stimulating butyrate production in the large intestine.


Assuntos
Bactérias/metabolismo , Butiratos/metabolismo , Cichorium intybus/metabolismo , Microbioma Gastrointestinal , Raízes de Plantas/metabolismo , Escatol/metabolismo , Suínos/metabolismo , Ração Animal/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Cichorium intybus/química , Fezes/química , Masculino , Raízes de Plantas/química , Suínos/crescimento & desenvolvimento , Suínos/microbiologia
19.
Crit Rev Food Sci Nutr ; 59(1): 1-13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28799777

RESUMO

Inulin as a heterogeneous blend of fructose polymers is diversely found in nature primarily as storage carbohydrates in plants. Besides, inulin is believed to induce certain techno-functional and associated properties in food systems. Inulin owing to its foam forming ability has been successfully used as fat replacer in quite a wide range of products as dairy and baked products. Furthermore, it is known to impart certain nutritional and therapeutic benefits that extend apart to improve health and reduce the risk of many lifestyle related diseases. Additionally, as a functional ingredient, Inulin has been adopted in various efficacy studies involving animal and human studies to function as a prebiotic, in promoting good digestive health, influencing lipid metabolism and has some beneficial roles in ensuring optimum levels of glucose and insulin. This review article is an attempt to present a comprehensive overview on both techno-functional and therapeutic potential of inulin.


Assuntos
Alimento Funcional/análise , Inulina/química , Inulina/metabolismo , Animais , Tecnologia de Alimentos , Humanos , Valor Nutritivo , Plantas Comestíveis/química
20.
Int J Vitam Nutr Res ; 89(5-6): 293-302, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31017556

RESUMO

In an attempt to investigate new strategies aimed at reducing risk factors of non-alcoholic fatty liver disease (NAFLD), effects of turmeric (Curcuma longa L.) and chicory seed (Cichorium intybus L.) supplementation was evaluated in these patients. In this double-blind, randomized, controlled clinical trial, 92 patients with NAFLD aged 20-60 year with body mass index (BMI) ranged 24.9-40 kg/m2 was randomly assigned to 4 groups as follows. 1) Turmeric supplementation (3 g/d) (n = 23, TUR); 2) Chicory seed supplementation (infused 9 g/d (4.5 g /100mL)) (n = 23, CHI); 3) Turmeric and chicory seed supplementation (3 g/d turmeric + infused 9 g/d chicory seed (n = 23, TUR + CHI); 4) Placebo (n = 23, PLA). All intervention periods were 12 weeks. Fasting blood samples, anthropometric measurements, dietary records and physical activity were collected at baseline and at the end of the trial. Significant decreases were observed in BMI and waist circumference (WC) of subjects in CHI and TUR + CHI groups, compared with PLA group (p < 0.05). Combination of turmeric and chicory seed significantly decreased serum alkaline phosphatase level (p < 0.05). Serum levels of HDL-C increased considerably in TUR and TUR + CHI groups (p < 0.05 vs. placebo). Turmeric supplementation alone and plus chicory seed led to significant reduction in serum levels of TG/HDL-C and LDL-C/HDL-C ratio in TUR and TUR + CHI groups in comparison with placebo (p < 0.05). In conclusion, turmeric and chicory seed supplementation can be significantly useful in management of NAFLD risk factors.


Assuntos
Cichorium intybus , Curcuma , Hepatopatia Gordurosa não Alcoólica , Adulto , Método Duplo-Cego , Humanos , Lipídeos , Pessoa de Meia-Idade , Obesidade , Sementes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA