Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
BMC Genomics ; 25(1): 286, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500030

RESUMO

BACKGROUND: Encystment is an important survival strategy extensively employed by microbial organisms to survive unfavorable conditions. Single-celled ciliated protists (ciliates) are popular model eukaryotes for studying encystment, whereby these cells degenerate their ciliary structures and develop cyst walls, then reverse the process under more favorable conditions. However, to date, the evolutionary basis and mechanism for encystment in ciliates is largely unknown. With the rapid development of high-throughput sequencing technologies, genome sequencing and comparative genomics of ciliates have become effective methods to provide insights into above questions. RESULTS: Here, we profiled the MAC genome of Pseudourostyla cristata, a model hypotrich ciliate for encystment studies. Like other hypotrich MAC genomes, the P. cristata MAC genome is extremely fragmented with a single gene on most chromosomes, and encodes introns that are generally small and lack a conserved branch point for pre-mRNA splicing. Gene family expansion analyses indicate that multiple gene families involved in the encystment are expanded during the evolution of P. cristata. Furthermore, genomic comparisons with other five representative hypotrichs indicate that gene families of phosphorelay sensor kinase, which play a role in the two-component signal transduction system that is related to encystment, show significant expansion among all six hypotrichs. Additionally, cyst wall-related chitin synthase genes have experienced structural changes that increase them from single-exon to multi-exon genes during evolution. These genomic features potentially promote the encystment in hypotrichs and enhance their ability to survive in adverse environments during evolution. CONCLUSIONS: We systematically investigated the genomic structure of hypotrichs and key evolutionary phenomenon, gene family expansion, for encystment promotion in ciliates. In summary, our results provided insights into the evolutionary mechanism of encystment in ciliates.


Assuntos
Cilióforos , Cistos , Humanos , Genômica , Mapeamento Cromossômico , Transdução de Sinais , Cilióforos/genética
2.
Fungal Genet Biol ; 172: 103893, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657898

RESUMO

Chitin is an essential structural component of fungal cell walls composed of transmembrane proteins called chitin synthases (CHSs), which have a large range of reported effects in ascomycetes; however, are poorly understood in agaricomycetes. In this study, evolutionary and molecular genetic analyses of chs genes were conducted using genomic information from nine ascomycete and six basidiomycete species. The results support the existence of seven previously classified chs clades and the discovery of three novel basidiomycete-specific clades (BI-BIII). The agaricomycete fungus Pleurotus ostreatus was observed to have nine putative chs genes, four of which were basidiomycete-specific. Three of these basidiomycete specific genes were disrupted in the P. ostreatus 20b strain (ku80 disruptant) through homologous recombination and transformants were obtained (Δchsb2, Δchsb3, and Δchsb4). Despite numerous transformations Δchsb1 was unobtainable, suggesting disruption of this gene causes a crucial negative effect in P. ostreatus. Disruption of these chsb2-4 genes caused sparser mycelia with rougher surfaces and shorter aerial hyphae. They also caused increased sensitivity to cell wall and membrane stress, thinner cell walls, and overexpression of other chitin and glucan synthases. These genes have distinct roles in the structural formation of aerial hyphae and cell walls, which are important for understanding basidiomycete evolution in filamentous fungi.


Assuntos
Quitina Sintase , Quitina , Proteínas Fúngicas , Filogenia , Pleurotus , Quitina Sintase/genética , Pleurotus/genética , Pleurotus/enzimologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Quitina/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Evolução Molecular , Basidiomycota/genética , Basidiomycota/enzimologia
3.
Mol Phylogenet Evol ; 201: 108192, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39255869

RESUMO

Chitin-synthase (CHS) is found in most eukaryotes and has a complex evolutionary history. Research into CHS has mainly been in the context of biomineralization of mollusc shells an area of high interest due to the consequences of ocean acidification. Exploration of CHS at the genomic level in molluscs, the evolution of isoforms, their tissue distribution, and response to environmental challenges are largely unknown. Exploiting the extensive molecular resources for mollusc species it is revealed that bivalves possess the largest number of CHS genes (12-22) reported to date in eukaryotes. The evolutionary tree constructed at the class level of molluscs indicates four CHS Type II isoforms (A-D) probably existed in the most recent common ancestor, and Type II-A (Type II-A-1/Type II-A-2) and Type II-C (Type II-C-1/Type II-C-2) underwent further differentiation. Non-specific loss of CHS isoforms occurred at the class level, and in some Type II (B-D groups) isoforms the myosin head domain, which is associated with shell formation, was not preserved and highly species-specific tissue expression of CHS isoforms occurred. These observations strongly support the idea of CHS functional diversification with shell biomineralization being one of several important functions. Analysis of transcriptome data uncovered the species-specific potential of CHS isoforms in shell formation and a species-specific response to ocean acidification (OA). The impact of OA was not CHS isoform-dependent although in Mytilus, Type I-B and Type II-D gene expression was down-regulated in both M. galloprovincialis and M. coruscus. In summary, during CHS evolution the gene family expanded in bivalves generating a large diversity of isoforms with different structures and with a ubiquitous tissue distribution suggesting that chitin is involved in many biological functions. These findings provide insight into CHS evolution in molluscs and lay the foundation for research into their function and response to environmental changes.

4.
Arch Insect Biochem Physiol ; 116(4): e22142, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39166355

RESUMO

The invasive species Aedes albopictus is a major vector of several arboviruses. The global spread of this species seriously threatens human health. Insecticide resistance is an increasing problem worldwide that limits the efficacy of mosquito control. As the major structural component of cuticles, chitin is indispensable to insects. Chitin synthase (CHS) is the enzyme that catalyzes the biosynthesis of chitin at the final step. In this study, two CHS genes of Aedes albopictus (AaCHS1 and AaCHS2) were identified and their basic characteristics were evaluated via bioinformatics analysis. The highest abundance of AaCHS1 transcripts was detected in pupae, whereas that of AaCHS2 transcripts was detected in females; the highest expression levels of AaCHS1 and AaCHS2 were found in the epidermis and the midgut of pupae, respectively. The survival and emergence rates of pupae were significantly reduced after the injection of double-stranded RNA of AaCHS1 or AaCHS2, indicating that both AaCHS1 and AaCHS2 play crucial roles in the pupal development. In addition, the chitin content of pupae was obviously decreased after the suppression of AaCHS1 expression by RNA interference (RNAi) treatment. This influence of the RNAi treatment was further supported by the reduced chitin thickness and weakened chitin fluorescence signal in the new cuticle. The midgut of pupae presented a reduced intensity of the chitin fluorescence signal along with RNAi treatment specific to AaCHS2 expression. The results of this study indicate that CHS genes may be suitable as molecular targets used for controlling mosquitoes.


Assuntos
Aedes , Quitina Sintase , Quitina , Pupa , Animais , Aedes/genética , Aedes/enzimologia , Aedes/crescimento & desenvolvimento , Aedes/metabolismo , Quitina Sintase/genética , Quitina Sintase/metabolismo , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Quitina/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Feminino , Interferência de RNA , Filogenia
5.
Ecotoxicol Environ Saf ; 274: 116187, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460404

RESUMO

Due to the adverse environmental impacts of toxic heavy metal-based antifoulants, the screening of environmentally friendly antifoulants has become important for the development of marine antifouling technology. Compared with the traditional lengthy and costly screening method, computer-aided drug design (CADD) offers a promising and efficient solution that can accelerate the screening process of green antifoulants. In this study, we selected barnacle chitin synthase (CHS, an important enzyme for barnacle settlement and development) as the target protein for docking screening. Three CHS genes were identified in the barnacle Amphibalanus amphitrite, and their encoded proteins were found to share a conserved glycosyltransferase domain. Molecular docking of 31,561 marine natural products with AaCHSs revealed that zoanthamine alkaloids had the best binding affinity (-11.8 to -12.6 kcal/mol) to AaCHSs. Considering that the low abundance of zoanthamine alkaloids in marine organisms would limit their application as antifoulants, a marine fungal-derived natural product, mycoepoxydiene (MED), which has a similar chemical structure to zoanthamine alkaloids and the potential for large-scale production by fermentation, was selected and validated for stable binding to AaCHS2L2 using molecular docking and molecular dynamics simulations. Finally, the efficacy of MED in inhibiting cyprid settlement of A. amphitrite was confirmed by a bioassay that demonstrated an EC50 of 1.97 µg/mL, suggesting its potential as an antifoulant candidate. Our research confirmed the reliability of using AaCHSs as antifouling targets and has provided insights for the efficient discovery of green antifoulants by CADD.


Assuntos
Alcaloides , Incrustação Biológica , Thoracica , Animais , Quitina Sintase/genética , Quitina Sintase/metabolismo , Simulação de Acoplamento Molecular , Reprodutibilidade dos Testes , Incrustação Biológica/prevenção & controle , Alcaloides/farmacologia , Larva
6.
Pestic Biochem Physiol ; 199: 105798, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458668

RESUMO

Spiders, the major predatory enemies of insect pests in fields, are vulnerable to insecticides. In this study, we observed that the recommended dose of buprofezin delayed the molting of the pond wolf spider Pardosa pseudoannulata, although it had no lethal effect on the spiders. Since buprofezin is an insect chitin biosynthesis inhibitor, we identified two chitin synthase genes (PpCHS1 and PpCHS2) in P. pseudoannulata. Tissue-specific expression profiling showed that PpCHS1 was most highly expressed in cuticle. In contrast, PpCHS2 showed highest mRNA levels in the midgut and fat body. RNAi knockdown of PpCHS1 significantly delayed the molting of 12-days old spiderlings, whereas no significant effect on the molting was observed in the PpCHS2-silencing spiderlings. The expression of PpCHS1 was significantly suppressed in the spiderlings treated with buprofezin, but rescued by exogenous ecdysteroid ponasterone A (PA). Consistent with this result, the molting delay caused by buprofezin was also rescued by PA. The results revealed that buprofezin delayed the molting of spiders by suppressing PpCHS1 expression, which will benefit the protection of P. pseudoannulate and related spider species.


Assuntos
Animais Peçonhentos , Quitina Sintase , Aranhas , Tiadiazinas , Animais , Quitina Sintase/genética , Quitina Sintase/metabolismo , Muda/genética , Insetos , Aranhas/genética , Aranhas/metabolismo , Quitina/metabolismo
7.
Pestic Biochem Physiol ; 202: 105953, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879307

RESUMO

The brown planthopper (Nilaparvata lugens) is a major destructive rice pest in Asia. High levels of insecticide resistance have been frequently reported, and the G932C mutation in the chitin synthase 1 (CHS1) gene has been found to mediate buprofezin resistance. However, there has been no direct evidence to confirm the functional significance of the single G932C substitution mutation leading to buprofezin resistance in N. lugens. Here, we successfully constructed a knock-in homozygous strain (Nl-G932C) of N. lugens using CRISPR/Cas9 coupled with homology-directed repair (HDR). Compared with the background strain susceptible to buprofezin (Nl-SS), the knock-in strain (Nl-G932C) showed a 94.9-fold resistance to buprofezin. Furthermore, resistant strains (Nl-932C) isolated from the field exhibited a 2078.8-fold resistance to buprofezin, indicating that there are other mechanisms contributing to buprofezin resistance in the field. Inheritance analysis showed that the resistance trait is incomplete dominance. In addition, the Nl-G932C strain had a relative fitness of 0.33 with a substantially decreased survival rate, emergence rate, and fecundity. This study provided in vivo functional evidence for the causality of G932C substitution mutation of CHS1 with buprofezin resistance and valuable information for facilitating the development of resistance management strategies in N. lugens. This is the first example of using CRISPR/Cas9 gene-editing technology in a hemipteran insect to directly confirm the role of a candidate target site mutation in insecticide resistance.


Assuntos
Sistemas CRISPR-Cas , Quitina Sintase , Hemípteros , Resistência a Inseticidas , Inseticidas , Tiadiazinas , Animais , Hemípteros/genética , Resistência a Inseticidas/genética , Tiadiazinas/farmacologia , Quitina Sintase/genética , Inseticidas/farmacologia , Mutação , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Técnicas de Introdução de Genes , Feminino , Masculino
8.
Molecules ; 29(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39274997

RESUMO

By using a scaffold hopping/ring equivalent and intermediate derivatization strategies, a series of compounds of 2,5-diphenyl-1,3-oxazoline with substituent changes at the 5-phenyl position were prepared, and their acaricidal activity was studied. However, the synthesized 2,5-diphenyl-1,3-oxazolines showed lower activity against mite eggs and larvae compared to the 2,4-diphenyl-1,3-oxazolines with the same substituents. We speculate that there is a significant difference in the spatial extension direction of the substituents between the two skeletons of compounds, resulting in differences in their ability to bind to the potential target chitin synthase 1. This work is helpful in inferring the internal structure of chitin synthase binding pockets.


Assuntos
Acaricidas , Oxazóis , Acaricidas/química , Acaricidas/farmacologia , Acaricidas/síntese química , Animais , Oxazóis/química , Oxazóis/síntese química , Oxazóis/farmacologia , Desenho de Fármacos , Relação Estrutura-Atividade , Ácaros/efeitos dos fármacos , Estrutura Molecular , Larva/efeitos dos fármacos , Quitina Sintase/antagonistas & inibidores , Quitina Sintase/metabolismo
9.
Curr Genet ; 69(2-3): 175-188, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37071151

RESUMO

In fungi, the cell wall plays a crucial role in morphogenesis and response to stress from the external environment. Chitin is one of the main cell wall components in many filamentous fungi. In Aspergillus nidulans, a class III chitin synthase ChsB plays a pivotal role in hyphal extension and morphogenesis. However, little is known about post-translational modifications of ChsB and their functional impacts. In this study, we showed that ChsB is phosphorylated in vivo. We characterized strains that produce ChsB using stepwise truncations of its N-terminal disordered region or deletions of some residues in that region and demonstrated its involvement in ChsB abundance on the hyphal apical surface and in hyphal tip localization. Furthermore, we showed that some deletions in this region affected the phosphorylation states of ChsB, raising the possibility that these states are important for the localization of ChsB to the hyphal surface and the growth of A. nidulans. Our findings indicate that ChsB transport is regulated by its N-terminal disordered region.


Assuntos
Aspergillus nidulans , Aspergillus nidulans/genética , Hifas , Parede Celular/metabolismo , Quitina Sintase/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
10.
Chembiochem ; 24(16): e202300388, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37253095

RESUMO

Glycosyltransferases (GTs) are a large and diverse group of enzymes responsible for catalyzing the formation of a glycosidic bond between a donor molecule, usually a monosaccharide, and a wide range of acceptor molecules, thus, playing critical roles in various essential biological processes. Chitin and cellulose synthases are two inverting processive integral membrane GTs, belonging to the type-2 family involved in the biosynthesis of chitin and cellulose, respectively. Herein, we report that bacterial cellulose and chitin synthases share an E-D-D-ED-QRW-TK active site common motif that is spatially co-localized. This motif is conserved among distant bacterial evolutionary species despite their low amino acid sequence and structural similarities between them. This theoretical framework offers a new perspective to the current view that bacterial cellulose and chitin synthases are substrate specific and that chitin and cellulose are organism specific. It lays the ground for future in vivo and in silico experimental assessment of cellulose synthase catalytic promiscuity against uridine diphosphate N-acetylglucosamine and chitin synthase against uridine diphosphate glucose, respectively.


Assuntos
Celulose , Quitina Sintase , Quitina Sintase/genética , Quitina Sintase/química , Quitina Sintase/metabolismo , Domínio Catalítico , Sequência de Aminoácidos , Bactérias/metabolismo , Quitina
11.
Arch Insect Biochem Physiol ; 111(3): e21950, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35809232

RESUMO

Chitin is of great importance in the cuticle and inner cuticular linings of insects. Chitin synthases (CHSs), chitin deacetylases (CDAs), chitinases (CHTs), and ß-N-acetylhexosaminidases (HEXs) are important enzymes required for chitin metabolism, and play essential roles in development and metamorphosis. Although chitin metabolism genes have been well characterized in limited insects, the information in the yellow mealworm, Tenebrio molitor, a model insect, is presently still unavailable. With the help of bioinformatics, we identified 54 genes that encode putative chitin metabolism enzymes, including 2 CHSs, 10 CDAs, 32 CHTs, and 10 HEXs in the genome of T. molitor. All these genes have the conserved domains and motifs of their corresponding protein family. Phylogenetic analyses indicated that CHS genes were divided into two groups. CDA genes were clustered into five groups. CHT genes were phylogenetically grouped into 11 clades, among which 1 in the endo-ß-N-acetylglucosaminidases group and the others were classified in the glycoside hydrolase family 18 groups. HEX genes were assorted into six groups. Developmental and tissue-specific expression profiling indicated that the identified chitin metabolism genes showed dynamical expression patterns concurrent with specific instar during molting period, suggesting their significant roles in molting and development. They were predominantly expressed in different tissues or body parts, implying their functional specialization and diversity. The results provide important information for further clarifying their biological functions using the yellow mealworm as an ideal experimental insect.


Assuntos
Quitinases , Tenebrio , Animais , Quitina/metabolismo , Quitina Sintase/genética , Quitina Sintase/metabolismo , Quitinases/genética , Quitinases/metabolismo , Genômica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos/metabolismo , Filogenia , Tenebrio/genética , Tenebrio/metabolismo , Transcriptoma , beta-N-Acetil-Hexosaminidases/metabolismo
12.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293107

RESUMO

Chitin synthesis has attracted scientific interest for decades as an essential part of fungal biology and for its potential as a target for antifungal therapies. While this interest remains, three decades ago, pioneering molecular studies on chitin synthesis regulation identified the major chitin synthase in yeast, Chs3, as an authentic paradigm in the field of the intracellular trafficking of integral membrane proteins. Over the years, researchers have shown how the intracellular trafficking of Chs3 recapitulates all the steps in the intracellular trafficking of integral membrane proteins, from their synthesis in the endoplasmic reticulum to their degradation in the vacuole. This trafficking includes specific mechanisms for sorting in the trans-Golgi network, regulated endocytosis, and endosomal recycling at different levels. This review summarizes the work carried out on chitin synthesis regulation, mostly focusing on Chs3 as a molecular model to study the mechanisms involved in the control of the intracellular trafficking of proteins.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Quitina Sintase/genética , Quitina Sintase/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Antifúngicos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Quitina/metabolismo
13.
Glycobiology ; 31(8): 959-974, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-33978736

RESUMO

Elevated plasma levels of hyaluronic acid (HA) is a disease marker in liver pathology and other inflammatory disorders. Inhibition of HA synthesis with coumarin 4-methylumbelliferone (4MU) has a beneficial effect in animal models of fibrosis, inflammation, cancer and metabolic syndrome. 4MU is an active compound of approved choleretic drug hymecromone with low bioavailability and a broad spectrum of action. New, more specific and efficient inhibitors of hyaluronan synthases (HAS) are required. We have tested several newly synthesized coumarin compounds and commercial chitin synthesis inhibitors to inhibit HA production in cell culture assay. Coumarin derivative compound VII (10'-methyl-6'-phenyl-3'H-spiro[piperidine-4,2'-pyrano[3,2-g]chromene]-4',8'-dione) demonstrated inhibition of HA secretion by NIH3T3 cells with the half-maximal inhibitory concentration (IC50) = 1.69 ± 0.75 µΜ superior to 4MU (IC50 = 8.68 ± 1.6 µΜ). Inhibitors of chitin synthesis, etoxazole, buprofezin, triflumuron, reduced HA deposition with IC50 of 4.21 ± 3.82 µΜ, 1.24 ± 0.87 µΜ and 1.48 ± 1.44 µΜ, respectively. Etoxazole reduced HA production and prevented collagen fibre formation in the CCl4 liver fibrosis model in mice similar to 4MU. Bioinformatics analysis revealed homology between chitin synthases and HAS enzymes, particularly in the pore-forming domain, containing the proposed site for etoxazole binding.


Assuntos
Ácido Hialurônico , Himecromona , Animais , Quitina , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Himecromona/farmacologia , Camundongos , Células NIH 3T3
14.
Mar Drugs ; 19(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804177

RESUMO

Chitin is among the most important components of the crustacean cuticular exoskeleton and intestinal peritrophic matrix. With the progress of genomics and sequencing technology, a large number of gene sequences related to chitin metabolism have been deposited in the GenBank database in recent years. Here, we summarized the genes and pathways associated with the biosynthesis and degradation of chitins in crustaceans based on genomic analyses. We found that chitin biosynthesis genes typically occur in single or two copies, whereas chitin degradation genes are all multiple copies. Moreover, the chitinase genes are significantly expanded in most crustacean genomes. The gene structure and expression pattern of these genes are similar to those of insects, albeit with some specific characteristics. Additionally, the potential applications of the chitin metabolism genes in molting regulation and immune defense, as well as industrial chitin degradation and production, are also summarized in this review.


Assuntos
Quitina/biossíntese , Quitinases/genética , Crustáceos/metabolismo , Animais , Quitina/genética , Quitina/metabolismo , Crustáceos/genética , Genômica , Muda/genética
15.
Pestic Biochem Physiol ; 178: 104934, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34446203

RESUMO

Chitin synthase (CHS) plays a critical role in chitin synthesis and excretion. In most insects, CHSs have been segregated into 1 and 2 classes. CHS1 is responsible for chitin production in the ectodermally-derived epidermal cells. CHS2 is dedicated to chitin biosynthesis in the midgut peritrophic matrix (PM). Henosepilachna vigintioctopunctata is a serious pest of Solanaceae and Cucurbitaceae plants. In this study, we identified HvCHS1 and HvCHS2. We found that HvCHS1 was abundantly transcribed in the larval tracheae and epidermis, whereas HvCHS2 was mainly expressed in the guts. Escherichia coli HT115 expressed double stranded RNAs targeting HvCHS1 and HvCHS2 (dsCHS1 and dsCHS2) were used to immerse potato foliage and the treated leaves were provided to the newly-molted fourth- and third-instar larvae. Ingestion of dsCHS1 by the fourth-instar larvae significantly diminished the target mRNA level and had slight influence on the expression of HvCHS2. In contrast, consumption of dsCHS2 significantly lowered the target mRNA level but triggered the transcription of HvCHS1. Knockdown of HvCHS1, rather than HvCHS2, arrested larval development and impaired larva-pupa-adult transition. A large proportion of HvCHS1 hypomorphs became stunting prepupae, deformed pupae or misshapen adults. Moreover, knockdown of HvCHS1 damaged gut integrity, decreased cuticle thickness, and delayed the formation of newly-generated cuticle layer during ecdysis. Furthermore, depletion of HvCHS1 inhibited the development of trachea system and thinned tracheal taenidia. Ingestion of dsCHS1 at the third-instar stage caused similar but severe negative effects. Our results demonstrated that HvCHS1 is responsible for chitin biosynthesis during ecdysis. Moreover, HvCHS1 is a potential amenable target gene and young larvae are more susceptible to dsRNA.


Assuntos
Quitina Sintase , Besouros , Animais , Quitina/metabolismo , Quitina Sintase/genética , Quitina Sintase/metabolismo , Besouros/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Muda/genética , Pupa/metabolismo , Interferência de RNA
16.
Traffic ; 19(4): 285-295, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29405545

RESUMO

The polytopic yeast protein Chs3 (chitin synthase III) relies on a dedicated membrane-localized chaperone, Chs7, for its folding and expression at the cell surface. In the absence of Chs7, Chs3 forms high molecular weight aggregates and is retained in the endoplasmic reticulum (ER). Chs7 was reported to be an ER resident protein, but its role in Chs3 folding and transport was not well characterized. Here, we show that Chs7 itself exits the ER and localizes with Chs3 at the bud neck and intracellular compartments. We identified mutations in the Chs7 C-terminal cytosolic domain that do not affect its chaperone function, but cause it to dissociate from Chs3 at a post-ER transport step. Mutations that prevent the continued association of Chs7 with Chs3 do not block delivery of Chs3 to the cell surface, but dramatically reduce its catalytic activity. This suggests that Chs7 engages in functionally distinct interactions with Chs3 to first promote its folding and ER exit, and subsequently to regulate its activity at the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Quitina Sintase/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Quitina Sintase/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Eur J Immunol ; 49(6): 918-927, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30903663

RESUMO

Aspergillus fumigatus is an important cause of pulmonary and systemic infections in immune compromised individuals, and of corneal ulcers and blindness in immune competent patients. To examine the role of chitin synthases in Aspergillus corneal infection, we analyzed Aspergillus mutants of chitin synthase family 1 and family 2, and found that compared with the parent strain, the quadruple mutants from both families were more readily killed by neutrophils in vitro, and that both also exhibited impaired hyphal growth in the cornea. Further, inhibition of chitin synthases using Nikkomycin Z enhanced neutrophil killing in vitro and in vivo in a murine model of A. fumigatus corneal infection. Acidic mammalian chitinase (AMCase) is mostly produced by macrophages in asthmatic lungs; however, we now demonstrate that neutrophils are a major source of AMCase, which inhibits hyphal growth. In A. fumigatus corneal infection, neutrophils are the major source of AMCase, and addition of AMCase inhibitors or adoptive transfer of neutrophils from AMCase-/- mice resulted in impaired hyphal killing. Together, these findings identify chitin synthases as important fungal virulence factors and neutrophil-derived AMCase as an essential mediator of host defense.


Assuntos
Aspergilose/imunologia , Quitina Sintase/imunologia , Quitinases/metabolismo , Ceratite/imunologia , Neutrófilos/imunologia , Animais , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/patogenicidade , Quitina Sintase/biossíntese , Humanos , Ceratite/metabolismo , Ceratite/microbiologia , Camundongos Endogâmicos C57BL , Neutrófilos/enzimologia , Virulência
18.
Mol Phylogenet Evol ; 143: 106691, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31759175

RESUMO

Chitin is a very important and widely-used biopolymer in fungi and lower metazoans, but mysteriously disappears in mammals. Recent studies reveal that at least lower vertebrates have chitin synthases (CS) and use them to synthesize endogenous chitin. Amphioxus, a basal chordate, therefore becomes critical to understand the evolution of CS, as it occupies the transitional position from invertebrates to vertebrates, and is considered as a good proxy to the chordate ancestor. Here, by exploiting multiple genome assemblies, high-depth RNA-seq data and synteny relations, we identify 11-12 CS genes for each amphioxus species. It represents the largest CS gene pool ever found in eukaryotes so far. As comparison, most metazoans have one or two CSs. Amphioxus is the only chordate that has both the very ancient type-I CS family and the more broadly distributed type-II CS family. Specifically, amphioxus has only one type-II CS but 10-11 type-I CSs, which means that amphioxus is the only metazoan with a greatly expanded type-I CS family. Further analysis suggests that the chordate ancestor have at least one type-II CS and an expanded of type-I CS family. We hypothesize that: these ancient CSs are mostly retained in amphioxus; but the whole type-I CS family was lost in urochordates and vertebrates; the type-II CS was later duplicated into two lineages in vertebrates and followed by stochastic losses, till all type-II CSs were eventually lost in birds and mammals. Finally, our expression profiling and preliminary gene knockout analysis suggest that amphioxus CSs could have highly diverse but mildly overlapping functions in various tissues and organs. Taken together, these findings not only provide insights into the evolution of chordate CSs, lay a foundation for further functional study of the chordate CSs. After all, it is mysterious that our chordate ancestor needed so many isoenzymes for chitin formation.


Assuntos
Quitina Sintase/classificação , Evolução Molecular , Anfioxos/enzimologia , Animais , Quitina/metabolismo , Quitina Sintase/genética , Funções Verossimilhança , Filogenia
19.
J Exp Biol ; 223(Pt 8)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32098889

RESUMO

Eisenia fetida, the common vermicomposting earthworm, shows robust regeneration of posterior segments removed by amputation. During the period of regeneration, the newly formed tissue initially contains only undifferentiated cells but subsequently differentiates into a variety of cell types including muscle, nerve and vasculature. Transcriptomics analysis, reported previously, provided a number of candidate non-coding RNAs that were induced during regeneration. We found that one such long non-coding RNA (lncRNA) is expressed in the skin, only at the base of newly formed chaetae. The spatial organization and precise arrangement of the regenerating chaetae and the cells expressing the lncRNA on the ventral side clearly support a model wherein the regenerating tissue contains a zone of growth and cell division at the tip and a zone of differentiation at the site of amputation. The temporal expression pattern of the lncRNA, named Neev, closely resembled the pattern of chitin synthase genes, implicated in chaetae formation. We found that the lncRNA has 49 sites for binding a set of four microRNAs (miRNAs) while the chitin synthase 8 mRNA has 478 sites. The over-representation of shared miRNA sites suggests that lncRNA Neev may act as a miRNA sponge to transiently de-repress chitin synthase 8 during formation of new chaetae in the regenerating segments of Eisenia fetida.


Assuntos
MicroRNAs , Oligoquetos , RNA Longo não Codificante , Animais , Perfilação da Expressão Gênica , Oligoquetos/genética , RNA Longo não Codificante/genética , RNA Mensageiro
20.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629944

RESUMO

Glyphodes pyloalis Walker (G. pyloalis) causes significant damage to mulberry every year, and we currently lack effective and environmentally friendly ways to control the pest. Chitin synthase (CHS) is a critical regulatory enzyme related to chitin biosynthesis, which plays a vital role in the growth and development of insects. The function of CHS in G. pyloalis, however, has not been studied. In this study, two chitin synthase genes (GpCHSA and GpCHSB) were screened from our previously created transcriptome database. The complete coding sequences of the two genes are 5,955 bp and 5,896 bp, respectively. Expression of GpCHSA and GpCHSB could be detected throughout all developmental stages. Relatively high expression levels of GpCHSA occurred in the head and integument and GpCHSB was most highly expressed in the midgut. Moreover, silencing of GpCHSA and GpCHSB using dsRNA reduced expression of downstream chitin metabolism pathway genes and resulted in abnormal development and wings stretching, but did not affect normal pupating of larvae. Furthermore, the inhibitor of chitin synthesis diflubenzuron (DFB) was used to further validate the RNAi result. DFB treatment significantly improved expression of GpCHSA, except GpCHSB, and their downstream genes, and also effected G. Pyloali molting at 48 h (62% mortality rate) and 72 h (90% mortality rate), respectively. These results show that GpCHSA and GpCHSB play critical roles in the development and wing stretching in G. pyloalis adults, indicating that the genes are attractive potential pest control targets.


Assuntos
Quitina Sintase/genética , Mariposas/genética , Animais , Quitina Sintase/metabolismo , Diflubenzuron , Controle de Insetos , Mariposas/enzimologia , Mariposas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA