Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 91: 117419, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487339

RESUMO

Multi-target drug discovery is one of the most active fields in the search for new drugs against Alzheimer's disease (AD). This is because the complexity of AD pathological network might be adequately tackled by multi-target-directed ligands (MTDLs) aimed at modulating simultaneously multiple targets of such a network. In a continuation of our efforts to develop MTDLs for AD, we have been focusing on the molecular hybridization of the acetylcholinesterase inhibitor tacrine with the aim of expanding its anti-AD profile. Herein, we manipulated the structure of a previously developed tacrine-quinone hybrid (1). We designed and synthesized a novel set of MTDLs (2-6) by replacing the naphthoquinone scaffold of 1 with that of 2,5,8-quinolinetrione. The most interesting hybrid 3 inhibited cholinesterase enzymes at nanomolar concentrations. In addition, 3 exerted antioxidant effects in menadione-induced oxidative stress of SH-SY5Y cells. Importantly, 3 also showed low hepatotoxicity and good anti-amyloid aggregation properties. Remarkably, we uncovered the potential of the quinolinetrione scaffold, as a novel anti-amyloid aggregation and antioxidant motif to be used in further anti-AD MTDL drug discovery endeavors.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Tacrina/farmacologia , Tacrina/química , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase , Ligantes , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Antioxidantes/farmacologia , Peptídeos beta-Amiloides
2.
Biotechnol Appl Biochem ; 70(2): 730-745, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35933706

RESUMO

In this study, we worked on anticolon cancer effects and anti-Alzheimer's disease with molecular docking studies. Hamamelitannin, flavokawain A, and triacetyl resveratrol compounds showed good inhibitory activities on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. The inhibition effects of flavokawain A, hamamelitannin, and triacetyl resveratrol on AChE and BuChE enzymes were determined spectrophotometrically conforming to Ellman. IC50 values of these enzymes were ranging between 0.95 ± 0.12 and 93.27 ± 8.14 nM for AChE and 5.71 ± 0.77 and 52.10 ± 8.41 nM for BuChE. The inhibitory activities of some chemical compounds such as flavokawain A, hamamelitannin, and triacetyl resveratrol were assessed by performing the molecular docking study in the presence of AChE and BuChE. Also, the features of the ligand-enzyme complex had value of -7.722 kcal/mol for flavokawain A against AChE and -5.530 kcal/mol against BuChE. The molecular docking calculations indicated the probable interactions and their characteristics at an atomic level. Due to the outcomes gained from docking, the affinity of the chemical compounds to the enzymes was considerable. In vitro cell viabilities of flavokawain A, hamamelitannin, and triacetyl resveratrol with various concentrations on SW620, DLD-1, HT29, HCT8, and HCT116 were investigated by MTT assay with Doxorubicin as the control compound.


Assuntos
Doença de Alzheimer , Neoplasias , Humanos , Butirilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Acetilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Resveratrol/farmacologia , Estrutura Molecular , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade
3.
J Biomol Struct Dyn ; 42(3): 1220-1236, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37671856

RESUMO

In this study, we researched the reactions of 5-(5-bromofuran-2-yl)-4-methyl-1,2,4-triazole-3-thiol and 5-thiophene-(3-ylmethyl)-4R-1,2,4-triazole-3-thiols with some halogen-containing compounds, a number of new compounds were synthesized (1.1-1.5 and 2.1-2.8). These compounds showed excellent to good inhibitory activities on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. For obtaining the effects of these compounds on AChE and BChE enzymes were determined spectrophotometrically according to Ellman. IC50 values of these enzymes were ranging between 1.63 and 17.68 nM for AChE and 8.71 and 84.02 nM for BChE. After, prostate cancer is the second leading cause of cancer-related mortality for men over the age of 65 in developed countries. Current treatment options remain limited in the treatment of advanced-stage prostate cancer leading to biochemical recurrence in almost 40% of the patients. Therefore, there is an urgent need for development of novel therapeutic tools for treatment of prostate cancer patients. In this study, we aimed at analyzing the potential of all compounds against prostate cancer cells. We found that, of the tested compounds, 2.1, 2.2 and 2.3 showed significant cytotoxic activities against PC3 prostate cancer cells, although their effect on the viability of normal prostate cells was limited. These findings suggest their selective targeting potential for prostate cancer cells and offer them as candidate therapeutic agents against prostate cancer. The inhibitory activities of some chemical compounds, such as (1.1-1.5 and 2.1-2.8) were assessed by performing the molecular docking study in the presence of AChE, BChE and prostate cancer protein. MM/GBSA methods are calculated binding free energy. Finally, ADME/T analysis was performed to examine the drug properties of the 13 studied molecules.Communicated by Ramaswamy H. Sarma.


Assuntos
Butirilcolinesterase , Neoplasias da Próstata , Triazóis , Humanos , Masculino , Butirilcolinesterase/metabolismo , Acetilcolinesterase/química , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Desenho de Fármacos , Neoplasias da Próstata/tratamento farmacológico , Relação Estrutura-Atividade , Estrutura Molecular
4.
Curr Pharm Des ; 25(18): 2108-2112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258059

RESUMO

BACKGROUND: The inhibition of cholinesterase enzymes is one of the promising strategies to manage several neurological disorders that include Alzheimer's disease (AD). MATERIAL AND METHODS: In the current article, we estimated the potential inhibition of acetyl cholinesterase (AChE) by phenserine using slightly modified Ellman assay. To find out the binding interactions of phenserine with the catalytic site of AChE, a molecular docking study was also performed. RESULTS: Phenserine was found to inhibit Electrophorus electricus AChE in a dose-dependent manner with an IC50 value of 0.013 µM. The kinetic analyses indicate that phenserine inhibits AChE in a mixed type manner (competitive and uncompetitive) with Ki values of 0.39 µmole/l and 0.21 µmole/l, respectively. On the other hand, Km and Vmax values were found to be 0.17 µM and 0.39 µM, respectively. The molecular docking studies indicate efficient binding of phenserine through 6 hydrogen bonds, 4 pi-alkyl interactions, and 1 pi-pi interaction within the AChE catalytic pocket. CONCLUSION: Results of our computational and kinetics studies indicated a mixed type inhibition by phenserine at AChE catalytic site.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Fisostigmina/análogos & derivados , Animais , Electrophorus , Cinética , Simulação de Acoplamento Molecular , Fisostigmina/farmacologia
5.
Future Med Chem ; 9(8): 715-721, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28504912

RESUMO

AIM: Due to the complex nature of Alzheimer's disease, there is a renewed search for multitarget directed drugs. RESULTS: This paper describes the synthesis and in vitro biological evaluation of six racemic 13-aryl-2,3,4,13-tetrahydro-1H,12H-benzo[6,7]chromeno[2,3-d]pyrido[1,2-a]pyrimidine-7,12,14-triones (1a-6a), and six racemic 15-aryl-8,9,10,11,12,15-hexahydro-14H-benzo[6',7']chromeno[2',3:4,5] pyr-imido [1,2-a]azepine-5,14,16-triones (1b-6b), showing antioxidant and cholinesterase inhibitory capacity. Among these compounds, 13-phenyl-2,3,4,13-tetrahydro-1H,12H-benzo[6,7]chromeno[2,3-d]pyrido[1,2-a]pyrimidine-7,12,14-trione (1a) is a nonhepatotoxic at 300 µmol/l dose concentration, and a selective EeAChE inhibitor showing good antioxidant power. CONCLUSION: A new family of racemic benzochromenopyrimidinetriones has been investigated for their potential use in the treatment of Alzheimer's disease.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Naftoquinonas/farmacologia , Doença de Alzheimer/metabolismo , Antioxidantes/síntese química , Antioxidantes/química , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Células Hep G2 , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Estrutura Molecular , Naftoquinonas/síntese química , Naftoquinonas/química , Relação Estrutura-Atividade
6.
Future Med Chem ; 9(8): 723-729, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28485637

RESUMO

AIM: Due to the multifactorial nature of Alzheimer's disease, there is an urgent search for new more efficient, multitarget-directed drugs. RESULTS: This paper describes the synthesis, antioxidant and in vitro biological evaluation of ten (benz)imidazopyridino tacrines (7-16), showing less toxicity than tacrine at high doses, and potent cholinesterase inhibitory capacity, in the low micromolar range. Among them, compound 10 is a nonhepatotoxic tacrine at 1000 mM, showing moderate, but totally selective electric eel acetylcholinesterase inhibition, whereas molecule 16 is twofold less toxic than tacrine at 1000 µM, showing moderate and almost equipotent inhibition for electric eel acetylcholinesterase and equine butyrylcholinesterase. CONCLUSION: (Benz)imidazopyridino tacrines (7-16) have been identified as a new and promising type of tacrines for the potential treatment of Alzheimer's disease.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Naftiridinas/farmacologia , Doença de Alzheimer/metabolismo , Antioxidantes/síntese química , Antioxidantes/química , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Naftiridinas/síntese química , Naftiridinas/química , Relação Estrutura-Atividade
7.
Fitoterapia ; 97: 261-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24924287

RESUMO

A triflavanone, Garcineflavanone A (1) and a biflavonol, Garcineflavonol A (2) have been isolated from the stem bark of Garcinia atroviridis (Clusiaceae), collected in Peninsular Malaysia. Their structures were established using one and two-dimensional NMR, UV, IR and mass spectrometry and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activity. Molecular docking studies of the isolated compounds were performed using docking procedure of AutoDock to disclose the binding interaction and orientation of these molecules into the active site gorge.


Assuntos
Inibidores da Colinesterase/isolamento & purificação , Flavanonas/isolamento & purificação , Flavonóis/isolamento & purificação , Garcinia/química , Inibidores da Colinesterase/química , Flavanonas/química , Flavonóis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Casca de Planta/química , Caules de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA