Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Ano de publicação
Intervalo de ano de publicação
1.
J Exp Bot ; 75(11): 3248-3258, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38477707

RESUMO

T-DNA transformation is prevalent in Arabidopsis research and has expanded to a broad range of crops and model plants. While major progress has been made in optimizing the Agrobacterium-mediated transformation process for various species, a variety of pitfalls associated with the T-DNA insertion may lead to the misinterpretation of T-DNA mutant analysis. Indeed, secondary mutagenesis either on the integration site or elsewhere in the genome, together with epigenetic interactions between T-DNA inserts or frequent genomic rearrangements, can be tricky to differentiate from the effect of the knockout of the gene of interest. These are mainly the case for genomic rearrangements that become balanced in filial generations without consequential phenotypical defects, which may be confusing particularly for studies that aim to investigate fertility and gametogenesis. As a cautionary note to the plant research community studying gametogenesis, we here report an overview of the consequences of T-DNA-induced secondary mutagenesis with emphasis on the genomic imbalance on gametogenesis. Additionally, we present a simple guideline to evaluate the T-DNA-mutagenized transgenic lines to decrease the risk of faulty analysis with minimal experimental effort.


Assuntos
DNA Bacteriano , DNA Bacteriano/genética , Mutagênese , Arabidopsis/genética , Plantas Geneticamente Modificadas/genética , Reprodução/genética
2.
BMC Pregnancy Childbirth ; 24(1): 86, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280990

RESUMO

BACKGROUND: Couples with balanced chromosome rearrangement (BCR) are at high risk of recurrent miscarriages or birth defects due to chromosomally abnormal embryos. This study aimed to provide real-world evidence of the euploidy rate of blastocysts from couples with BCR using preimplantation genetic testing (PGT) and to guide pretesting genetic counselling. METHODS: A continuous four-year PGT data from couples with BCR were retrospectively analyzed. Biopsied trophectoderm cells were amplified using whole genome amplification, and next-generation sequencing was performed to detect the chromosomal numerical and segmental aberrations. Clinical data and molecular genetic testing results were analyzed and compared among the subgroups. RESULTS: A total of 1571 PGT cycles with 5942 blastocysts were performed chromosomal numerical and segmental aberrations detection during the four years. Of them, 1034 PGT cycles with 4129 blastocysts for BCR couples were included; 68.96% (713/1034) PGT cycles had transferable euploid embryos. The total euploidy rate of blastocysts in couples carrying the BCR was 35.29% (1457/4129). Couples with complex BCR had euploid blastocyst rates similar to those of couples with non-complex BCR (46.15% vs. 35.18%, P > 0.05). Chromosome inversion had the highest chance of obtaining a euploid blastocyst (57.27%), followed by Robertsonian translocation (RobT) (46.06%), and the lowest in reciprocal translocation (RecT) (30.11%) (P < 0.05). Couples with males carrying RobT had higher rates of euploid embryo both in each PGT cycles and total blastocysts than female RobT carriers did, despite the female age in male RobT is significant older than those with female RobT (P < 0.05). The proportions of non-carrier embryos were 52.78% (95/180) and 47.06% (40/85) in euploid blastocysts from couples with RecT and RobT, respectively (P > 0.05). RecT had the highest proportion of blastocysts with translocated chromosome-associated abnormalities (74.23%, 1527/2057), followed by RobT (54.60%, 273/500) and inversion (30.85%, 29/94) (P < 0.05). CONCLUSIONS: In couples carrying BCR, the total euploidy rate of blastocysts was 35.29%, with the highest in inversion, followed by RobT and RecT. Even in couples carrying complex BCR, the probability of having a transferable blastocyst was 46.15%. Among the euploid blastocysts, the non-carrier ratios in RecT and RobT were 52.78% and 47.06%, respectively. RecT had the highest proportion of blastocysts with translocated chromosome-associated abnormalities.


Assuntos
Diagnóstico Pré-Implantação , Gravidez , Masculino , Humanos , Feminino , Estudos Retrospectivos , Diagnóstico Pré-Implantação/métodos , Aneuploidia , Testes Genéticos/métodos , Aberrações Cromossômicas , Cromossomos
3.
Mol Cytogenet ; 17(1): 7, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570848

RESUMO

BACKGROUND: Premature ovarian insufficiency (POI) is a clinical condition characterized by ovarian dysfunction in women under 40. The etiology of most POI cases remains unidentified and is believed to be multifactorial, including factors such as autoimmunity, metabolism, infection, and genetics. POI exhibits significant genetic heterogeneity, and it can result from chromosomal abnormalities and monogenic defects. CASE PRESENTATION: The study participant, a 33-year-old woman, presented with a history of irregular menstruation that commenced two years ago, progressing to prolonged menstrual episodes and eventual cessation. The participant exhibits a rearrangement of the X chromosome, characterized by heterozygosity duplication on the long arm and heterozygosity deletion on the short arm by whole exome sequencing(WES) combined with cell chromosome detection. CONCLUSIONS: This study expands the spectrum of mutations associated with POI resulting from X chromosomal abnormalities. WES-Copy number variation analysis, in conjunction with chromosome karyotype analysis and other detection techniques, can provide a more comprehensive understanding of the genetic landscape underlying complex single or multi-system diseases.

4.
Plants (Basel) ; 13(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256761

RESUMO

Narcissus poeticus L. (Amaryllidaceae), a facultative serpentinophyte, is a highly variable species and particularly important ancestor of cultivated daffodils, but is rarely studied in field populations. This study, based on natural populations in the Balkans, focused on karyotype variability, genome size, ploidy and the presence of B chromosomes. Thirteen native populations from different environmental and soil conditions were collected and analyzed using flow cytometry to estimate nuclear genome size, fluorescence in situ hybridization (FISH) for physical mapping of rDNA, fluorochrome labeling (chromomycin and Hoechst) for heterochromatin organization and silver nitrate staining of nucleoli for determining rRNA gene activity. The organization of rDNA and natural triploids is reported here for the first time. The presence of individuals with B chromosomes (in 9/13 populations) and chromosomal rearrangements was also detected. The observed B chromosome showed three different morphotypes. The most frequent submetacentric type showed four different patterns, mainly with active ribosomal genes. The results obtained show that N. poeticus has a dynamic genome with variable genome size due to the presence of polyploidy, B chromosomes and chromosomal rearrangements. It is hypothesized that the observed changes reflect the response of the genome to different environmental conditions, where individuals with B chromosomes appear to have certain adaptive advantages.

5.
Plant Commun ; : 100944, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733080

RESUMO

The Caesalpinioideae subfamily contains many well-known trees that are important for economic sustainability and human health, but a lack of genomic resources has hindered their breeding and utilization. Here, we present chromosome-level reference genomes for the two food and industrial trees Gleditsia sinensis (921 Mb) and Biancaea sappan (872 Mb), the three shade and ornamental trees Albizia julibrissin (705 Mb), Delonix regia (580 Mb), and Acacia confusa (566 Mb), and the two pioneer and hedgerow trees Leucaena leucocephala (1338 Mb) and Mimosa bimucronata (641 Mb). Phylogenetic inference shows that the mimosoid clade has a much higher evolutionary rate than the other clades of Caesalpinioideae. Macrosynteny comparison suggests that the fusion and breakage of an unstable chromosome are responsible for the difference in basic chromosome number (13 or 14) for Caesalpinioideae. After an ancient whole-genome duplication (WGD) shared by all Caesalpinioideae species (CWGD, ∼72.0 million years ago [MYA]), there were two recent successive WGD events, LWGD-1 (16.2-19.5 MYA) and LWGD-2 (7.1-9.5 MYA), in L. leucocephala. Thereafter, ∼40% gene loss and genome-size contraction have occurred during the diploidization process in L. leucocephala. To investigate secondary metabolites, we identified all gene copies involved in mimosine metabolism in these species and found that the abundance of mimosine biosynthesis genes in L. leucocephala largely explains its high mimosine production. We also identified the set of all potential genes involved in triterpenoid saponin biosynthesis in G. sinensis, which is more complete than that based on previous transcriptome-derived unigenes. Our results and genomic resources will facilitate biological studies of Caesalpinioideae and promote the utilization of valuable secondary metabolites.

6.
Braz. arch. biol. technol ; 61: e18170623, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951519

RESUMO

ABSTRACT The Tc1/Mariner sequence was isolated and mapped on chromosomes aiming to verify the association of this transposable element (TE) and chromosomal rearrangements in Rineloricaria. Cytogenetic analysis showed that Tc1/Mariner does not co-localize with chromosomal fusion points, in addition the analysis revealed intense molecular degeneration in its DNA sequence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA