RESUMO
Oral squamous cell carcinoma (OSCC) is a type of tumour found in the cavity that is characterized by differentiation and metastasis to the lymph nodes. Although diagnosis strategy and clinical treatment have recently improved, the outcomes for OSCC patients remain unsatisfactory. This study verified the characteristics of circPUM1 in OSCC cells, subsequently generating dysregulated circPUM1 cell models, showing that circPUM1 promoted chemoresistance and natural killer (NK) cell toxicity. Furthermore, the transcription factor SP2 regulated the expression of circPUM1 in OSCC cells, circPUM1 acted as a molecular sponge for miR-770-5p. Moreover, Nucleosome Assembly Protein 1 Like 1 (NAP1L1) is a downstream target for miR-770-5p and essential for circPUM1-mediated cisplatin resistance and NK cell cytotoxicity in OSCC cells. The network composed of SP2, circPUM1, miR-770-5p and NAP1L1 in OSCC appears to be a promising avenue for the development of novel targets for diagnosing or treating OSCC.
RESUMO
Circular RNAs (circRNAs) monitor the development of clear cell renal cell carcinoma (ccRCC). However, the role of CircPUM1 in ccRCC malignancy is not studied. We estimated the mechanism of CircPUM1 in ccRCC progression in this study. CircPUM1 expression in ccRCC tissues and cells was detected. The expression of CircPUM1 was interfered in ccRCC cells, and its effects on the growth of ccRCC cells were studied. Nuclear/cytosol fractionation assay was performed for the location of CircPUM1, and the downstream miR, gene, and pathway involved in ccRCC progression were explored through gain- and loss-of-function experiments. CircPUM1 was highly expressed in ccRCC samples and cells. Inhibition of CircPUM1 prevented the growth ccRCC cells. CircPUM1 was localized in the cytoplasm and bound to miR-340-5p. Overexpression of miR-340-5p inhibited the growth of ccRCC cells. miR-340-5p targeted FABP7, and CircPUM1 induced FABP7 expression and the activation of MEK/ERK pathway through competitively binding to miR-340-5p. Overexpression of FABP7 attenuated the inhibitory effect of CircPUM1 silencing on the growth of ccRCC cells. Overall, CircPUM1 upregulates FABP7 expression by competitively binding to miR-340-5p, and then activates the MEK/ERK pathway, thus promoting ccRCC progression.
Assuntos
Carcinoma de Células Renais , Proteína 7 de Ligação a Ácidos Graxos , Neoplasias Renais , MicroRNAs , RNA Circular , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína 7 de Ligação a Ácidos Graxos/genética , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , RNA Circular/genética , Proteínas de Ligação a RNA/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
OBJECTIVE: To investigate the effect of circular RNA pumilio RNA binding family member (circPUM) 1 on radioresistance of cervical cancer cells and its mechanism. METHODS: Cancer tissue and corresponding paricancerous tissue samples were collected from 47 patients with cervical cancer who underwent surgical treatment in the Second Affiliated Hospital of Zhengzhou University from August 2019 to February 2020. The expression levels of circPUM1 and miR-144-3p in cervical cancer tissues and paricancerous tissues were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The Pearson method was used to analyze the correlation between circPUM1 and miR-144-3p expression in cervical cancer tissues. circPUM1 lentiviral short hairpin RNA (sh-circPUM1) and its negative control (sh-NC), miR-144-3p oligonucleotide mimic (miR-144-3p mimic) and its negative control (miR-NC), sh-circPUM1 and miR-144-3p inhibitor (anti-miR), and sh-circPUM1 and anti-miR negative control (anti-miR-NC) were transfected into human cervical carcinoma SiHa cells, respectively, and the cells were irradiated with 0 and 4â Gy irradiation doses. Cell proliferation, colony formation, apoptosis, migration and invasion were detected by cell counting kit (CCK-8 method), plate colony formation assay, flow cytometry and Transwell assay, respectively. The protein expression of cleaved-caspase3 was detected by Western blotting. The targeting relationship between circPUM1 and miR-144-3p was analyzed with Starbase platform. RESULTS: Compared with adjacent tissue, the expression of circPUM1 in cervical cancer tissue was significantly increased ( P<0.05), while the expression of miR-144-3p was decreased ( P<0.05). The circPUM1 was negatively correlated with miR-144-3p ( r=-0.9282, P<0.01). After transfection with sh-circPUM1 or miR-144-3p mimic, the inhibition rate of cell proliferation, the rate of apoptosis and the expression level of cleaved-caspase3 protein increased (all P<0.05), while the number of colonies formed, migrated and invaded cells decreased (all P<0.05). CircPUM1 could targeted to miR-144-3p. After co-transfection of sh-circPUM1 and anti-miR, the inhibition rate of cell proliferation, the rate of apoptosis and the expression level of cleaved-caspase3 protein significantly decreased (all P<0.05), while the number of colonies formed, migrated and invaded cells increased (all P<0.05). CONCLUSION: Silencing circPUM1 may inhibit the proliferation, colony formation, migration, invasion and induce apoptosis of cervical cancer cells through targeting and regulating the expression of miR-144-3p.
Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Antagomirs/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Interferente Pequeno , Neoplasias do Colo do Útero/genéticaRESUMO
Hepatocellular carcinoma (HCC) is a common disease with a significant mortality, and there is no effective treatment for advanced patients. Growing evidence indicates that circRNAs are closely related to HCC progression, may be used as biomarkers and targets for the diagnosis and treatment of HCC. Recent researches have shown that circPUM1 may play an oncogene role in a variety of human cancers, but its role in HCC development has not been reported. Our study found that circPUM1 could promote the proliferation, migration and invasion of HCC cells in vitro. In addition, in vivo studies showed that circPUM1 could increase the development of HCC tumours and regulate the expression of EMT-related proteins. Furthermore, we demonstrated that circPUM1 could promote the development of HCC by up-regulating the expression of MAP3K2 via sponging miR-1208. Our study suggested that circPUM1 may be a potential therapeutic target for HCC.
Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , MAP Quinase Quinase Quinase 2/metabolismo , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Western Blotting , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Hepáticas/genética , MAP Quinase Quinase Quinase 2/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Proteínas de Ligação a RNA/genéticaRESUMO
CircRNAs are reported to be implicated in the development of lung cancer. This study focused on assessing the expression, functions and molecular mechanism of circPUM1 in lung adenocarcinoma. Here, it showed that circPUM1 is significantly upregulated in both lung adenocarcinoma cell lines and tissues. Furthermore, silencing of circPUM1 impaired the proliferation, migration and invasion ability, and increased apoptosis in A549â¯cells. Nevertheless, overexpression of circPUM1 in SPC-A1 cells has the opposite effect. Silencing of circPUM1 inhibits the tumorigenesis in nude mice. Mechanistically, circPUM1 could sponge miR-326 and promote the expression of its downstream proteins Cyclin D1 and Bcl-2. In summary, this present study revealed that circPUM1 functions as an oncogene to promote the tumorigenesis of lung adenocarcinoma through circPUM1/miR-326/Cyclin D1 and Bcl-2 axis. This indicates that circPUM1 may act as a potential therapeutic target for lung adenocarcinoma.
Assuntos
Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , MicroRNAs/metabolismo , RNA/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Apoptose , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ciclina D1/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA/antagonistas & inibidores , RNA CircularRESUMO
BACKGROUND: The oncogenic role of circPUM1 has been revealed in multiple cancers. Nevertheless, the specific role and molecular mechanism of circPUM1 in neuroblastoma (NB) have never been reported. METHODS: The expression of genes was detected using RT-qPCR and Western Blot assay. The proliferation, migration, and invasion of NB cells were evaluated by CCK-8 and Transwell assays. Besides, mouse model was established to evaluate the effect of circPUM1 on the progression of NB. The interaction among genes was verified through RIP, MeRIP, or Luciferase reporter assay. RESULTS: Through our investigation, it was discovered that circPUM1 expression was abnormally elevated in NB tissues and the abundance of circPUM1 was correlated with unfavorable clinical outcomes in NB patients. Besides, the viability and mobility of NB cells as well as NB tumor growth were suppressed by silencing circPUM1. Moreover, bioinformatics prediction and experimental verification demonstrated that circPUM1 was a sponge for miR-423-5p which further targeted proliferation-associated protein 2G4 (PA2G4). The oncogenic effect of circPUM1 on NB was exerted through suppressing miR-423-5p to elevate PA2G4 expression. Finally, we investigated the transcriptional factor causing the upregulation of circPUM1 in NB. The result was that ALKB homolog 5 (ALKBH5), an m6A demethylase, suppressed the m6A modification of circPUM1 and caused the elevation of circPUM1 expression in NB. CONCLUSION: ALKBH5 induced the upregulation of circPUM1 to accelerate the development of NB through regulating miR-423-5p/PA2G4 axis.
Assuntos
MicroRNAs , Neuroblastoma , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação para Cima , Proliferação de Células/genética , Neuroblastoma/metabolismo , Enzimas AlkB/genética , Enzimas AlkB/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Linhagem Celular TumoralRESUMO
Background: CircPUM1 acts as an oncogene in a variety of tumors, and there is no related research on oral squamous cell carcinoma. This study aimed to evaluate the clinical significance of CircPUM1 in oral squamous cell carcinoma radiotherapy. Methods: Radio-resistant cell lines were established by increasing the X-ray dose. Analysis of CircPUM1 expression in oral squamous cell carcinoma was carried out using bioinformatics tools. Cell proliferation was analyzed with CCK-8 and colony formation. Protein and gene expressions were detected by Western blotting and qPCR. RNA interference inhibits endogenous gene expression. A luciferase reporter system and immunoprecipitation were used to validate the target of CircPUM1. Result: CircPUM1 was highly expressed in OSCC. The higher the expression level of CircPUM1 in OSCC, the worse the clinical features and prognosis. Knockdown of CircPUM1 enhances the sensitivity of OSCC cells to X-rays, and expression of exogenous CircPUM1 makes OSCC cells acquire radiation resistance. The absence of CircPUM1 blocked the cells in the G0/G1 phase and triggered apoptosis. The prediction of mir-580-binding site, luciferase reporter system, and immunoprecipitation confirmed that mir-580 is the binding site of CircPUM1. In addition, STAT3 was predicted and confirmed as the binding site of mir-580. Overexpression of STAT3 partially attenuated the radiosensitivity of OSCC cells to knockdown of CircPUM1. Conclusion: CircPUM1 has the oncogene expression profile in oral squamous cell carcinoma; patients with high expression of CircPUM1 have less benefit from radiotherapy and need more frequent follow-up. In addition, CircPUM1 may be a potential therapeutic target for oral squamous cell carcinoma. The CircPUM1/mir-580/STAT3 axis has a certain effect on the radiosensitivity of OSCC. These results suggest that patients with low expression of CircPUM1 may gain more benefits.
RESUMO
BACKGROUND: Our study seeks to obtain data to assess the impact of circPUM1 on pancreatic cancer (PC) and its mechanism. METHODS: The expression of circPUM1 and miR-200c-3p in PC and normal tissues and PC cell lines was collected and detected, and subsequently dual-luciferase assay-based verification of the binding site of the two was carried out. After interfering with circPUM1 expression in MIAPaCa-2 and PANC-1 cells, cell proliferation, viability, apoptosis rate, invasion ability, glucose consumption, and lactate production were measured by MTT, colony formation, flow cytometry, Transwell assays, and glucose and lactate assay kits. Additionally, western blot was utilized for assessing PI3K/AKT signaling pathway-related proteins. From the results, highly expressed circPUM1 and miR-200c-3p in PC tissues and cells were proved. RESULTS: Down-regulation of circPUM1 expression significantly inhibited cell proliferation, cell viability, invasion and glycolysis, while increasing the apoptosis rate. Down-regulated circPUM1 led to the inhibition of the PI3K/AKT signaling pathway activity in PC cells; while up-regulated circPUM1 increased its activity. Further experiments revealed that down-regulation of miR-200c-3p expression reversed the inhibitory effect of lowly expressed circPUM1 on PC cells. CONCLUSION: In summary, circPUM1 activates PI3K/AKT signaling pathway by sponging miR-200c-3p and promotes PC progression.
Assuntos
MicroRNAs , Neoplasias Pancreáticas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Glucose , Glicólise , Humanos , Lactatos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias PancreáticasRESUMO
BACKGROUND: Circular RNAs (circRNAs) are a crucial class of regulatory RNAs in cancer procession, including papillary thyroid cancer (PTC). Circ-Pumilio 1 (circPUM1) is a novel circRNA with the oncogenic function in ovarian cancer and lung cancer. However, the role of circPUM1 in PTC is undiscovered. OBJECTIVE: This study was performed to investigate the biological function and molecular mechanism of circPUM1 in PTC. METHODS: CircPUM1 and microRNA-21-5p (miR-21-5p) levels were analyzed via quantitative real-time polymerase chain reaction (qRT-PCR). Cellular viability and metastasis were measured using Cell Counting Kit 8 (CCK-8) and transwell migration/invasion assay. Glycolysis was evaluated by glucose uptake and lactate production. Associated proteins were examined applying with western blot. Dual-luciferase reporter assay and RNA pull-down assay were used to analyze the interaction between circPUM1 or mitogen-activated protein kinase 1 (MAPK1) and miR-21-5p. Moreover, the role of circPUM1 in vivo was explored by xenograft tumor experiment. RESULTS: Significantly, circPUM1 was upregulated in PTC tissue samples and cells. Cell growth, metastasis and glycolytic process of PTC cells were all inhibited after downregulation of circPUM1. Besides, circPUM1 could sponge miR-21-5p and MAPK1 was a target gene of miR-21-5p. Furthermore, we found that the anti-cancer effect of circPUM1 knockdown on PTC was partly ascribed to MAPK1 downregulation by upregulating miR-21-5p. Silencing circPUM1 also impeded tumorigenesis of PTC in vivo via miR-21-5p/MAPK1 axis. CONCLUSION: These findings suggested that circPUM1 knockdown inhibited MAPK1 expression by targeting miR-21-5p, consequently leading to the repressive effect on PTC progression. CircPUM1 might be a promising target to improve the diagnosis and treatment of PTC.
Assuntos
MicroRNAs/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , RNA Circular/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Metástase Neoplásica , RNA Circular/metabolismo , Proteínas de Ligação a RNA/genética , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologiaRESUMO
RNA pumilio RNA binding family member 1 (circPUM1) has been reported to play important roles in the tumorigenesis of several cancers. However, the underlying molecular role of circPUM1 in non-small cell lung cancer (NSCLC) progression remains unknown. The qRT-PCR and western blot were used to evaluate the expression of RNAs and proteins. In vitro cell proliferation assays, flow cytometric and glucose metabolism analyses were performed to test the effects of circPUM1 and its target on NSCLC cell growth and glycolysis. The interaction between microRNA (miR)-590-5p and circPUM1 or methyltransferase like 3 (METTL3) was analyzed by using dual-luciferase reporter, pull-down or RNA immunoprecipitation (RIP) assays. Murine xenograft model was established to conduct in vivo experiments. CircPUM1 was highly expressed in NSCLC tissues and cell lines. CircPUM1 knockdown suppressed cell proliferation, cell cycle and glycolysis in vitro. Moreover, circPUM1 directly bound to miR-590-5p, and miR-590-5p inhibitor reversed the inhibitory effects of circPUM1 knockdown on NSCLC carcinogenesis. Additionally, miR-590-5p suppressed NSCLC progression by directly targeting and regulating METTL3. Importantly, circPUM1 could regulate METTL3 in NSCLC cells through miR-590-5p. In addition, it was also proved circPUM1 silencing impeded tumor growth and glycolysis in the murine xenograft model by regulating miR-590-5p/METTL3 axis. CircPUM1 promoted NSCLC tumor growth and glycolysis through sequestering miR-590-5p and up-regulating METTL3, providing an improved understanding of NSCLC tumorigenesis and a potential therapeutic target for NSCLC therapy.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Proliferação de Células , Glicólise , Neoplasias Pulmonares/enzimologia , Metiltransferases/metabolismo , MicroRNAs/metabolismo , RNA Circular/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metiltransferases/genética , MicroRNAs/genética , RNA Circular/genética , Transdução de Sinais , Carga TumoralRESUMO
Recurrent spontaneous abortion (RSA) is a threat to human reproductive health worldwide. CircPUM1 has been reported to participate in the pathogenesis of various diseases. However, there has been no report on its association with RSA yet. In this study, gene expressions were examined by RT-qPCR. Protein levels of JUNB and cleaved caspases-3 were detected by Western blotting. ELISA was used to detect TNF-α, IL-6, and IL-8 levels. Cell viability, migration, invasion, and apoapsis were analyzed using CCK-8, transwell, and flow cytometry assays. The association between miR-30a-5p and circPUM1 or JUNB was identified by bioinformatics analysis, dual-luciferase reporter assay, and RIP assay. Herein, we found circPUM1 was significantly downregulated in RSA placental samples. CircPUM1 knockdown induced decreased proliferation, migration, and invasion, but increased apoptosis, pro-apoptotic protein (cleaved caspases-3) level, and proinflammatory factor (TNF-α, IL-6, and IL-8) secretion in trophoblast cells. Furthermore, we confirmed that circPUM1 was a sponge for miR-30a-5p, and JUNB was directly targeted by miR-30a-5p. It was demonstrated that miR-30a-5p inhibition could reverse trophoblast cell dysfunction and inflammation induced by circPUM1 knockdown. In addition, we found that JUNB expression was negatively modulated by miR-30a-5p and positively regulated by circPUM1. Moreover, circPUM1 inhibition exacerbated dysfunction and inflammation in trophoblast cells via targeting JUNB. To sum up, our study indicated that circPUM1 could impair RSA occurrence and development by facilitating trophoblast cellular processes and protecting against inflammation via the miR-30a-5p/JUNB axis, providing a new target for the improvement of RSA diagnosis and treatment.