Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
J Lipid Res ; 65(6): 100558, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729350

RESUMO

Metabolic dysfunction-associated steatotic liver disease is the most common form of liver disease and poses significant health risks to patients who progress to metabolic dysfunction-associated steatohepatitis. Fatty acid overload alters endoplasmic reticulum (ER) calcium stores and induces mitochondrial oxidative stress in hepatocytes, leading to hepatocellular inflammation and apoptosis. Obese mice have impaired liver sarco/ER Ca2+-ATPase (SERCA) function, which normally maintains intracellular calcium homeostasis by transporting Ca2+ ions from the cytoplasm to the ER. We hypothesized that restoration of SERCA activity would improve diet-induced steatohepatitis in mice by limiting ER stress and mitochondrial dysfunction. WT and melanocortin-4 receptor KO (Mc4r-/-) mice were placed on either chow or Western diet (WD) for 8 weeks. Half of the WD-fed mice were administered CDN1163 to activate SERCA, which reduced liver fibrosis and inflammation. SERCA activation also restored glucose tolerance and insulin sensitivity, improved histological markers of metabolic dysfunction-associated steatohepatitis, increased expression of antioxidant enzymes, and decreased expression of oxidative stress and ER stress genes. CDN1163 decreased hepatic citric acid cycle flux and liver pyruvate cycling, enhanced expression of mitochondrial respiratory genes, and shifted hepatocellular [NADH]/[NAD+] and [NADPH]/[NADP+] ratios to a less oxidized state, which was associated with elevated PUFA content of liver lipids. In sum, the data demonstrate that pharmacological SERCA activation limits metabolic dysfunction-associated steatotic liver disease progression and prevents metabolic dysfunction induced by WD feeding in mice.


Assuntos
Fígado , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Animais , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Camundongos , Fígado/metabolismo , Fígado/patologia , Masculino , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Estresse do Retículo Endoplasmático , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Dieta Ocidental/efeitos adversos , Camundongos Knockout
2.
J Biol Chem ; 299(2): 102838, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581208

RESUMO

The tricarboxylic acid (TCA) cycle, otherwise known as the Krebs cycle, is a central metabolic pathway that performs the essential function of oxidizing nutrients to support cellular bioenergetics. More recently, it has become evident that TCA cycle behavior is dynamic, and products of the TCA cycle can be co-opted in cancer and other pathologic states. In this review, we revisit the TCA cycle, including its potential origins and the history of its discovery. We provide a detailed accounting of the requirements for sustained TCA cycle function and the critical regulatory nodes that can stimulate or constrain TCA cycle activity. We also discuss recent advances in our understanding of the flexibility of TCA cycle wiring and the increasingly appreciated heterogeneity in TCA cycle activity exhibited by mammalian cells. Deeper insight into how the TCA cycle can be differentially regulated and, consequently, configured in different contexts will shed light on how this pathway is primed to meet the requirements of distinct mammalian cell states.


Assuntos
Ciclo do Ácido Cítrico , Metabolismo Energético , Animais , Ciclo do Ácido Cítrico/fisiologia , Mamíferos
3.
Mol Microbiol ; 119(5): 551-559, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36890576

RESUMO

Lysine acetylation is one of the most abundant post-translational modifications in nature, affecting many key biological pathways in both prokaryotes and eukaryotes. It has not been long since technological advances led to understanding of the roles of acetylation in biological processes. Most of those studies were based on proteomic analyses, which have identified thousands of acetylation sites in a wide range of proteins. However, the specific role of individual acetylation event remains largely unclear, mostly due to the existence of multiple acetylation and dynamic changes of acetylation levels. To solve these problems, the genetic code expansion technique has been applied in protein acetylation studies, facilitating the incorporation of acetyllysine into a specific lysine position to generate a site-specifically acetylated protein. By this method, the effects of acetylation at a specific lysine residue can be characterized with minimal interferences. Here, we summarized the development of the genetic code expansion technique for lysine acetylation and recent studies on lysine acetylation of citrate acid cycle enzymes in bacteria by this approach, providing a practical application of the genetic code expansion technique in protein acetylation studies.


Assuntos
Ciclo do Ácido Cítrico , Lisina , Lisina/metabolismo , Acetilação , Proteômica/métodos , Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Código Genético
4.
J Transl Med ; 22(1): 622, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965536

RESUMO

BACKGROUND: Inhibition of kinases is the ever-expanding therapeutic approach to various types of cancer. Typically, assessment of the treatment response is accomplished by standard, volumetric imaging procedures, performed weeks to months after the onset of treatment, given the predominantly cytostatic nature of the kinase inhibitors, at least when used as single agents. Therefore, there is a great clinical need to develop new monitoring approaches to detect the response to kinase inhibition much more promptly. Noninvasive 1H magnetic resonance spectroscopy (MRS) can measure in vitro and in vivo concentration of key metabolites which may potentially serve as biomarkers of response to kinase inhibition. METHODS: We employed mantle cell lymphoma (MCL) cell lines demonstrating markedly diverse sensitivity of inhibition of Bruton's tyrosine kinase (BTK) regarding their growth and studied in-depth effects of the inhibition on various aspects of cell metabolism including metabolite synthesis using metabolomics, glucose and oxidative metabolism by Seahorse XF technology, and concentration of index metabolites lactate, alanine, total choline and taurine by 1H MRS. RESULTS: Effective BTK inhibition profoundly suppressed key cell metabolic pathways, foremost pyrimidine and purine synthesis, the citrate (TCA) cycle, glycolysis, and pyruvate and glutamine/alanine metabolism. It also inhibited glycolysis and amino acid-related oxidative metabolism. Finally, it profoundly and quickly decreased concentration of lactate (a product of mainly glycolysis) and alanine (an indicator of amino acid metabolism) and, less universally total choline both in vitro and in vivo, in the MCL xenotransplant model. The decrease correlated directly with the degree of inhibition of lymphoma cell expansion and tumor growth. CONCLUSIONS: Our results indicate that BTK inhibition exerts a broad and profound suppressive effect on cell metabolism and that the affected index metabolites such as lactate, alanine may serve as early, sensitive, and reliable biomarkers of inhibition in lymphoma patients detectable by noninvasive MRS-based imaging method. This kind of imaging-based detection may also be applicable to other kinase inhibitors, as well as diverse lymphoid and non-lymphoid malignancies.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Linfoma de Célula do Manto , Inibidores de Proteínas Quinases , Humanos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Animais , Tirosina Quinase da Agamaglobulinemia/metabolismo , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Linfoma de Célula do Manto/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Biomarcadores/metabolismo
5.
Biochem Biophys Res Commun ; 684: 149123, 2023 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-37871522

RESUMO

Aminoacylase 1 (ACY1) deficiency is an inherited metabolic disorder biochemically characterized by high urinary concentrations of aliphatic N-acetylated amino acids and associated with a broad clinical spectrum with predominant neurological signs. Considering that the pathogenesis of ACY1 is practically unknown and the brain is highly dependent on energy production, the in vitro effects of N-acetylglutamate (NAG) and N-acetylmethionine (NAM), major metabolites accumulating in ACY1 deficiency, on the enzyme activities of the citric acid cycle (CAC), of the respiratory chain complexes and glutamate dehydrogenase (GDH), as well as on ATP synthesis were evaluated in brain mitochondrial preparations of developing rats. NAG mildly inhibited mitochondrial isocitrate dehydrogenase 2 (IDH2) activity, moderately inhibited the activities of isocitrate dehydrogenase 3 (IDH3) and complex II-III of the respiratory chain and markedly suppressed the activities of complex IV and GDH. Of note, the NAG-induced inhibitory effect on IDH3 was competitive, whereas that on GDH was mixed. On the other hand, NAM moderately inhibited the activity of respiratory complexes II-III and GDH activities and strongly decreased complex IV activity. Furthermore, NAM was unable to modify any of the CAC enzyme activities, indicating a selective effect of NAG toward IDH mitochondrial isoforms. In contrast, the activities of citrate synthase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and of the respiratory chain complexes I and II were not changed by these N-acetylated amino acids. Finally, NAG and NAM strongly decreased mitochondrial ATP synthesis. Taken together, the data indicate that NAG and NAM impair mitochondrial brain energy homeostasis.


Assuntos
Ácido Glutâmico , Isocitrato Desidrogenase , Ratos , Animais , Ácido Glutâmico/metabolismo , Isocitrato Desidrogenase/metabolismo , Ratos Wistar , Metabolismo Energético , Encéfalo/metabolismo , Trifosfato de Adenosina/metabolismo , Homeostase
6.
Nutr Metab Cardiovasc Dis ; 33(4): 835-843, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739229

RESUMO

BACKGROUND AND AIM: Plasma citric acid cycle (CAC) metabolites might be likely related to cardiovascular disease (CVD). However, studies assessing the longitudinal associations between circulating CAC-related metabolites and CVD risk are lacking. The aim of this study was to evaluate the association of baseline and 1-year levels of plasma CAC-related metabolites with CVD incidence (a composite of myocardial infarction, stroke or cardiovascular death), and their interaction with Mediterranean diet interventions. METHODS AND RESULTS: Case-cohort study from the PREDIMED trial involving participants aged 55-80 years at high cardiovascular risk, allocated to MedDiets or control diet. A subcohort of 791 participants was selected at baseline, and a total of 231 cases were identified after a median follow-up of 4.8 years. Nine plasma CAC-related metabolites (pyruvate, lactate, citrate, aconitate, isocitrate, 2-hydroxyglutarate, fumarate, malate and succinate) were measured using liquid chromatography-tandem mass spectrometry. Weighted Cox multiple regression was used to calculate hazard ratios (HRs). Baseline fasting plasma levels of 3 metabolites were associated with higher CVD risk, with HRs (for each standard deviation, 1-SD) of 1.46 (95%CI:1.20-1.78) for 2-hydroxyglutarate, 1.33 (95%CI:1.12-1.58) for fumarate and 1.47 (95%CI:1.21-1.78) for malate (p of linear trend <0.001 for all). A higher risk of CVD was also found for a 1-SD increment of a combined score of these 3 metabolites (HR = 1.60; 95%CI: 1.32-1.94, p trend <0.001). This result was replicated using plasma measurements after one-year. No interactions were detected with the nutritional intervention. CONCLUSION: Plasma 2-hydroxyglutarate, fumarate and malate levels were prospectively associated with increased cardiovascular risk. CLINICAL TRIAL NUMBER: ISRCTN35739639.


Assuntos
Doenças Cardiovasculares , Dieta Mediterrânea , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Ciclo do Ácido Cítrico , Estudos de Coortes , Malatos , Fatores de Risco , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles
7.
Cancer Cell Int ; 22(1): 317, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229828

RESUMO

BACKGROUND: Gastric cancer is one of the most common malignancies of the digestive system with a high lethal rate. Studies have shown that inherited and acquired mutations in pyruvate metabolism and citric acid cycle (P-CA) enzymes are involved in tumorigenesis and tumor development. However, it is unclear how different P-CA patterns affect the tumor microenvironment (TME), which is critical for cancer progression. METHODS: This study mainly concentrated on investigating the role of the P-CA patterns in multicellular immune cell infiltration of GC TME. First, the expression levels of P-CA regulators were profiled in GC samples from The Cancer Genome Atlas and Gene Expression Omnibus cohorts to construct a consensus clustering analysis and identify three distinct P-CA clusters. GSVA was conducted to reveal the different biological processes in three P-CA clusters. Subsequently, 1127 cluster-related differentially expressed genes were identified, and prognostic-related genes were screened using univariate Cox regression analysis. A scoring system was then set up to quantify the P-CA gene signature and further evaluate the response of the patients to the immunotherapy. RESULTS: We found that GC patients in the high P-CA score group had a higher tumor mutational burden, higher microsatellite instability, and better prognosis. The opposite was observed in the low P-CA score group. Interestingly, we demonstrated P-CA gene cluster could predict the sensitivity to immunotherapy and ferroptosis-induced therapy. CONCLUSION: Collectively, the P-CA gene signature in this study exhibits potential roles in the tumor microenvironment and predicts the response to immunotherapeutic. The identification of these P-CA patterns may significantly accelerate the strategic development of immunotherapy for GC.

8.
J Inherit Metab Dis ; 45(2): 223-234, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34622459

RESUMO

Cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) deficiency due to the homozygous PCK1 variant has recently been associated with childhood-onset hypoglycemia with a recognizable pattern of abnormal urine organic acids. In this study, 21 children and 3 adult patients with genetically confirmed PEPCK-C deficiency were diagnosed during the years 2016 to 2019 and the available biochemical and clinical data were collected. All patients were ethnic Finns. Most patients (22 out of 24) had a previously published homozygous PCK1 variant c.925G>A. Two patients had a novel compound heterozygous PCK1 variant c.925G>A and c.716C>T. The laboratory results showed abnormal urine organic acid profile with increased tricarboxylic acid cycle intermediates and inadequate ketone body production during hypoglycemia. The hypoglycemic episodes manifested predominantly in the morning. Infections, fasting or poor food intake, heavy exercise, alcohol consumption, and breastfeeding were identified as triggering factors. Five patients presented with neonatal hypoglycemia. Hypoglycemic seizures occurred in half of the patients (12 out of 24). The first hypoglycemic episode often occurred at the age of 1-2 years, but it sometimes presented at a later age, and could re-occur during school age or adulthood. This study adds to the laboratory data on PEPCK-C deficiency, confirming the recognizable urine organic acid pattern and identifying deficient ketogenesis as a novel laboratory finding. The phenotype is expanded suggesting that the risk of hypoglycemia may continue into adulthood if predisposing factors are present.


Assuntos
Hipoglicemia , Fosfoenolpiruvato Carboxiquinase (GTP) , Adulto , Erros Inatos do Metabolismo dos Carboidratos , Criança , Gluconeogênese , Humanos , Hipoglicemia/genética , Hipoglicemiantes , Corpos Cetônicos , Hepatopatias , Fenótipo , Fosfoenolpiruvato Carboxiquinase (GTP)/deficiência , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo
9.
Mol Microbiol ; 114(2): 292-307, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32274833

RESUMO

Phosphoenolpyruvate carboxylase (PEPC) is the second major carbon-fixing enzyme in photoautotrophic organisms. PEPC is required for the synthesis of amino acids of the glutamate and aspartate family by replenishing the TCA cycle. Furthermore, in cyanobacteria, PEPC, together with malate dehydrogenase and malic enzyme, forms a metabolic shunt for the synthesis of pyruvate from PEP. During this process, CO2 is first fixed and later released again. Due to its central metabolic position, it is crucial to fully understand the regulation of PEPC. Here, we identify PEPC from the cyanobacterium Synechocystis sp. PCC 6803 (PEPC) as a novel interaction partner for the global signal transduction protein PII . In addition to an extensive characterization of PEPC, we demonstrate specific PII -PEPC complex formation and its enzymatic consequences. PEPC activity is tuned by the metabolite-sensing properties of PII : Whereas in the absence of PII, PEPC is subjected to ATP inhibition, it is activated beyond its basal activity in the presence of PII . Furthermore, PII -PEPC complex formation is inhibited by ADP and PEPC activation by PII -ATP is mitigated in the presence of 2-OG, linking PEPC regulation to the cell's global carbon/nitrogen status. Finally, physiological relevance of the in vitro measurements was proven by metabolomic analyses of Synechocystis wild-type and PII -deficient cells.


Assuntos
Proteínas PII Reguladoras de Nitrogênio/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Synechocystis/metabolismo , Carbono/metabolismo , Cianobactérias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Nitrogênio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/fisiologia , Fosfoenolpiruvato Carboxilase/fisiologia , Fosforilação , Transdução de Sinais/fisiologia , Synechocystis/fisiologia
10.
Appl Environ Microbiol ; 87(17): e0079421, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34190607

RESUMO

Genome and proteome data predict the presence of both the reductive citric acid cycle (rCAC; also called the reductive tricarboxylic acid cycle) and the Calvin-Benson-Bassham cycle (CBB) in "Candidatus Endoriftia persephonae," the autotrophic sulfur-oxidizing bacterial endosymbiont from the giant hydrothermal vent tubeworm Riftia pachyptila. We tested whether these cycles were differentially induced by sulfide supply, since the synthesis of biosynthetic intermediates by the rCAC is less energetically expensive than that by the CBB. R. pachyptila was incubated under in situ conditions in high-pressure aquaria under low (28 to 40 µmol · h-1) or high (180 to 276 µmol · h-1) rates of sulfide supply. Symbiont-bearing trophosome samples excised from R. pachyptila maintained under the two conditions were capable of similar rates of CO2 fixation. Activities of the rCAC enzyme ATP-dependent citrate lyase (ACL) and the CBB enzyme 1,3-bisphosphate carboxylase/oxygenase (RubisCO) did not differ between the two conditions, although transcript abundances for ATP-dependent citrate lyase were 4- to 5-fold higher under low-sulfide conditions. δ13C values of internal dissolved inorganic carbon (DIC) pools were varied and did not correlate with sulfide supply rate. In samples taken from freshly collected R. pachyptila, δ13C values of lipids fell between those collected for organisms using either the rCAC or the CBB exclusively. These observations are consistent with cooccurring activities of the rCAC and the CBB in this symbiosis. IMPORTANCE Previous to this study, the activities of the rCAC and CBB in R. pachyptila had largely been inferred from "omics" studies of R. pachyptila without direct assessment of in situ conditions prior to collection. In this study, R. pachyptila was maintained and monitored in high-pressure aquaria prior to measuring its CO2 fixation parameters. Results suggest that ranges in sulfide concentrations similar to those experienced in situ do not exert a strong influence on the relative activities of the rCAC and the CBB. This observation highlights the importance of further study of this symbiosis and other organisms with multiple CO2-fixing pathways, which recent genomics and biochemical studies suggest are likely to be more prevalent than anticipated.


Assuntos
Gammaproteobacteria/fisiologia , Poliquetos/microbiologia , Simbiose , Animais , Processos Autotróficos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo do Ácido Cítrico , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Fontes Hidrotermais/microbiologia , Fontes Hidrotermais/parasitologia , Fotossíntese , Poliquetos/fisiologia , Sulfetos/metabolismo , Enxofre/metabolismo
11.
FASEB J ; 34(8): 9982-9994, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32614485

RESUMO

Sporadic late-onset Alzheimer disease (LOAD) preceded by mild cognitive impairment (MCI) is the most common type of dementia. Long-term studies of immunity to pathogenic amyloid-ß (Aß) in LOAD are lacking. Innate immunity of LOAD patients is malfunctioning in phagocytosis and degradation of Aß and LOAD patients' macrophage transcriptome and metabolome are deregulated. We previously showed omega-3 fatty acid (ω-3)-mediated repair of unfolded protein response and here we show much broader transcriptomic effects. ω-3 treatment in vitro and ω-3 supplementation by the drink Smartfish (SMF) in vivo increased the transcripts of the genes and pathways of immunity, glycolysis, tricarboxylic acid cycle, OX-PHOS, nicotinamide dinucleotide (NAD+ ) synthesis, and reversed the defects in Aß phagocytosis. In both peripheral blood mononuclear cells (PBMC) and macrophages, ω-3 increased ATP-linked oxygen consumption rate (OCR) and ω-3 with carnitine was superior to ω-3. ω-3 treatment in vitro and supplementation by the ω-3 drink SMF in vivo rescued macrophage phagocytosis when glycolysis or glycosylation were blocked. ω-3 provide flexible energy for immune clearance of the brain throughout the diurnal cycle, even in hypo- or hyper-glycemia. In certain LOAD patients, ω-3 may delay progression to dementia.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Imunidade Inata/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Fosforilação Oxidativa , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Feminino , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/imunologia , Fagocitose , Transcriptoma/efeitos dos fármacos
12.
Cell Mol Life Sci ; 77(13): 2527-2542, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31970423

RESUMO

Melatonin has the ability to intervene in the initiation, progression and metastasis of some experimental cancers. A large variety of potential mechanisms have been advanced to describe the metabolic and molecular events associated with melatonin's interactions with cancer cells. There is one metabolic perturbation that is common to a large number of solid tumors and accounts for the ability of cancer cells to actively proliferate, avoid apoptosis, and readily metastasize, i.e., they use cytosolic aerobic glycolysis (the Warburg effect) to rapidly generate the necessary ATP required for the high metabolic demands of the cancer cells. There are several drugs, referred to as glycolytic agents, that cause cancer cells to abandon aerobic glycolysis and shift to the more conventional mitochondrial oxidative phosphorylation for ATP synthesis as in normal cells. In doing so, glycolytic agents also inhibit cancer growth. Herein, we hypothesize that melatonin also functions as an inhibitor of cytosolic glycolysis in cancer cells using mechanisms, i.e., downregulation of the enzyme (pyruvate dehydrogenase kinase) that interferes with the conversion of pyruvate to acetyl CoA in the mitochondria, as do other glycolytic drugs. In doing so, melatonin halts the proliferative activity of cancer cells, reduces their metastatic potential and causes them to more readily undergo apoptosis. This hypothesis is discussed in relation to the previously published reports. Whereas melatonin is synthesized in the mitochondria of normal cells, we hypothesize that this synthetic capability is not present in cancer cell mitochondria because of the depressed acetyl CoA; acetyl CoA is necessary for the rate limiting enzyme in melatonin synthesis, arylalkylamine-N-acetyltransferase. Finally, the ability of melatonin to switch glucose oxidation from the cytosol to the mitochondria also explains how tumors that become resistant to conventional chemotherapies are re-sensitized to the same treatment when melatonin is applied.


Assuntos
Glucose/metabolismo , Melatonina/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Animais , Antineoplásicos/uso terapêutico , Humanos , Melatonina/uso terapêutico , Neoplasias/tratamento farmacológico , Oxirredução
13.
Cryobiology ; 101: 28-37, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34186087

RESUMO

Hibernation is a metabolic/physiological strategy employed by many mammals to cope with periods when energy usage is greater than its input. Animals undergoing hibernation need to greatly reduce their metabolic rate and reshape their catabolic processes to survive on stored triglycerides. Citrate synthase (CS) is one of only two irreversible steps in the citric acid cycle (CAC) and forms an important regulatory checkpoint that gates the entry of acetyl-CoA formed in glycolysis or fatty acid catabolism into this critical central metabolic hub. This study investigated the regulation of citrate synthase in the muscle tissue of a small mammalian hibernator through comparison of functional and structural properties. The results demonstrated a significant decrease in the Vmax of purified torpid CS compared to the control euthermic enzyme (1.2-1.7 fold greater in the control) that was evident over a wide range of temperatures (8, 22 and 37 °C) that are encountered by the enzyme in hibernation. This was also reflected in the specific activity of the enzyme in crude muscle protein extracts. Analyzing the purified CS through immunoblotting demonstrated that the enzyme contained noticeably less lysine succinylation in the torpid state (about 50% of euthermic levels) and this was correlated with an increase in total levels of SIRT5, the enzyme responsible for mediating desuccinylation in the mitochondria (2.2 fold increase). Taken together, the results of this study support the idea that CS is inhibited during hibernation in the ground squirrel skeletal muscle and that this alteration could be mediated by decreases in succinylation.


Assuntos
Criopreservação , Lisina , Animais , Citrato (si)-Sintase , Criopreservação/métodos , Músculo Esquelético , Sciuridae
14.
Int J Mol Sci ; 22(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435350

RESUMO

In 1937, Sir H. A Krebs first published the Citric Acid Cycle, a unidirectional cycle with carboxylic acids. The original concept of the Citric Acid Cycle from Krebs' 1953 Nobel Prize lecture illustrates the unidirectional degradation of lactic acid to water, carbon dioxide and hydrogen. Here, we add the heart lactate dehydrogenase•proton-linked monocarboxylate transporter 1 complex, connecting the original Citric Acid Cycle to the flow of energy and material. The heart lactate dehydrogenase•proton-linked monocarboxylate transporter 1 complex catalyses the first reaction of the Citric Acid Cycle, the oxidation of lactate to pyruvate, and thus secures the provision of pyruvic acid. In addition, we modify Krebs' original concept by feeding the cycle with oxaloacetic acid. Our concept enables the integration of anabolic processes and allows adaption of the organism to recover ATP faster.


Assuntos
Citrato (si)-Sintase/metabolismo , Ciclo do Ácido Cítrico , Piruvato Carboxilase/metabolismo , Animais , Exercício Físico , Humanos , L-Lactato Desidrogenase/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fosforilação Oxidativa , Prótons , Simportadores/metabolismo
15.
Pathologe ; 42(6): 560-564, 2021 Nov.
Artigo em Alemão | MEDLINE | ID: mdl-34448900

RESUMO

Fumarate hydratase (FH)-deficient renal cell carcinoma (RCC) is a distinct entity, which shows a biallelic inactivation of the FH gene that consequently leads to FH protein expression and function loss, respectively. This alteration leads to an accumulation of the oncometabolite fumarate in the citrate cycle and various disorders of the cell balance and DNA processing. FH-deficient RCC often shows a morphologically overlapping spectrum with papillary renal cell carcinoma (type 2), whereby a typical mixture of growth patterns including tubulo-cystic, cribriform, and/or solid differentiation can be observed. A characteristic but non-specific morphological feature is prominent eosinophilic, virus-inclusion body-like nucleoli with perinucleolar halos. Tumoral immunohistochemical loss of FH expression supports the diagnosis but may be preserved in rare cases. Most FH-deficient RCCs show very aggressive biological behavior and are often metastasized at the time of diagnosis. The initial description encompassed RCC in association with the hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome, which also includes cutaneous and uterine leiomyomas. However, current data also show an increasing proportion of sporadic cases, so that a distinction (hereditary vs. sporadic) seems appropriate. So far, few but promising data on effective systemic therapeutic options have been reported. In summary, precise diagnosis is of great importance due to the frequent aggressive biological behavior, potential need to deviate from the therapeutic standard, and the possible indicator of a hereditary disease.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Leiomiomatose , Síndromes Neoplásicas Hereditárias , Neoplasias Cutâneas , Neoplasias Uterinas , Carcinoma de Células Renais/genética , Feminino , Fumarato Hidratase/genética , Humanos , Neoplasias Renais/genética , Síndromes Neoplásicas Hereditárias/genética
16.
J Lipid Res ; 61(5): 707-721, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32086244

RESUMO

Fatty liver involves ectopic lipid accumulation and dysregulated hepatic oxidative metabolism, which can progress to a state of elevated inflammation and fibrosis referred to as nonalcoholic steatohepatitis (NASH). The factors that control progression from simple steatosis to NASH are not fully known. Here, we tested the hypothesis that dietary vitamin E (VitE) supplementation would prevent NASH progression and associated metabolic alterations induced by a Western diet (WD). Hyperphagic melanocortin-4 receptor-deficient (MC4R-/-) mice were fed chow, chow+VitE, WD, or WD+VitE starting at 8 or 20 weeks of age. All groups exhibited extensive hepatic steatosis by the end of the study (28 weeks of age). WD feeding exacerbated liver disease severity without inducing proportional changes in liver triglycerides. Eight weeks of WD accelerated liver pyruvate cycling, and 20 weeks of WD extensively upregulated liver glucose and oxidative metabolism assessed by 2H/13C flux analysis. VitE supplementation failed to reduce the histological features of NASH. Rather, WD+VitE increased the abundance and saturation of liver ceramides and accelerated metabolic flux dysregulation compared with 8 weeks of WD alone. In summary, VitE did not limit NASH pathogenesis in genetically obese mice, but instead increased some indicators of metabolic dysfunction.


Assuntos
Dieta Ocidental/efeitos adversos , Análise do Fluxo Metabólico , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Vitamina E/farmacologia , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Interações Medicamentosas , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Solubilidade
17.
Chemphyschem ; 21(4): 313-320, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31904135

RESUMO

In this manuscript we provide computational support to the catalytic role of water in all kinds of pseudopericyclic reactions operating in the reductive acid cycle, as well as in other metabolic processes. Water catalysis is not limited to those reactions where simple translocation of hydrogen atoms occurs, such as those represented by NuH+E→Nu-EH general equation. Indeed, water catalysis is more general and extremely important in tautomerization reactions of the type HX-Y=Z→X=Y-ZH, which operate in the reductive citric acid cycle and metabolic processes. Moreover, the comprehensive theoretical study reported herein illustrates that these reactions appear to behave as authentic enzyme-catalyzed reactions showing Michaelis-Menten behavior, however with the abnormal singularity that the concentration of the catalytic "water clusters" of different length and nature must be taken as a huge number. Overall, the results presented are suggestive of the workability of the so-called "metabolism first" proposal in a hot water world, as water catalysis eliminates the dilution problem frequently associated to this proposal.


Assuntos
Água/metabolismo , Catálise , Ciclo do Ácido Cítrico , Teoria da Densidade Funcional , Água/química
18.
J Inherit Metab Dis ; 43(6): 1232-1242, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33448436

RESUMO

Anaplerotic odd-chain fatty acid supplementation has been suggested as an approach to replenish citric acid cycle intermediate (CACi) pools and facilitate adenosine triphosphate (ATP) production in subjects with long-chain fatty acid oxidation disorders, but the evidence that cellular CACi depletion exists and that repletion occurs following anaplerotic substrate supplementation is limited. We exercised very long-chain acyl-CoA dehydrogenase-deficient (VLCAD-/-) and wild-type (WT) mice to exhaustion and collected cardiac tissue for measurement of CACi by targeted metabolomics. In a second experimental group, VLCAD-/- and WT mice that had been fed chow prepared with either medium-chain triglyceride (MCT) oil or triheptanoin for 4 weeks were exercised for 60 minutes. VLCAD-/- mice exhibited lower succinate in cardiac muscle at exhaustion than WT mice suggesting lower CACi in VLCAD-/- with prolonged exercise. In mice fed either MCT or triheptanoin, succinate and malate were greater in VLCAD-/- mice fed triheptanoin compared to VLCAD-/- animals fed MCT but lower than WT mice fed triheptanoin. Long-chain odd acylcarnitines such as C19 were elevated in VLCAD-/- and WT mice fed triheptanoin suggesting some elongation of the heptanoate, but it is unknown what proportion of heptanoate was oxidized vs elongated. Prolonged exercise was associated with decreased cardiac muscle succinate in VLCAD-/- mice in comparison to WT mice. VLCAD-/- fed triheptanoin had increased succinate compared to VLCAD-/- mice fed MCT but lower than WT mice fed triheptanoin. Cardiac CACi were higher following dietary ingestion of an anaplerotic substrate, triheptanoin, in comparison to MCT.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Síndrome Congênita de Insuficiência da Medula Óssea/dietoterapia , Síndrome Congênita de Insuficiência da Medula Óssea/metabolismo , Erros Inatos do Metabolismo Lipídico/dietoterapia , Erros Inatos do Metabolismo Lipídico/metabolismo , Doenças Mitocondriais/dietoterapia , Doenças Mitocondriais/metabolismo , Doenças Musculares/dietoterapia , Doenças Musculares/metabolismo , Triglicerídeos/administração & dosagem , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Animais , Ciclo do Ácido Cítrico , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Gorduras na Dieta/administração & dosagem , Ácidos Graxos/metabolismo , Feminino , Erros Inatos do Metabolismo Lipídico/genética , Fígado/metabolismo , Masculino , Camundongos , Doenças Mitocondriais/genética , Doenças Musculares/genética , Miocárdio/metabolismo , Oxirredução , Triglicerídeos/química
19.
J Assist Reprod Genet ; 37(11): 2743-2756, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32935173

RESUMO

PURPOSE: To utilize a novel mitochondrial function assay with pooled granulosa cells to determine whether mitochondrial function would differ by patient demographics and embryo development. METHODS: This was a prospective pilot study in a hospital-based assisted reproductive program and public university. Mitochondrial metabolic substrate utilization was assessed in pooled granulosa cells from 40 women undergoing in vitro fertilization during 2018 and 2019. RESULTS: Assessment of mitochondrial substrate metabolism in pooled granulosa cells revealed higher citric acid, L-malic acid, and octanoyl-L-carnitine utilization with higher body mass index (BMI). Utilization of citric acid, cis-aconitic acid, D-alpha-keto-glutaric acid, L-glutamine, and alanine plus glycine was significantly lower as total dosage of FSH administered increased. Utilization of glycogen was significantly higher in patients with a higher percentage of fertilized oocytes. D-alpha-keto-glutaric acid utilization was significantly lower in patients with a higher percentage of good 8-cell embryos. L-glutamine utilization was significantly lower, with a higher percentage of blastocyst formation. Mitochondrial metabolic scores (MMS), which reflect overall mitochondrial activity of the granulosa pool, were significantly higher in patients with higher BMI and with greater numbers of mature oocytes retrieved. MMS in granulosa decreased as total FSH dose administered increased. CONCLUSIONS: Granulosa cell utilization of substrates feeding into the citric acid cycle changed with total FSH dosage and BMI. Fertilization rate, 8-cell embryo quality, and blastocyst formation also associated with different energy substrate usage. Mitochondrial substrate utilization by granulosa cells from individual follicles could be further developed into a useful diagnostic tool.


Assuntos
Fertilização in vitro , Hormônio Foliculoestimulante/administração & dosagem , Células da Granulosa/metabolismo , Mitocôndrias/metabolismo , Adulto , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Índice de Massa Corporal , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Feminino , Líquido Folicular/metabolismo , Humanos , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Progesterona/administração & dosagem
20.
J Infect Dis ; 219(8): 1216-1223, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30445537

RESUMO

BACKGROUND: Bronchiolitis is associated with a greater risk of developing recurrent wheezing, but with currently available tools, it is impossible to know which infants with bronchiolitis will develop this condition. This preliminary prospective study aimed to assess whether urine metabolomic analysis can be used to identify children with bronchiolitis who are at risk of developing recurrent wheezing. METHODS: Fifty-two infants <1 year old treated in the emergency department at University Hospital of Padova for acute bronchiolitis were enrolled (77% tested positive for respiratory syncytial virus [RSV]). Follow-up visits were conducted for 2 years after the episode of bronchiolitis. Untargeted metabolomic analyses based on mass spectrometry were performed on urine samples collected from infants with acute bronchiolitis. Data modeling was based on univariate and multivariate data analyses. RESULTS: We distinguished children with and those without postbronchiolitis recurrent wheeze, defined as ≥3 episodes of physician-diagnosed wheezing. Pathway overrepresentation analysis pointed to a major involvement of the citric acid cycle (P < .001) and some amino acids (lysine, cysteine, and methionine; P ≤ .015) in differentiating between these 2 groups of children. CONCLUSION: This is the first study showing that metabolomic profiling of urine specimens from infants with bronchiolitis can be used to identify children at increased risk of developing recurrent wheezing.


Assuntos
Bronquiolite/metabolismo , Metabolômica , Sons Respiratórios/etiologia , Bronquiolite/complicações , Bronquiolite/urina , Estudos de Casos e Controles , Ácido Cítrico/urina , Ciclo do Ácido Cítrico , Cisteína/metabolismo , Cisteína/urina , Feminino , Humanos , Lactente , Recém-Nascido , Lisina/metabolismo , Lisina/urina , Masculino , Redes e Vias Metabólicas , Metionina/metabolismo , Metionina/urina , Estudos Prospectivos , Recidiva , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA