Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Gen Virol ; 105(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007232

RESUMO

Clavibacter michiganensis subsp. michiganensis (Cmm) is an important plant-pathogenic bacterium that causes canker and wilt diseases. Biological control of the disease with bacteriophages is an alternative to conventional methods. In this study, Phage33 infecting Cmm was characterized based on morphological and genomic properties. Morphological characteristics such as shape and size were investigated using electron microscopy. The whole genome was sequenced using the Illumina Novaseq 6000 platform and the sequence was assembled and annotated. VICTOR and VIRIDIC were used for determining the phylogeny and comparing viral genomes, respectively. Electron microscopy showed that Phage33 has an icosahedral head with a diameter of ~55 nm and a long, thin, non-contractile tail ~169 nm in length. The genome of Phage33 is 56 324 bp in size, has a GC content of 62.49 % and encodes 67 open reading frames. Thirty-seven ORFs showed high homology to functionally annotated bacteriophage proteins in the NCBI database. The remaining 30 ORFs were identified as hypothetical with unknown functions. The genome contains no antimicrobial resistance, no lysogenicity and no virulence signatures, suggesting that it is a suitable candidate for biocontrol agents. The results of a blastn search showed similarity to the previously reported Xylella phage Sano, with an average nucleotide sequence identity of 92.37 % and query coverage of 91 %. This result was verified using VICTOR and VIRIDIC analysis, and suggests that Phage33 is a new member of the genus Sanovirus under the class Caudoviricetes.


Assuntos
Bacteriófagos , Clavibacter , Genoma Viral , Fases de Leitura Aberta , Filogenia , Sequenciamento Completo do Genoma , Bacteriófagos/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Turquia , Composição de Bases , DNA Viral/genética , Doenças das Plantas/microbiologia , Análise de Sequência de DNA
2.
Appl Microbiol Biotechnol ; 108(1): 357, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822872

RESUMO

Bacterial plant diseases are difficult to control as the durability of deployed control measures is thwarted by continuous and rapid changing of bacterial populations. Although application of copper compounds to plants is the most widespread and inexpensive control measure, it is often partially efficacious for the frequent appearance of copper-resistant bacterial strains and it is raising concerns for the harmful effects of copper on environment and human health. Consequently, European Community included copper compounds in the list of substances candidates for substitution. Nanotechnologies and the application of nanoparticles seem to respond to the need to find new very effective and durable measures. We believe that Argirium-SUNCs®, silver ultra nanoclusters with an average size of 1.79 nm and characterized by rare oxidative states (Ag2+/3+), represent a valid candidate as a nano-bactericide in the control of plant bacterial diseases. Respect to the many silver nanoparticles described in the literature, Argirium-SUNCs have many strengths due to the reproducibility of the synthesis method, the purity and the stability of the preparation, the very strong (less than 1 ppm) antimicrobial, and anti-biofilm activities. In this mini-review, we provide information on this nanomaterial and on the possible application in agriculture. KEY POINTS: • Argirium-SUNCs have strong antimicrobial activities against phytopathogenic bacteria. • Argirium-SUNCs are a possible plant protection product. • Argirium-SUNCs protect tomato plants against bacterial speck disease.


Assuntos
Nanopartículas Metálicas , Doenças das Plantas , Prata , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Prata/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Cobre/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento
3.
Curr Issues Mol Biol ; 45(2): 1387-1395, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36826035

RESUMO

Bacterial canker of tomato, caused by Clavibacter michiganensis subsp. michiganensis (Cmm), is a devasting disease that leads to significant yield losses. Although QTLs originating from three wild species (Solanum arcanum, S. habrochaites, and S. pimpinellifolium) were identified, none of the QTLs was annotated for candidate gene identification. In the present study, a QTL-based physical map was constructed to reveal the meta-QTLs for Cmm resistance. As a result, seven major QTLs were mapped. Functional annotation of QTLs revealed 48 candidate genes. Additionally, experimentally validated Cmm resistance-related genes based on transcriptomic and proteomic studies were mapped in the genome and 25 genes were found to be located in the QTL regions. The present study is the first report to construct a physical map for Cmm resistance QTLs and identify QTL-specific candidate genes. The candidate genes identified in the present study are valuable targets for fine mapping and developing markers for marker-assisted selection in tomatoes for Cmm resistance breeding.

4.
Naturwissenschaften ; 110(3): 15, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37071226

RESUMO

Metallic nanoparticles of different compositions have already found numerous applications in various branches of industry, agriculture, and medicine. Given the well-known antibacterial activity of Ag, silver nanoparticles (AgNPs) are constantly being investigated for their promising ability to fight antibiotic-resistant pathogens. A promising candidate for AgNPs biosynthesis is chili pepper Capsicum annuum, cultivated worldwide and known for accumulating significant amounts of active substances. Phytochemical screening of aqueous extract of C. annuum pericarps demonstrated accumulation of 4.38 mg/g DW of total capsaicinoids, 14.56 mg GAE/g DW of total phenolic compounds, 1.67 mg QE/g DW of total flavonoids, and 1.03 mg CAE/g DW of total phenolic acids. All determined aromatic compounds carry various active functional groups, which effectively participate in the biosynthesis of AgNPs and are characterized by high antioxidant potential. Therefore, the present research focused on the facile, quick, and effective procedure for the biosynthesis of AgNPs, which were analyzed for their morphology such as shape and size through UV-visible, Fourier-transform infrared spectroscopy (FTIR) assays, and scanning electron microscopy. We found that the AgNPs biosynthesis resulted in changes in FTIR spectra, depicting the rearrangement of numerous functional groups, while the nanoparticles themselves were shown to be stable, spherical, 10-17 nm in size. Also we investigated the antibacterial properties of biosynthesized AgNPs, obtained with C. annuum fruit extracts, against a common phytopathogen Clavibacter michiganensis subsp. michiganensis. As was shown by zone inhibition assay, AgNPs showed dose-dependent 5.13-6.44 cm antibacterial activity, greatly exceeding the 4.98 cm inhibition area, produced by the precursor salt, AgNO3.


Assuntos
Capsicum , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
5.
Appl Microbiol Biotechnol ; 107(14): 4519-4531, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37289240

RESUMO

The main measure worldwide adopted to manage plant bacterial diseases is based on the application of copper compounds, which are often partially efficacious for the frequent appearance of copper-resistant bacterial strains and have raised concerns for their toxicity to the environment and humans. Therefore, there is an increasing need to develop new environmentally friendly, efficient, and reliable strategies for controlling plant bacterial diseases, and among them, the use of nanoparticles seems promising. The present study aimed to evaluate the feasibility of protecting plants against attacks of gram-negative and gram-positive phytopathogenic bacteria by using electrochemically synthesized silver ultra nanoclusters (ARGIRIUM­SUNCs®) with an average size of 1.79 nm and characterized by rare oxidative states (Ag2+/3+). ARGIRIUM­SUNCs strongly inhibited the in vitro growth (effective concentration, EC50, less than 1 ppm) and biofilm formation of Pseudomonas syringae pv. tomato and of quarantine bacteria Xanthomonas vesicatoria, Xylella fastidiosa subsp. pauca, and Clavibacter michiganensis subsp. michiganensis. In addition, treatments with ARGIRIUM­SUNCs also provoked the eradication of biofilm for P. syringae pv. tomato, X. vesicatoria, and C. michiganensis subsp. michiganensis. Treatment of tomato plants via root absorption with ARGIRIUM­SUNCs (10 ppm) is not phytotoxic and protected (80%) the plants against P. syringae pv. tomato attacks. ARGIRIUM­SUNCs at low doses induced hormetic effects on P. syringae pv. tomato, X. vesicatoria, and C. michiganensis subsp. michiganensis as well as on tomato root growth. The use of ARGIRIUM­SUNCs in protecting plants against phytopathogenic bacteria is a possible alternative control measure. KEY POINTS: • ARGIRIUM­SUNC has strong antimicrobial activities against phytopathogenic bacteria; • ARGIRIUM­SUNC inhibits biofilm formation at low doses; • ARGIRIUM­SUNC protects tomato plants against bacterial speck disease.


Assuntos
Cobre , Prata , Humanos , Prata/farmacologia , Cobre/farmacologia , Clavibacter , Estresse Oxidativo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
6.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982399

RESUMO

Penicillin-binding proteins (PBPs) are considered essential for bacterial peptidoglycan biosynthesis and cell wall assembly. Clavibacter michiganensis is a representative Gram-positive bacterial species that causes bacterial canker in tomato. pbpC plays a significant role in maintaining cell morphological characteristics and stress responses in C. michiganensis. The current study demonstrated that the deletion of pbpC commonly enhances bacterial pathogenicity in C. michiganensis and revealed the mechanisms through which this occurs. The expression of interrelated virulence genes, including celA, xysA, xysB, and pelA, were significantly upregulated in △pbpC mutants. Compared with those in wild-type strains, exoenzyme activities, the formation of biofilm, and the production of exopolysaccharides (EPS) were significantly increased in △pbpC mutants. It is noteworthy that EPS were responsible for the enhancement in bacterial pathogenicity, with the degree of necrotic tomato stem cankers intensifying with the injection of a gradient of EPS from C. michiganensis. These findings highlight new insights into the role of pbpC affecting bacterial pathogenicity, with an emphasis on EPS, advancing the current understanding of phytopathogenic infection strategies for Gram-positive bacteria.


Assuntos
Micrococcaceae , Solanum lycopersicum , Virulência/genética , Bactérias Gram-Positivas , Biofilmes , Doenças das Plantas/microbiologia
7.
Mol Plant Microbe Interact ; 35(1): 4-14, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34543054

RESUMO

Plant-pathogenic bacteria in the genus Clavibacter are important quarantine species that cause considerable economic loss worldwide. The development of effective gene editing techniques and additional selectable markers is essential to expedite gene functional analysis in this important Gram-positive genus. The current study details a highly efficient unmarked CRISPR/Cas9-mediated gene editing system in Clavibacter michiganensis, which couples the expression of cas9 and single-guide RNA with homology-directed repair templates and the negative selectable marker codA::upp within a single plasmid. Initial experiments indicated that CRISPR/Cas9-mediated transformation could be utilized for both site-directed mutagenesis, in which an A to G point mutation was introduced at the 128th nucleotide of the C. michiganensis rpsL gene to generate a streptomycin-resistant mutant, and complete gene knockout, in which the deletion of the C. michiganensis celA or katA genes resulted in transformants that lacked cellulase and catalase activity, respectively. In subsequent experiments, the introduction of the codA::upp cassette into the transformation vector facilitated the counterselection of unmarked transformants by incubation in the absence of the selective antibiotic, followed by plating on M9 agar containing 5-fluorocytosine at 100 µg/ml, in which an unmarked katA mutant lacking the transformation vector was recovered. Compared with conventional homologous recombination, the unmarked CRISPR/Cas9-mediated system was more useful and convenient because it allowed the template plasmid to be reused repeatedly to facilitate the editing of multiple genes, which constitutes a major advancement that could revolutionize research into C. michiganensis and other Clavibacter spp.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Clavibacter , Flucitosina
8.
Arch Microbiol ; 204(11): 687, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324009

RESUMO

Antimicrobial proteins and peptides are an alternative to current antibiotics. Here, we report an antimicrobial activity in a low-molecular-weight protein secreted naturally by Streptomyces lividans TK24 when glucose or glycerol were used as carbon sources. The antimicrobial activity was demonstrated against Bacillus subtilis, Bacillus cereus, Kokuria rhizophila, Clostridium sporogenes and Clavibacter michiganensis, causal pathogen of tomato bacterial canker; one of the most destructive bacterial diseases of this crop. The protein fraction with antimicrobial activity was identified and quantified by LC-MS/MS. From a total of 155 proteins, 11 were found to be within the range of 11.3-13.9 kDa of which four proteins were selected by functional analysis as possibly responsible for the antimicrobial activity. Protein fractionation, correlation analysis between antimicrobial activity and abundance of selected proteins, as well as transcriptional expression analysis, indicate that 50S ribosomal protein L19 is the main candidate responsible for antimicrobial activity.


Assuntos
Anti-Infecciosos , Micrococcaceae , Solanum lycopersicum , Streptomyces lividans , Cromatografia Líquida , Espectrometria de Massas em Tandem , Solanum lycopersicum/microbiologia , Anti-Infecciosos/farmacologia
9.
Phytopathology ; 112(9): 1844-1858, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35341314

RESUMO

The viable but nonculturable (VBNC) state is a unique survival strategy of bacteria in response to stress conditions. It was confirmed that Clavibacter michiganensis, the causal agent of bacterial canker in tomato, could be induced into the VBNC state by exposure to CuSO4 in an oligotrophic solution. RNA-sequencing analysis was used to monitor the mechanisms of the VBNC state during CuSO4 induction in C. michiganensis. The results identified that numerous genes involved in stringent response, copper resistance, and stress resistance were upregulated, and some involved in cell division were downregulated significantly. The study investigated the importance of Rel, which is an essential enzyme in the synthesis of the molecular alarmone ppGpp, via the generation of a Δrel mutant and its complementation strain. Biological characterization revealed that deficiency of rel reduced the bacterial growth, production of exopolysaccharides, and pathogenicity as well as ppGpp production. The Δrel mutant increased the sensitivity to environmental stress, exhibiting reduced growth on minimal media and a propensity to enter the VBNC state in response to CuSO4. These findings have important implications for the understanding of survival mechanism and management of C. michiganensis and other phytopathogenic bacteria.


Assuntos
Micrococcaceae , Solanum lycopersicum , Clavibacter , Guanosina Tetrafosfato , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Análise de Sequência de RNA , Virulência
10.
Plant Dis ; 106(2): 395-405, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34569829

RESUMO

Clavibacter michiganensis subsp. michiganensis, the cause of bacterial canker disease, is one of the most destructive pathogens in greenhouse and field tomato. The pathogen is now present in all main production areas of tomato and is widely distributed in the European and Mediterranean Plant Protection Organization region. The inspection and quarantine of the plant pathogens relies heavily on accurate detection tools. Primers and probes reported in previous studies do not distinguish the C. michiganensis subsp. michiganensis pathogen from other closely related subspecies of C. michiganensis, especially the nonpathogenic subspecies that were identified from tomato seeds recently. Here, we have developed a droplet digital PCR (ddPCR) method for the identification of this specific bacterium with primers/TaqMan probe set designed based on the pat-1 gene of C. michiganensis subsp. michiganensis. This new primers/probe set has been evaluated by real-time PCR (qPCR) and ddPCR. The detection results suggest that the ddPCR method established in this study was highly specific for the target strains. The result showed the positive amplification for all five C. michiganensis subsp. michiganensis strains, and no amplification was observed for the other 43 tested bacteria, including the closely related C. michiganensis strains. The detection threshold of ddPCR was 10.8 CFU/ml for both pure C. michiganensis subsp. michiganensis cell suspensions and infected tomato seed, which was 100-fold more sensitive than qPCR performed using the same primers and probe. The data obtained suggest that our established ddPCR could detect C. michiganensis subsp. michiganensis even with low bacterial load, which could facilitate both C. michiganensis subsp. michiganensis inspection for pathogen quarantine and the routine pathogen detection for disease control of black canker in tomato.


Assuntos
Solanum lycopersicum , Primers do DNA/genética , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Sementes/microbiologia
11.
BMC Plant Biol ; 21(1): 476, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666675

RESUMO

Bacterial canker of tomato (Solanum lycopersicon) caused by the Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) is an economically important disease. To understand the host defense response to Cmm infection, transcriptome sequences in tomato cotyledons were analyzed by RNA-seq. Overall, 1788 and 540 genes were upregulated and downregulated upon infection, respectively. Gene Ontology enrichment analysis revealed that genes involved in the defense response, phosphorylation, and hormone signaling were over-represented by the infection. Induced expression of defense-associated genes suggested that the tomato response to Cmm showed similarities to common plant disease responses. After infection, many resistance gene analogs (RGAs) were transcriptionally upregulated, including the expressions of some receptor-like kinases (RLKs) involved in pattern-triggered immunity. The expressions of WRKYs, NACs, HSFs, and CBP60s encoding transcription factors (TFs) reported to regulate defense-associated genes were induced after infection with Cmm. Tomato genes orthologous to Arabidopsis EDS1, EDS5/SID1, and PAD4/EDS9, which are causal genes of salicylic acid (SA)-deficient mutants, were upregulated after infection with Cmm. Furthermore, Cmm infection drastically stimulated SA accumulation in tomato cotyledons. Genes involved in the phenylalanine ammonia lyase pathway were upregulated, whereas metabolic enzyme gene expression in the isochorismate synthase pathway remained unchanged. Exogenously applied SA suppressed bacterial growth and induced the expression of WRKYs, suggesting that some Cmm-responsive genes are regulated by SA signaling, and SA signaling activation should improve tomato immunity against Cmm.


Assuntos
Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Ácido Salicílico/metabolismo , Solanum lycopersicum/genética , Transcriptoma , Clavibacter/crescimento & desenvolvimento , Clavibacter/fisiologia , Cotilédone/genética , Cotilédone/microbiologia , Cotilédone/fisiologia , Perfilação da Expressão Gênica , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Regulação para Cima
12.
J Appl Microbiol ; 131(3): 1405-1416, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33484618

RESUMO

AIM: Clavibacter michiganensis (Cm) is a seed-borne plant pathogen that significantly reduces tomato production worldwide. Due to repeated outbreaks and rapid spread of the disease, seeds/transplants need to be certified free of the pathogen before planting. To this end, we developed a multiplex TaqMan qPCR assay that can accurately detect Cm in infected samples. METHODS AND RESULTS: A specific region of Cm (clvG gene) was selected for primer design using comparative genomics approach. A fully synthetic universal internal control (UIC) was also designed to detect PCR inhibitors and false-negative results in qPCRs. The Cm primers can be used alone or in a triplex TaqMan qPCR assay with UIC and previously described Clavibacter primers. The assay was specific for Cm and detected up to 10 fg of Cm DNA in sensitivity and spiked assays. Addition of the UIC did not change the specificity or sensitivity of the multiplex TaqMan qPCR assay. CONCLUSION: The triplex TaqMan qPCR provides a specific and sensitive diagnostic assay for Cm. SIGNIFICANCE AND IMPACT OF THE STUDY: This assay can be used for biosecurity surveillance, routine diagnostics, estimating bacterial titres in infected material and for epidemiological studies. The UIC is fully synthetic, efficiently amplified and multiplex compatible with any other qPCR assay.


Assuntos
Clavibacter/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Genômica , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia
13.
Plant Dis ; 105(6): 1581-1595, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33107795

RESUMO

The gram-positive actinobacterium Clavibacter michiganensis is the causal agent of bacterial canker of tomato, an economically impactful disease with a worldwide distribution. This seedborne pathogen systemically colonizes tomato xylem leading to unilateral leaflet wilt, marginal leaf necrosis, stem and petiole cankers, and plant death. Additionally, splash dispersal of the bacterium onto fruit exteriors causes bird's-eye lesions, which are characterized as necrotic centers surrounded by white halos. The pathogen can colonize developing seeds systemically through xylem and through penetration of fruit tissues from the exterior. There are currently no commercially available resistant cultivars, and bactericidal sprays have limited efficacy for managing the disease once the pathogen is in the vascular system. In this review, we summarize research on epidemiology, host colonization, the bacterial genetics underlying virulence, and management of bacterial canker. Finally, we highlight important areas of research into this pathosystem that have the potential to generate new strategies for prevention and mitigation of bacterial canker.


Assuntos
Actinobacteria , Actinomycetales , Solanum lycopersicum , Doenças das Plantas , Virulência
14.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31924620

RESUMO

Members of the genus Clavibacter are economically important bacterial plant pathogens infecting a set of diverse agricultural crops (e.g., alfalfa, corn, potato, tomato, and wheat). Tomato-associated Clavibacter sp. strains account for a great portion of the genetic diversity of the genus, and C. michiganensissensu stricto (formerly C. michiganensis subsp. michiganensis), causing bacterial canker disease, is considered one of the most destructive seed-borne agents for the crop worldwide. However, current taxonomic descriptions of the genus do not reflect the existing diversity of the strains, resulting in unsatisfactory results in quarantine surveys for the pathogens. In this study, we used all the available genome sequences of Clavibacter sp. strains, including the type strains of newly described subspecies, to provide precise insight into the diversity of tomato-associated members of the genus and further clarify the taxonomic status of the strains using genotypic and phenotypic features. The results of phylogenetic analyses revealed the existence of nine hypothetical new species among the investigated strains. None of the three new subspecies (i.e., C. michiganensis subsp. californiensis, C. michiganensis subsp. chilensis, and C. michiganensis subsp. phaseoli) is included within the tomato-pathogenic C. michiganensissensu stricto lineage. Although comparative genomics revealed the lack of chp and tomA pathogenicity determinant gene clusters in the nonpathogenic strains, a number of pathogenicity-related genes were noted to be present in all the strains regardless of their pathogenicity characteristics. Altogether, our results indicate a need for a formal taxonomic reconsideration of tomato-associated Clavibacter sp. strains to facilitate differentiation of the lineages in quarantine inspections.IMPORTANCEClavibacter spp. are economically important bacterial plant pathogens infecting a set of diverse agricultural crops, such as alfalfa, corn, pepper, potato, tomato, and wheat. A number of plant-pathogenic members of the genus (e.g., C. michiganensissensu stricto and C. sepedonicus, infecting tomato and potato plants, respectively) are included in the A2 (high-risk) list of quarantine pathogens by the European and Mediterranean Plant Protection Organization (EPPO). Although tomato-associated members of Clavibacter spp. account for a significant portion of the genetic diversity in the genus, only the strains belonging to C. michiganensissensu stricto (formerly C. michiganensis subsp. michiganensis) cause bacterial canker disease of tomato and are subjected to the quarantine inspections. Hence, discrimination between the pathogenic and nonpathogenic Clavibacter sp. strains associated with tomato seeds and transplants plays a pivotal role in the accurate detection and cost-efficient management of the disease. On the other hand, detailed information on the genetic contents of different lineages of the genus would lead to the development of genome-informed specific detection techniques. In this study, we have provided an overview of the phylogenetic and genomic differences between the pathogenic and nonpathogenic tomato-associated Clavibacter sp. strains. We also noted that the taxonomic status of newly introduced subspecies of C. michiganensis (i.e., C. michiganensis subsp. californiensis, C. michiganensis subsp. chilensis, and C. michiganensis subsp. phaseoli) should be reconsidered.


Assuntos
Actinobacteria/classificação , Variação Genética , Genoma Bacteriano , Interações Hospedeiro-Patógeno , Filogenia , Solanum lycopersicum/microbiologia , Actinobacteria/genética , Genômica
15.
Phytopathology ; 110(3): 574-581, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31725349

RESUMO

Clavibacter michiganensis is the Gram-positive causal agent of bacterial canker of tomato, an economically devastating disease with a worldwide distribution. C. michiganensis colonizes the xylem, leading to unilateral wilt, stem canker, and plant death. C. michiganensis can also infect developing tomato fruit through splash dispersal, forming exterior bird's eye lesions. There are no documented sources of qualitative resistance in Solanum spp.; however, quantitative trait loci conferring tolerance in Solanum arcanum and Solanum habrochaites have been identified. Mechanisms of tolerance and C. michiganensis colonization patterns in wild tomato species remain poorly understood. This study describes differences in symptom development and colonization patterns of the wild type (WT) and a hypervirulent bacterial expansin knockout (ΔCmEXLX2) in wild and cultivated tomato genotypes. Overall, WT and ΔCmEXLX2 cause less severe symptoms in wild tomato species and are impeded in spread and colonization of the vascular system. Laser scanning confocal microscopy and scanning electron microscopy were used to observe preferential colonization of protoxylem vessels and reduced intravascular spread in wild tomatoes. Differences in C. michiganensis in vitro growth and aggregation were determined in xylem sap, which may suggest that responses to pathogen colonization are occurring, leading to reduced colonization density in wild tomato species. Finally, wild tomato fruit was determined to be susceptible to C. michiganensis through in vivo inoculations and assessing lesion numbers and size. Fruit symptom severity was in some cases unrelated to severity of symptoms during vascular infection, suggesting different mechanisms for colonization of different tissues.


Assuntos
Actinomycetales , Infecções , Solanum lycopersicum , Solanum , Actinobacteria , Clavibacter , Humanos , Doenças das Plantas
16.
Phytopathology ; 110(3): 556-566, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31799900

RESUMO

Clavibacter michiganensis is a Gram-positive bacterial pathogen that proliferates in the xylem vessels of tomato, causing bacterial wilt and canker symptoms. Accurate detection is a crucial step in confirming outbreaks of bacterial canker and developing management strategies. A major problem with existing detection methods are false-positive and -negative results. Here, we report the use of comparative genomics of 37 diverse Clavibacter strains, including 21 strains sequenced in this study, to identify specific sequences that are C. michiganensis detection targets. Genome-wide phylogenic analyses revealed additional diversity within the genus Clavibacter. Pathogenic C. michiganensis strains varied in plasmid composition, highlighting the need for detection methods based on chromosomal targets. We utilized sequences of C. michiganensis-specific loci to develop a multiplex PCR-based diagnostic platform using two C. michiganensis chromosomal genes (rhuM and tomA) and an internal control amplifying both bacterial and plant DNA (16s ribosomal RNA). The multiplex PCR assay specifically detected C. michiganensis strains from a panel of 110 additional bacteria, including other Clavibacter spp. and bacterial pathogens of tomato. The assay was adapted to detect the presence of C. michiganensis in seed and tomato plant materials with high sensitivity and specificity. In conclusion, the described method represents a robust, specific tool for detection of C. michiganensis in tomato seed and infected plants.


Assuntos
Micrococcaceae , Solanum lycopersicum , Actinobacteria , Clavibacter , Genômica , Reação em Cadeia da Polimerase Multiplex , Doenças das Plantas
17.
Microb Pathog ; 130: 196-203, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30878620

RESUMO

A total of 150 rhizobacteria and endorhizobacteria previously isolated from three different horticultural crops; strawberry, apple and apricot were screened for antagonistic activitiy against Clavibacter michiganensis ssp. michiganensis. Among them strain S1, exhibiting significantly higher antagonistic and plant growth promoting ability was characterized as Bacillus amyloliquefaciens based on morphological, biochemical and partial gene sequence analysis of 16S rRNA. B. amyloliquefaciens strain S1 showed maximum growth inhibition of C. michiganensis (12 mm). Moreover, B. amyloliquefaciens strain S1 exhibit significant phosphorus solubilization (94.16 %SEl) and indole acetic acid (27 µg ml-1) production under in vitro conditions. Antagonistic activity of Bacillus amyloliquefaciens strain S1 was compared with other four strains KU2S1, R2S(1), RG1(3) and AG1(7) against bacterial canker of tomato under net house conditions. Minimum bacterial canker disease incidence (30.0%) was recorded in B. amyloliquefaciens S1 followed by RG1(3) after 30 days of inoculation. The bio-control efficacy was higher in B. amyloliquefaciens S1 treated plants, followed by RG1(3).


Assuntos
Actinobacteria/crescimento & desenvolvimento , Antibiose , Bacillus amyloliquefaciens/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Solanum lycopersicum/microbiologia , Bacillus amyloliquefaciens/classificação , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/isolamento & purificação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Indolacéticos/metabolismo , Fósforo/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
Int J Syst Evol Microbiol ; 69(7): 2069, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31091183

RESUMO

To complete the valid publication of the new species names resulting from reclassification of the genus Clavibacter, we here provide descriptions of Clavibacter insidiosus sp. nov. and Clavibacter tessellarius sp. nov.


Assuntos
Micrococcaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Genes Bacterianos , Hibridização de Ácido Nucleico , Análise de Sequência de DNA
19.
J Appl Microbiol ; 126(2): 388-401, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30307676

RESUMO

AIMS: Clavibacter michiganensis is an important bacterial plant pathogen that causes vast destruction to agriculturally important crops worldwide. Early detection is critical to evaluate disease progression and to implement efficient control measures to avoid serious epidemics. In this study, we developed a sensitive, specific and robust loop-mediated isothermal amplification (LAMP) assay for detection of all known subspecies of C. michiganensis. METHODS AND RESULTS: Whole genome comparative genomics approach was taken to identify a unique and conserved region within all known subspecies of C. michiganensis. Primer specificity was evaluated in silico and with 64 bacterial strains included in inclusivity and exclusivity panels; no false positives or false negatives were detected. Both the sensitivity and spiked assay of the developed LAMP assay was 1 fg of the pathogen DNA per reaction. A 100% accuracy was observed when tested with infected plant samples. CONCLUSIONS: The developed LAMP assay is simple, sensitive, robust and easy to perform using different detection platforms and chemistries. SIGNIFICANCE AND IMPACT OF THE STUDY: The developed LAMP assay can detect all known subspecies of C. michiganensis. The LAMP process can be performed isothermally at 65°C and results can be visually assessed, which makes this technology a promising tool for monitoring the disease progression and for accurate pathogen detection at point-of-care.


Assuntos
Micrococcaceae/classificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Genoma Bacteriano , Micrococcaceae/genética , Micrococcaceae/isolamento & purificação , Sensibilidade e Especificidade
20.
Phytopathology ; 109(11): 1849-1858, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31334679

RESUMO

Clavibacter michiganensis is the causal agent of bacterial canker of tomato, which causes significant economic losses because of the lack of resistant tomato varieties. Chemical control with streptomycin or cupric bactericides is the last defensive line in canker disease management. Streptomycin is an aminoglycoside antibiotic that inhibits protein synthesis and targets the 30S ribosomal protein RpsL. Streptomycin has been used to control multiple plant bacterial diseases. However, identification and characterization of streptomycin resistance in C. michiganensis have remained unexplored. In this study, a naturally occurring C. michiganensis strain TX-0702 exhibiting spontaneous streptomycin resistance was identified, with a minimum inhibitory concentration of 128 µg/ml. Additionally, an induced streptomycin-resistant strain BT-0505-R was generated by experimental evolution of the sensitive C. michiganensis strain BT-0505. Genome sequencing and functional analyses were used to identify the genes conferring resistance. A point mutation at the 128th nucleotide in the rpsL gene of strain BT-0505-R is responsible for conferring streptomycin resistance. However, in TX-0702, resistance is not attributed to mutation of rpsL, streptomycin inactivation enzymes, or multidrug efflux pumps. The mechanism of resistance in TX-0702 is independent of previously reported bacterial loci. Taken together, these data highlight diverse mechanisms used by a Gram-positive plant pathogenic bacterium to confer antibiotic resistance.


Assuntos
Micrococcaceae , Solanum lycopersicum , Farmacorresistência Bacteriana/genética , Genes Bacterianos/genética , Variação Genética , Micrococcaceae/efeitos dos fármacos , Micrococcaceae/genética , Proteínas Ribossômicas/genética , Estreptomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA