Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Am J Hum Genet ; 111(9): 2044-2058, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39142283

RESUMO

The ENIGMA research consortium develops and applies methods to determine clinical significance of variants in hereditary breast and ovarian cancer genes. An ENIGMA BRCA1/2 classification sub-group, formed in 2015 as a ClinGen external expert panel, evolved into a ClinGen internal Variant Curation Expert Panel (VCEP) to align with Food and Drug Administration recognized processes for ClinVar contributions. The VCEP reviewed American College of Medical Genetics and Genomics/Association of Molecular Pathology (ACMG/AMP) classification criteria for relevance to interpreting BRCA1 and BRCA2 variants. Statistical methods were used to calibrate evidence strength for different data types. Pilot specifications were tested on 40 variants and documentation revised for clarity and ease of use. The original criterion descriptions for 13 evidence codes were considered non-applicable or overlapping with other criteria. Scenario of use was extended or re-purposed for eight codes. Extensive analysis and/or data review informed specification descriptions and weights for all codes. Specifications were applied to pilot variants with pre-existing ClinVar classification as follows: 13 uncertain significance or conflicting, 14 pathogenic and/or likely pathogenic, and 13 benign and/or likely benign. Review resolved classification for 11/13 uncertain significance or conflicting variants and retained or improved confidence in classification for the remaining variants. Alignment of pre-existing ENIGMA research classification processes with ACMG/AMP classification guidelines highlighted several gaps in the research processes and the baseline ACMG/AMP criteria. Calibration of evidence strength was key to justify utility and strength of different data types for gene-specific application. The gene-specific criteria demonstrated value for improving ACMG/AMP-aligned classification of BRCA1 and BRCA2 variants.


Assuntos
Proteína BRCA1 , Proteína BRCA2 , Variação Genética , Humanos , Proteína BRCA2/genética , Proteína BRCA1/genética , Feminino , Neoplasias da Mama/genética , Genômica/métodos , Bases de Dados Genéticas , Neoplasias Ovarianas/genética , Predisposição Genética para Doença , Testes Genéticos/métodos
2.
Am J Hum Genet ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39357517

RESUMO

Pathogenic constitutional APC variants underlie familial adenomatous polyposis, the most common hereditary gastrointestinal polyposis syndrome. To improve variant classification and resolve the interpretative challenges of variants of uncertain significance (VUSs), APC-specific variant classification criteria were developed by the ClinGen-InSiGHT Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP) based on the criteria of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP). A streamlined algorithm using the APC-specific criteria was developed and applied to assess all APC variants in ClinVar and the International Society for Gastrointestinal Hereditary Tumours (InSiGHT) international reference APC Leiden Open Variation Database (LOVD) variant database, which included a total of 10,228 unique APC variants. Among the ClinVar and LOVD variants with an initial classification of (likely) benign or (likely) pathogenic, 94% and 96% remained in their original categories, respectively. In contrast, 41% ClinVar and 61% LOVD VUSs were reclassified into clinically meaningful classes, the vast majority as (likely) benign. The total number of VUSs was reduced by 37%. In 24 out of 37 (65%) promising APC variants that remained VUS despite evidence for pathogenicity, a data-mining-driven work-up allowed their reclassification as (likely) pathogenic. These results demonstrated that the application of APC-specific criteria substantially reduced the number of VUSs in ClinVar and LOVD. The study also demonstrated the feasibility of a systematic approach to variant classification in large datasets, which might serve as a generalizable model for other gene- or disease-specific variant interpretation initiatives. It also allowed for the prioritization of VUSs that will benefit from in-depth evidence collection. This subset of APC variants was approved by the VCEP and made publicly available through ClinVar and LOVD for widespread clinical use.

3.
Am J Hum Genet ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39317201

RESUMO

The ClinGen Hereditary Breast, Ovarian, and Pancreatic Cancer (HBOP) Variant Curation Expert Panel (VCEP) is composed of internationally recognized experts in clinical genetics, molecular biology, and variant interpretation. This VCEP made specifications for the American College of Medical Genetics and Association for Molecular Pathology (ACMG/AMP) guidelines for the ataxia telangiectasia mutated (ATM) gene according to the ClinGen protocol. These gene-specific rules for ATM were modified from the ACMG/AMP guidelines and were tested against 33 ATM variants of various types and classifications in a pilot curation phase. The pilot revealed a majority agreement between the HBOP VCEP classifications and the ClinVar-deposited classifications. Six pilot variants had conflicting interpretations in ClinVar, and re-evaluation with the VCEP's ATM-specific rules resulted in four that were classified as benign, one as likely pathogenic, and one as a variant of uncertain significance (VUS) by the VCEP, improving the certainty of interpretations in the public domain. Overall, 28 of the 33 pilot variants were not VUS, leading to an 85% classification rate. The ClinGen-approved, modified rules demonstrated value for improved interpretation of variants in ATM.

4.
Am J Hum Genet ; 110(7): 1046-1067, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352859

RESUMO

The American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP) framework for classifying variants uses six evidence categories related to the splicing potential of variants: PVS1, PS3, PP3, BS3, BP4, and BP7. However, the lack of guidance on how to apply such codes has contributed to variation in the specifications developed by different Clinical Genome Resource (ClinGen) Variant Curation Expert Panels. The ClinGen Sequence Variant Interpretation Splicing Subgroup was established to refine recommendations for applying ACMG/AMP codes relating to splicing data and computational predictions. We utilized empirically derived splicing evidence to (1) determine the evidence weighting of splicing-related data and appropriate criteria code selection for general use, (2) outline a process for integrating splicing-related considerations when developing a gene-specific PVS1 decision tree, and (3) exemplify methodology to calibrate splice prediction tools. We propose repurposing the PVS1_Strength code to capture splicing assay data that provide experimental evidence for variants resulting in RNA transcript(s) with loss of function. Conversely, BP7 may be used to capture RNA results demonstrating no splicing impact for intronic and synonymous variants. We propose that the PS3/BS3 codes are applied only for well-established assays that measure functional impact not directly captured by RNA-splicing assays. We recommend the application of PS1 based on similarity of predicted RNA-splicing effects for a variant under assessment in comparison with a known pathogenic variant. The recommendations and approaches for consideration and evaluation of RNA-assay evidence described aim to help standardize variant pathogenicity classification processes when interpreting splicing-based evidence.


Assuntos
Variação Genética , Genoma Humano , Humanos , Estados Unidos , Genômica/métodos , Alelos , Splicing de RNA/genética , Testes Genéticos/métodos
5.
Genet Med ; 26(2): 100992, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37800450

RESUMO

PURPOSE: The Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP) was established by the International Society for Gastrointestinal Hereditary Tumours and the Clinical Genome Resource, who set out to develop recommendations for the interpretation of germline APC variants underlying Familial Adenomatous Polyposis, the most frequent hereditary polyposis syndrome. METHODS: Through a rigorous process of database analysis, literature review, and expert elicitation, the APC VCEP derived gene-specific modifications to the ACMG/AMP (American College of Medical Genetics and Genomics and Association for Molecular Pathology) variant classification guidelines and validated such criteria through the pilot classification of 58 variants. RESULTS: The APC-specific criteria represented gene- and disease-informed specifications, including a quantitative approach to allele frequency thresholds, a stepwise decision tool for truncating variants, and semiquantitative evaluations of experimental and clinical data. Using the APC-specific criteria, 47% (27/58) of pilot variants were reclassified including 14 previous variants of uncertain significance (VUS). CONCLUSION: The APC-specific ACMG/AMP criteria preserved the classification of well-characterized variants on ClinVar while substantially reducing the number of VUS by 56% (14/25). Moving forward, the APC VCEP will continue to interpret prioritized lists of VUS, the results of which will represent the most authoritative variant classification for widespread clinical use.


Assuntos
Polipose Adenomatosa do Colo , Testes Genéticos , Humanos , Testes Genéticos/métodos , Variação Genética , Polipose Adenomatosa do Colo/diagnóstico , Polipose Adenomatosa do Colo/genética , Mutação em Linhagem Germinativa/genética , Células Germinativas
6.
Mol Genet Metab ; 143(1-2): 108572, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39265286

RESUMO

INTRODUCTION: Diseases caused by lysosomal dysfunction often exhibit multisystemic involvement, resulting in substantial morbidity and mortality. Ensuring accurate diagnoses for individuals with lysosomal diseases (LD) is of great importance, especially with the increasing prominence of genetic testing as a primary diagnostic method. As the list of genes associated with LD continues to expand due to the use of more comprehensive tests such as exome and genome sequencing, it is imperative to understand the clinical validity of the genes, as well as identify appropriate genes for inclusion in multi-gene testing and sequencing panels. The Clinical Genome Resource (ClinGen) works to determine the clinical importance of genes and variants to support precision medicine. As part of this work, ClinGen has developed a semi-quantitative framework to assess the strength of evidence for the role of a gene in a disease. Given the diversity in gene composition across LD panels offered by various laboratories and the evolving comprehension of genetic variants affecting secondary lysosomal functions, we developed a scoring system to define LD (Lysosomal Disease Scoring System - LDSS). This system sought to aid in the prioritization of genes for clinical validity curation and assess their suitability for LD-targeted sequencing panels. METHODS: Through literature review encompassing terms associated with both classically designated LD and LFRD, we identified 14 criteria grouped into "Overall Definition," "Phenotype," and "Pathophysiology." These criteria included concepts such as the "accumulation of undigested or partially digested macromolecules within the lysosome" and being "associated with a wide spectrum of clinical manifestations impacting multiple organs and systems." The criteria, along with their respective weighted values, underwent refinement through expert panel evaluation differentiating them between "major" and "minor" criteria. Subsequently, the LDSS underwent validation on 12 widely acknowledged LD and was later tested by applying these criteria to the Lysosomal Disease Network's (LDN) official Gene List. RESULTS: The final LDSS comprised 4 major criteria and 10 minor criteria, with a cutoff of 2 major or 1 major and 3 minor criteria established to define LD. Interestingly, when applied to both the LDN list and a comprehensive gene list encompassing genes included in clinical panels and published as LFRD genes, we identified four genes (GRN, SLC29A3, CLN7 and VPS33A) absent from the LDN list, that were deemed associated with LD. Conversely, a subset of non-classic genes included in the LDN list, such as MTOR, OCRL, and SLC9A6, received lower LDSS scores for their associated disease entities. While these genes may not be suitable for inclusion in clinical LD multi-gene panels, they could be considered for inclusion on other, non-LD gene panels. DISCUSSION: The LDSS offers a systematic approach to prioritize genes for clinical validity assessment. By identifying genes with high scores on the LDSS, this method enhanced the efficiency of gene curation by the ClinGen LD GCEP. CONCLUSION: The LDSS not only serves as a tool for gene prioritization prior to clinical validity curation, but also contributes to the ongoing discussion on the definition of LD. Moreover, the LDSS provides a flexible framework adaptable to future discoveries, ensuring its relevance in the ever-expanding landscape of LD research.


Assuntos
Testes Genéticos , Doenças por Armazenamento dos Lisossomos , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/diagnóstico , Testes Genéticos/métodos , Testes Genéticos/normas , Lisossomos/genética , Lisossomos/metabolismo , Bases de Dados Genéticas , Predisposição Genética para Doença
7.
Mol Genet Metab ; 143(3): 108593, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39426251

RESUMO

Lysosomal diseases (LDs) are a heterogeneous group of rare genetic disorders that result in impaired lysosomal function, leading to progressive multiorgan system dysfunction. Accurate diagnosis is paramount to initiating targeted therapies early in the disease process in addition to providing prognostic information and appropriate support for families. In recent years, genomic sequencing technologies have become the first-line approach in the diagnosis of LDs. Understanding the clinical validity of the role of a gene in a disease is critical for the development of genomic technologies, such as which genes to include on next generation sequencing panels, and the interpretation of results from exome and genome sequencing. To this aim, the ClinGen Lysosomal Diseases Gene Curation Expert Panel utilized a semi-quantitative framework incorporating genetic and experimental evidence to assess the clinical validity of the 56 LD-associated genes on the Lysosomal Disease Network's list. Here, we describe the results, and the key themes and challenges encountered.

8.
Hum Mutat ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-38084291

RESUMO

Germline pathogenic variants in DICER1 predispose individuals to develop a variety of benign and malignant tumors. Accurate variant curation and classification is essential for reliable diagnosis of DICER1-related tumor predisposition and identification of individuals who may benefit from surveillance. Since 2015, most labs have followed the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) sequence variant classification guidelines for DICER1 germline variant curation. However, these general guidelines lack gene-specific nuances and leave room for subjectivity. Consequently, a group of DICER1 experts joined ClinGen to form the DICER1 and miRNA-Processing Genes Variant Curation Expert Panel (VCEP), to create DICER1- specific ACMG/AMP guidelines for germline variant curation. The VCEP followed the FDA-approved ClinGen protocol for adapting and piloting these guidelines. A diverse set of 40 DICER1 variants were selected for piloting, including 14 known Pathogenic/Likely Pathogenic (P/LP) variants, 12 known Benign/Likely Benign (B/LB) variants, and 14 variants classified as variants of uncertain significance (VUS) or with conflicting interpretations in ClinVar. Clinically meaningful classifications (i.e., P, LP, LB, or B) were achieved for 82.5% (33/40) of the pilot variants, with 100% concordance among the known P/LP and known B/LB variants. Half of the VUS or conflicting variants were resolved with four variants classified as LB and three as LP. These results demonstrate that the DICER1-specific guidelines for germline variant curation effectively classify known pathogenic and benign variants while reducing the frequency of uncertain classifications. Individuals and labs curating DICER1 variants should consider adopting this classification framework to encourage consistency and improve objectivity.


Assuntos
Testes Genéticos , Neoplasias , Humanos , Testes Genéticos/métodos , Variação Genética , Genoma Humano , Genômica/métodos , Neoplasias/genética , Células Germinativas , Ribonuclease III/genética , RNA Helicases DEAD-box/genética
9.
Am J Hum Genet ; 107(1): 72-82, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32504544

RESUMO

Genetics researchers and clinical professionals rely on diversity measures such as race, ethnicity, and ancestry (REA) to stratify study participants and patients for a variety of applications in research and precision medicine. However, there are no comprehensive, widely accepted standards or guidelines for collecting and using such data in clinical genetics practice. Two NIH-funded research consortia, the Clinical Genome Resource (ClinGen) and Clinical Sequencing Evidence-generating Research (CSER), have partnered to address this issue and report how REA are currently collected, conceptualized, and used. Surveying clinical genetics professionals and researchers (n = 448), we found heterogeneity in the way REA are perceived, defined, and measured, with variation in the perceived importance of REA in both clinical and research settings. The majority of respondents (>55%) felt that REA are at least somewhat important for clinical variant interpretation, ordering genetic tests, and communicating results to patients. However, there was no consensus on the relevance of REA, including how each of these measures should be used in different scenarios and what information they can convey in the context of human genetics. A lack of common definitions and applications of REA across the precision medicine pipeline may contribute to inconsistencies in data collection, missing or inaccurate classifications, and misleading or inconclusive results. Thus, our findings support the need for standardization and harmonization of REA data collection and use in clinical genetics and precision health research.


Assuntos
Coleta de Dados/normas , Testes Genéticos/normas , Adulto , Criança , Etnicidade , Feminino , Variação Genética/genética , Genômica/normas , Humanos , Masculino , Medicina de Precisão/normas , Proibitinas , Inquéritos e Questionários
10.
Mol Genet Metab ; 140(3): 107668, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37549443

RESUMO

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD) is a relatively common inborn error of metabolism, but due to difficulty in accurately predicting affected status through newborn screening, molecular confirmation of the causative variants by sequencing of the ACADVL gene is necessary. Although the ACMG/AMP guidelines have helped standardize variant classification, ACADVL variant classification remains disparate due to a phenotype that can be nonspecific, the possibility of variants that produce late-onset disease, and relatively high carrier frequency, amongst other challenges. Therefore, an ACADVL-specific variant curation expert panel (VCEP) was created to facilitate the specification of the ACMG/AMP guidelines for VLCADD. We expect these guidelines to help streamline, increase concordance, and expedite the classification of ACADVL variants.


Assuntos
Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Doenças Musculares , Humanos , Recém-Nascido , Acil-CoA Desidrogenase de Cadeia Longa/genética , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Testes Genéticos , Variação Genética , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Doenças Mitocondriais/genética , Doenças Musculares/genética
11.
Mol Genet Metab ; 140(1-2): 107715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37907381

RESUMO

Accurate determination of the clinical significance of genetic variants is critical to the integration of genomics in medicine. To facilitate this process, the NIH-funded Clinical Genome Resource (ClinGen) has assembled Variant Curation Expert Panels (VCEPs), groups of experts and biocurators which provide gene- and disease- specifications to the American College of Medical Genetics & Genomics and Association for Molecular Pathology's (ACMG/AMP) variation classification guidelines. With the goal of classifying the clinical significance of GAA variants in Pompe disease (Glycogen storage disease, type II), the ClinGen Lysosomal Diseases (LD) VCEP has specified the ACMG/AMP criteria for GAA. Variant classification can play an important role in confirming the diagnosis of Pompe disease as well as in the identification of carriers. Furthermore, since the inclusion of Pompe disease on the Recommended Uniform Screening Panel (RUSP) for newborns in the USA in 2015, the addition of molecular genetic testing has become an important component in the interpretation of newborn screening results, particularly for asymptomatic individuals. To date, the LD VCEP has submitted classifications and supporting data on 243 GAA variants to public databases, specifically ClinVar and the ClinGen Evidence Repository. Here, we describe the ACMG/AMP criteria specification process for GAA, an update of the GAA-specific variant classification guidelines, and comparison of the ClinGen LD VCEP's GAA variant classifications with variant classifications submitted to ClinVar. The LD VCEP has added to the publicly available knowledge on the pathogenicity of variants in GAA by increasing the number of expert-curated GAA variants present in ClinVar, and aids in resolving conflicting classifications and variants of uncertain clinical significance.


Assuntos
Variação Genética , Doença de Depósito de Glicogênio Tipo II , Recém-Nascido , Humanos , Estados Unidos , Testes Genéticos/métodos , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/genética , Genoma Humano , Genômica/métodos
12.
Hum Mutat ; 43(8): 1089-1096, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34510646

RESUMO

Accurate and consistent interpretation of sequence variants is integral to the delivery of safe and reliable diagnostic genetic services. To standardize the interpretation process, in 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published a joint guideline based on a set of shared standards for the classification of variants in Mendelian diseases. The generality of these standards and their subjective interpretation between laboratories has prompted efforts to reduce discordance of variant classifications, with a focus on the expert specification of the ACMG/AMP guidelines for individual genes or diseases. Herein, we describe our experience as a ClinGen Variant Curation Expert Panel to adapt the ACMG/AMP criteria for the classification of variants in three globin genes (HBB, HBA2, and HBA1) related to recessively inherited hemoglobinopathies, including five evidence categories, as use cases demonstrating the process of specification and the underlying rationale.


Assuntos
Genoma Humano , Hemoglobinopatias , Humanos , Testes Genéticos , Variação Genética , Hemoglobinopatias/diagnóstico , Hemoglobinopatias/genética , Patologia Molecular , Estados Unidos
13.
Genet Med ; 24(2): 293-306, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906454

RESUMO

PURPOSE: In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published consensus standardized guidelines for sequence-level variant classification in Mendelian disorders. To increase accuracy and consistency, the Clinical Genome Resource Familial Hypercholesterolemia (FH) Variant Curation Expert Panel was tasked with optimizing the existing ACMG/AMP framework for disease-specific classification in FH. In this study, we provide consensus recommendations for the most common FH-associated gene, LDLR, where >2300 unique FH-associated variants have been identified. METHODS: The multidisciplinary FH Variant Curation Expert Panel met in person and through frequent emails and conference calls to develop LDLR-specific modifications of ACMG/AMP guidelines. Through iteration, pilot testing, debate, and commentary, consensus among experts was reached. RESULTS: The consensus LDLR variant modifications to existing ACMG/AMP guidelines include (1) alteration of population frequency thresholds, (2) delineation of loss-of-function variant types, (3) functional study criteria specifications, (4) cosegregation criteria specifications, and (5) specific use and thresholds for in silico prediction tools, among others. CONCLUSION: Establishment of these guidelines as the new standard in the clinical laboratory setting will result in a more evidence-based, harmonized method for LDLR variant classification worldwide, thereby improving the care of patients with FH.


Assuntos
Genoma Humano , Hiperlipoproteinemia Tipo II , Testes Genéticos/métodos , Variação Genética/genética , Genoma Humano/genética , Genômica/métodos , Humanos , Hiperlipoproteinemia Tipo II/genética
14.
Genet Med ; 24(4): 924-930, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34955381

RESUMO

PURPOSE: According to the American College of Medical Genetics and Genomics/Association of Medical Pathology (ACMG/AMP) guidelines, in silico evidence is applied at the supporting strength level for pathogenic (PP3) and benign (BP4) evidence. Although PP3 is commonly used, less is known about the effect of these criteria on variant classification outcomes. METHODS: A total of 727 missense variants curated by Clinical Genome Resource expert groups were analyzed to determine how often PP3 and BP4 were applied and their impact on variant classification. The ACMG/AMP categorical system of variant classification was compared with a quantitative point-based system. The pathogenicity likelihood ratios of REVEL, VEST, FATHMM, and MPC were calibrated using a gold standard set of 237 pathogenic and benign variants (classified independent of the PP3/BP4 criteria). RESULTS: The PP3 and BP4 criteria were applied by Variant Curation Expert Panels to 55% of missense variants. Application of those criteria changed the classification of 15% of missense variants for which either criterion was applied. The point-based system resolved borderline classifications. REVEL and VEST performed best at a strength level consistent with moderate evidence. CONCLUSION: We show that in silico criteria are commonly applied and often affect the final variant classifications. When appropriate thresholds for in silico predictors are established, our results show that PP3 and BP4 can be used at a moderate strength.


Assuntos
Variação Genética , Genoma Humano , Humanos , Testes Genéticos/métodos , Variação Genética/genética , Genômica/métodos
15.
Genet Med ; 24(9): 1899-1908, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35616647

RESUMO

PURPOSE: Neurodevelopmental disorders (NDDs), such as intellectual disability (ID) and autism spectrum disorder (ASD), exhibit genetic and phenotypic heterogeneity, making them difficult to differentiate without a molecular diagnosis. The Clinical Genome Resource Intellectual Disability/Autism Gene Curation Expert Panel (GCEP) uses systematic curation to distinguish ID/ASD genes that are appropriate for clinical testing (ie, with substantial evidence supporting their relationship to disease) from those that are not. METHODS: Using the Clinical Genome Resource gene-disease validity curation framework, the ID/Autism GCEP classified genes frequently included on clinical ID/ASD testing panels as Definitive, Strong, Moderate, Limited, Disputed, Refuted, or No Known Disease Relationship. RESULTS: As of September 2021, 156 gene-disease pairs have been evaluated. Although most (75%) were determined to have definitive roles in NDDs, 22 (14%) genes evaluated had either Limited or Disputed evidence. Such genes are currently not recommended for use in clinical testing owing to the limited ability to assess the effect of identified variants. CONCLUSION: Our understanding of gene-disease relationships evolves over time; new relationships are discovered and previously-held conclusions may be questioned. Without periodic re-examination, inaccurate gene-disease claims may be perpetuated. The ID/Autism GCEP will continue to evaluate these claims to improve diagnosis and clinical care for NDDs.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética
16.
Hum Mutat ; 42(4): 359-372, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33565189

RESUMO

Cancer is one of the most important health issues globally and the accuracy of interpretation of cancer-related variants is critical for the clinical management of hereditary cancer. ClinGen Sequence Variant Interpretation Working Groups have developed many adaptations of American College of Medical Genetics and Genomics and the Association of Molecular Pathologists guidelines to improve the consistency of interpretation. We combined the most recent adaptations to expand the number of the criteria from 28 to 48 and developed a tool called Cancer SIGVAR to help genetic counselors interpret the clinical significance of cancer germline variants. Our tool can accept VCF files as input and realize fully automated interpretation based on 21 criteria and semiautomated interpretation based on 48 criteria. We validated the performance of our tool with the ClinVar and CLINVITAE benchmark databases, achieving an average consistency for pathogenic and benign assessment up to 93.71% and 79.38%, respectively. We compared Cancer SIGVAR with two similar tools, InterVar and PathoMAN, and analyzed the main differences in criteria and implementation. Furthermore, we selected 911 variants from another two in-house benchmark databases, and semiautomated interpretation reached an average classification consistency of 98.35%. Our findings highlight the need to optimize automated interpretation tools based on constantly updated guidelines. Cancer SIGVAR is publicly available at http://cancersigvar.bgi.com/.


Assuntos
Predisposição Genética para Doença , Neoplasias , Testes Genéticos , Variação Genética , Genoma Humano , Células Germinativas , Humanos , Neoplasias/genética , Software , Estados Unidos
17.
Circulation ; 141(6): 418-428, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31983240

RESUMO

BACKGROUND: Long QT syndrome (LQTS) is the first described and most common inherited arrhythmia. Over the last 25 years, multiple genes have been reported to cause this condition and are routinely tested in patients. Because of dramatic changes in our understanding of human genetic variation, reappraisal of reported genetic causes for LQTS is required. METHODS: Utilizing an evidence-based framework, 3 gene curation teams blinded to each other's work scored the level of evidence for 17 genes reported to cause LQTS. A Clinical Domain Channelopathy Working Group provided a final classification of these genes for causation of LQTS after assessment of the evidence scored by the independent curation teams. RESULTS: Of 17 genes reported as being causative for LQTS, 9 (AKAP9, ANK2, CAV3, KCNE1, KCNE2, KCNJ2, KCNJ5, SCN4B, SNTA1) were classified as having limited or disputed evidence as LQTS-causative genes. Only 3 genes (KCNQ1, KCNH2, SCN5A) were curated as definitive genes for typical LQTS. Another 4 genes (CALM1, CALM2, CALM3, TRDN) were found to have strong or definitive evidence for causality in LQTS with atypical features, including neonatal atrioventricular block. The remaining gene (CACNA1C) had moderate level evidence for causing LQTS. CONCLUSIONS: More than half of the genes reported as causing LQTS have limited or disputed evidence to support their disease causation. Genetic variants in these genes should not be used for clinical decision-making, unless accompanied by new and sufficient genetic evidence. The findings of insufficient evidence to support gene-disease associations may extend to other disciplines of medicine and warrants a contemporary evidence-based evaluation for previously reported disease-causing genes to ensure their appropriate use in precision medicine.


Assuntos
Bloqueio Atrioventricular/genética , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Síndrome do QT Longo/genética , Medicina Baseada em Evidências , Feminino , Humanos , Masculino , Estudos Multicêntricos como Assunto
18.
Hum Mutat ; 41(9): 1488-1498, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32442321

RESUMO

Null variants are prevalent within the human genome, and their accurate interpretation is critical for clinical management. In 2018, the ClinGen Sequence Variant Interpretation (SVI) Working Group refined the only criterion with a very strong pathogenicity rating (PVS1). To streamline PVS1 interpretation, we have developed an automatic classification tool with a graphical user interface called AutoPVS1. The performance of AutoPVS1 was assessed using 56 variants manually curated by the ClinGen's SVI Working Group; it achieved an interpretation concordance of 93% (52/56). A further analysis of 28,586 putative loss-of-function variants by AutoPVS1 demonstrated that at least 27.7% of them do not reach a very strong strength level, 17.5% because of variant-specific issues and 10.2% due to disease mechanism considerations. Notably, 41.0% (1,936/4,717) of splicing variants were assigned a decreased preliminary PVS1 strength level, a significantly greater fraction than in frameshift variants (13.2%) and nonsense variants (10.8%). Our results reinforce the necessity of considering variant-specific issues and disease mechanisms in variant interpretation and demonstrate that AutoPVS1 meets an urgent need by enabling biocurators to easily assign accurate, reliable and reproducible PVS1 strength levels in the process of variant interpretation. AutoPVS1 is publicly available at http://autopvs1.genetics.bgi.com/.


Assuntos
Genômica/métodos , Mutação com Perda de Função , Biologia Computacional/métodos , Genoma Humano , Humanos , Software , Interface Usuário-Computador
19.
Hum Mutat ; 41(8): 1365-1371, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32383249

RESUMO

Clinical guidelines consider expanded carrier screening (ECS) to be an acceptable method of carrier screening. However, broader guideline support and payer adoption require evidence for associations between the genes on ECS panels and the conditions for which they aim to identify carriers. We applied a standardized framework for evaluation of gene-disease association to assess the clinical validity of conditions screened by ECS panels. The Clinical Genome Resource (ClinGen) gene curation framework was used to assess genetic and experimental evidence of associations between 208 genes and conditions screened on two commercial ECS panels. Twenty-one conditions were previously classified by ClinGen, and the remaining 187 were evaluated by curation teams at two laboratories. To ensure consistent application of the framework across the laboratories, concordance was evaluated on a subset of conditions. All 208 evaluated conditions met the evidence threshold for supporting a gene-disease association. Furthermore, 203 of 208 (98%) achieved the strongest ("Definitive") level of gene-disease association. All conditions evaluated by both commercial laboratories were similarly classified. Assessment using the ClinGen standardized framework revealed strong evidence of gene-disease association for conditions on two ECS panels. This result establishes the disease-level clinical validity of the panels considered herein.


Assuntos
Triagem de Portadores Genéticos/métodos , Predisposição Genética para Doença , Biologia Computacional , Heterozigoto , Humanos
20.
Am J Hum Genet ; 100(6): 895-906, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28552198

RESUMO

With advances in genomic sequencing technology, the number of reported gene-disease relationships has rapidly expanded. However, the evidence supporting these claims varies widely, confounding accurate evaluation of genomic variation in a clinical setting. Despite the critical need to differentiate clinically valid relationships from less well-substantiated relationships, standard guidelines for such evaluation do not currently exist. The NIH-funded Clinical Genome Resource (ClinGen) has developed a framework to define and evaluate the clinical validity of gene-disease pairs across a variety of Mendelian disorders. In this manuscript we describe a proposed framework to evaluate relevant genetic and experimental evidence supporting or contradicting a gene-disease relationship and the subsequent validation of this framework using a set of representative gene-disease pairs. The framework provides a semiquantitative measurement for the strength of evidence of a gene-disease relationship that correlates to a qualitative classification: "Definitive," "Strong," "Moderate," "Limited," "No Reported Evidence," or "Conflicting Evidence." Within the ClinGen structure, classifications derived with this framework are reviewed and confirmed or adjusted based on clinical expertise of appropriate disease experts. Detailed guidance for utilizing this framework and access to the curation interface is available on our website. This evidence-based, systematic method to assess the strength of gene-disease relationships will facilitate more knowledgeable utilization of genomic variants in clinical and research settings.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Genômica , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA