Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 187(5): 1191-1205.e15, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38366592

RESUMO

Carbohydrate intolerance, commonly linked to the consumption of lactose, fructose, or sorbitol, affects up to 30% of the population in high-income countries. Although sorbitol intolerance is attributed to malabsorption, the underlying mechanism remains unresolved. Here, we show that a history of antibiotic exposure combined with high fat intake triggered long-lasting sorbitol intolerance in mice by reducing Clostridia abundance, which impaired microbial sorbitol catabolism. The restoration of sorbitol catabolism by inoculation with probiotic Escherichia coli protected mice against sorbitol intolerance but did not restore Clostridia abundance. Inoculation with the butyrate producer Anaerostipes caccae restored a normal Clostridia abundance, which protected mice against sorbitol-induced diarrhea even when the probiotic was cleared. Butyrate restored Clostridia abundance by stimulating epithelial peroxisome proliferator-activated receptor-gamma (PPAR-γ) signaling to restore epithelial hypoxia in the colon. Collectively, these mechanistic insights identify microbial sorbitol catabolism as a potential target for approaches for the diagnosis, treatment, and prevention of sorbitol intolerance.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos , Microbioma Gastrointestinal , Sorbitol , Animais , Camundongos , Antibacterianos/farmacologia , Butiratos , Clostridium , Escherichia coli , Sorbitol/metabolismo
2.
Biotechnol Bioeng ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956879

RESUMO

Acetogenic Clostridia are obligate anaerobes that have emerged as promising microbes for the renewable production of biochemicals owing to their ability to efficiently metabolize sustainable single-carbon feedstocks. Additionally, Clostridia are increasingly recognized for their biosynthetic potential, with recent discoveries of diverse secondary metabolites ranging from antibiotics to pigments to modulators of the human gut microbiota. Lack of efficient methods for genomic integration and expression of large heterologous DNA constructs remains a major challenge in studying biosynthesis in Clostridia and using them for metabolic engineering applications. To overcome this problem, we harnessed chassis-independent recombinase-assisted genome engineering (CRAGE) to develop a workflow for facile integration of large gene clusters (>10 kb) into the human gut acetogen Eubacterium limosum. We then integrated a non-ribosomal peptide synthetase gene cluster from the gut anaerobe Clostridium leptum, which previously produced no detectable product in traditional heterologous hosts. Chromosomal expression in E. limosum without further optimization led to production of phevalin at 2.4 mg/L. These results further expand the molecular toolkit for a highly tractable member of the Clostridia, paving the way for sophisticated pathway engineering efforts, and highlighting the potential of E. limosum as a Clostridial chassis for exploration of anaerobic natural product biosynthesis.

3.
Microb Cell Fact ; 23(1): 119, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659027

RESUMO

BACKGROUND: Clostridium spp. has demonstrated therapeutic potential in cancer treatment through intravenous or intratumoral administration. This approach has expanded to include non-pathogenic clostridia for the treatment of various diseases, underscoring the innovative concept of oral-spore vaccination using clostridia. Recent advancements in the field of synthetic biology have significantly enhanced the development of Clostridium-based bio-therapeutics. These advancements are particularly notable in the areas of efficient protein overexpression and secretion, which are crucial for the feasibility of oral vaccination strategies. Here, we present two examples of genetically engineered Clostridium candidates: one as an oral cancer vaccine and the other as an antiviral oral vaccine against SARS-CoV-2. RESULTS: Using five validated promoters and a signal peptide derived from Clostridium sporogenes, a series of full-length NY-ESO-1/CTAG1, a promising cancer vaccine candidate, expression vectors were constructed and transformed into C. sporogenes and Clostridium butyricum. Western blotting analysis confirmed efficient expression and secretion of NY-ESO-1 in clostridia, with specific promoters leading to enhanced detection signals. Additionally, the fusion of a reported bacterial adjuvant to NY-ESO-1 for improved immune recognition led to the cloning difficulties in E. coli. The use of an AUU start codon successfully mitigated potential toxicity issues in E. coli, enabling the secretion of recombinant proteins in C. sporogenes and C. butyricum. We further demonstrate the successful replacement of PyrE loci with high-expression cassettes carrying NY-ESO-1 and adjuvant-fused NY-ESO-1, achieving plasmid-free clostridia capable of secreting the antigens. Lastly, the study successfully extends its multiplex genetic manipulations to engineer clostridia for the secretion of SARS-CoV-2-related Spike_S1 antigens. CONCLUSIONS: This study successfully demonstrated that C. butyricum and C. sporogenes can produce the two recombinant antigen proteins (NY-ESO-1 and SARS-CoV-2-related Spike_S1 antigens) through genetic manipulations, utilizing the AUU start codon. This approach overcomes challenges in cloning difficult proteins in E. coli. These findings underscore the feasibility of harnessing commensal clostridia for antigen protein secretion, emphasizing the applicability of non-canonical translation initiation across diverse species with broad implications for medical or industrial biotechnology.


Assuntos
Clostridium butyricum , Clostridium , Proteínas Recombinantes , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , Clostridium/genética , Clostridium/metabolismo , Humanos , Proteínas Recombinantes/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/genética , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Administração Oral , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/imunologia , Vacinação , COVID-19/prevenção & controle , Engenharia Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regiões Promotoras Genéticas
4.
Antonie Van Leeuwenhoek ; 117(1): 24, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217723

RESUMO

A novel mesophilic bacterial strain, designated S502T, was isolated from a deep-sea hydrothermal vent at Suiyo Seamount, Japan. Cells were Gram-positive, asporogenous, motile, and curved rods, measuring 1.6-5.6 µm in length. The strain was an obligate anaerobe that grew fermentatively on complex substrates such as yeast extract and Bacto peptone. Elemental sulfur stimulated the growth of the strain, and was reduced to hydrogen sulfide. The strain grew within a temperature range of 10-23 °C (optimum at 20 °C), pH range of 4.8-8.3 (optimum at 7.4), and a NaCl concentration range of 1.0-4.0% (w/v) (optimum at 3.0%, w/v). Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate was a member of the class Clostridia, with Fusibacter paucivorans strain SEBR 4211T (91.1% sequence identity) being its closest relative. The total size of the genome of the strain was 3.12 Mbp, and a G + C content was 28.2 mol%. The highest values for average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (dDDH) value of strain S502T with relatives were 67.5% (with Marinisporobacter balticus strain 59.4MT), 51.5% (with M. balticus strain 59.4MT), and 40.9% (with Alkaliphilus serpentinus strain LacTT), respectively. Based on a combination of phylogenetic, genomic, and phenotypic characteristics, we propose strain S502T to represent a novel genus and species, Helicovermis profundi gen. nov., sp. nov., with the type strain S502T (= DSM 112048T = JCM 39167T).


Assuntos
Fontes Hidrotermais , Fontes Hidrotermais/microbiologia , DNA Bacteriano/genética , DNA Bacteriano/química , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Bactérias Anaeróbias/genética , Firmicutes , Clostridium/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
5.
Adv Exp Med Biol ; 1435: 315-327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38175481

RESUMO

Membrane vesicles are secreted by growing bacterial cells and are important components of the bacterial secretome, with a role in delivering effector molecules that ultimately enable bacterial survival. Membrane vesicles of Clostridioides difficile likely contribute to pathogenicity and is a new area of research on which there is currently very limited information. This chapter summarizes the current knowledge on membrane vesicle formation, content, methods of characterization and functions in Clostridia and model Gram-positive species.


Assuntos
Clostridioides difficile , Clostridioides , Transporte Biológico , Endocitose , Conhecimento
6.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339075

RESUMO

Recent research suggests that T-cell receptor (TCR) sequences expanded during human immunodeficiency virus and SARS-CoV-2 infections unexpectedly mimic these viruses. The hypothesis tested here is that TCR sequences expanded in patients with type 1 diabetes mellitus (T1DM) and autoimmune myocarditis (AM) mimic the infectious triggers of these diseases. Indeed, TCR sequences mimicking coxsackieviruses, which are implicated as triggers of both diseases, are statistically significantly increased in both T1DM and AM patients. However, TCRs mimicking Clostridia antigens are significantly expanded in T1DM, whereas TCRs mimicking Streptococcal antigens are expanded in AM. Notably, Clostridia antigens mimic T1DM autoantigens, such as insulin and glutamic acid decarboxylase, whereas Streptococcal antigens mimic cardiac autoantigens, such as myosin and laminins. Thus, T1DM may be triggered by combined infections of coxsackieviruses with Clostridia bacteria, while AM may be triggered by coxsackieviruses with Streptococci. These TCR results are consistent with both epidemiological and clinical data and recent experimental studies of cross-reactivities of coxsackievirus, Clostridial, and Streptococcal antibodies with T1DM and AM antigens. These data provide the basis for developing novel animal models of AM and T1DM and may provide a generalizable method for revealing the etiologies of other autoimmune diseases. Theories to explain these results are explored.


Assuntos
Doenças Autoimunes , Infecções por Coxsackievirus , Diabetes Mellitus Tipo 1 , Enterovirus , Miocardite , Infecções Estreptocócicas , Animais , Humanos , Doenças Autoimunes/complicações , Infecções por Coxsackievirus/complicações , Autoantígenos , Streptococcus , Infecções Estreptocócicas/complicações , Antígenos de Bactérias , Receptores de Antígenos de Linfócitos T
7.
Microbiol Resour Announc ; 13(7): e0035124, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38899922

RESUMO

Clostridia are common mammalian gut commensals with emerging roles in human health. Here, we describe 10 Clostridia genomes from a consortium of spore forming bacteria, shown to protect mice from metabolic syndrome. These genomes will provide valuable insight on the beneficial role of spore forming bacteria in the gut.

8.
Diagn Microbiol Infect Dis ; 108(2): 116137, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134822

RESUMO

Sarcina ventriculi, also known as Zymosarcina ventriculi and, incorrectly, as Clostridium ventriculi, is rarely encountered in clinical settings. A patient with a complicated gastrointestinal (GI) history, who was acutely presenting with small-bowel obstruction, was found to be colonized by S. ventriculi. The distinctive morphology of this species, with large Gram-variable cocci (up to 3 µm) arranged in two-by-two cuboid clusters reaching up to 20 µm, was key in identifying this bacterium in a stomach biopsy specimen. Sarcina ventriculi appears to be ubiquitously found in nature, and related bacterial species can cause GI-related disease in various animals. Clinical manifestations in humans are broad and often related to other underlying comorbidities. Isolation of S. ventriculi in the laboratory requires anaerobic culture on select media but its absence from standard MALDI-TOF databases complicates identification. Susceptibility data do not exist, so empiric treatment is the only option for this rare pathogen.


Assuntos
Sarcina , Estômago , Feminino , Humanos , Idoso de 80 Anos ou mais , Clostridium
9.
Artigo em Inglês | MEDLINE | ID: mdl-38541334

RESUMO

Despite peloids' acknowledged therapeutic and cosmetic potential, there remains a limited understanding of their microbial diversity and dynamics, especially concerning beneficial and non-beneficial microorganisms under different heating conditions. Our study employs both cultivation and metagenomic methods to assess the microbiota of peloids, focusing on lake sapropel and peat under heating conditions recommended for external application and safety assurance. By applying microbial indicators specified in national regulatory documents, we found that all peloids reached thresholds for sulphite-reducing clostridia and colony-forming units. Each peloid exhibited a distinctive bacterial composition based on metagenomic analysis, and temperature-induced changes were observed in microbial diversity. We identified beneficial bacteria potentially contributing to the therapeutic properties of peloids. However, the same peloids indicated the presence of bacteria of human faecal origin, with a notably higher abundance of Escherichia coli, pointing to a potential source of contamination. Unfortunately, it remains unclear at which stage this contamination entered the peloids. The findings underscore the importance of monitoring and controlling microbial aspects in peloid applications, emphasising the need for measures to prevent and address contamination during their preparation and application processes.


Assuntos
Microbiota , Peloterapia , Humanos , Projetos Piloto , Lituânia , Peloterapia/métodos , Solo , Bactérias/genética
10.
Animals (Basel) ; 14(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38929398

RESUMO

Probiotics are a potential strategy for salmonellosis control. A defined pig microbiota (DPM) mixture of nine bacterial strains previously exhibited probiotic and anti-Salmonella properties in vitro. Therefore, we evaluated its gut colonization ability and protection effect against S. typhimurium LT2-induced infection in the gnotobiotic piglet model. The DPM mixture successfully colonized the piglet gut and was stable and safe until the end of the experiment. The colon was inhabited by about 9 log CFU g-1 with a significant representation of bifidobacteria and lactobacilli compared to ileal levels around 7-8 log CFU g-1. Spore-forming clostridia and bacilli seemed to inhabit the environment only temporarily. The bacterial consortium contributed to the colonization of the gut at an entire length. The amplicon profile analysis supported the cultivation trend with a considerable representation of lactobacilli with bacilli in the ileum and bifidobacteria with clostridia in the colon. Although there was no significant Salmonella-positive elimination, it seems that the administered bacteria conferred the protection of infected piglets because of the slowed delayed infection manifestation without translocations of Salmonella cells to the blood circulation. Due to its colonization stability and potential protective anti-Salmonella traits, the DPM mixture has promising potential in pig production applications. However, advanced immunological tests are needed.

11.
mBio ; 15(4): e0224823, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38477571

RESUMO

Sporulation is an important feature of the clostridial life cycle, facilitating survival of these bacteria in harsh environments, contributing to disease transmission for pathogenic species, and sharing common early steps that are also involved in regulating industrially important solvent production by some non-pathogenic species. Initial genomics studies suggested that Clostridia lack the classical phosphorelay that phosphorylates Spo0A and initiates sporulation in Bacillus, leading to the hypothesis that sporulation in Clostridia universally begins when Spo0A is phosphorylated by orphan histidine kinases (OHKs). However, components of the classical Bacillus phosphorelay were recently identified in some Clostridia. Similar Bacillus phosphorelay components have not yet been found in the pathogenic Clostridia or the solventogenic Clostridia of industrial importance. For some of those Clostridia lacking a classical phosphorelay, the involvement of OHKs in sporulation initiation has received support from genetic studies demonstrating the involvement of several apparent OHKs in their sporulation. In addition, several clostridial OHKs directly phosphorylate Spo0A in vitro. Interestingly, there is considerable protein domain diversity among the sporulation-associated OHKs in Clostridia. Further adding to the emergent complexity of sporulation initiation in Clostridia, several candidate OHK phosphotransfer proteins that were OHK candidates were shown to function as phosphatases that reduce sporulation in some Clostridia. The mounting evidence indicates that no single pathway explains sporulation initiation in all Clostridia and supports the need for further study to fully understand the unexpected and biologically fascinating mechanistic diversity of this important process among these medically and industrially important bacteria.


Assuntos
Bacillus , Histidina , Histidina Quinase/genética , Histidina Quinase/metabolismo , Histidina/metabolismo , Fosforilação , Fatores de Transcrição/metabolismo , Bacillus/metabolismo , Clostridium/genética , Clostridium/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/metabolismo , Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica
12.
Probiotics Antimicrob Proteins ; 16(4): 1411-1426, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38252201

RESUMO

Clostridium tyrobutyricum strain NRRL B-67062 was previously isolated from an ethanol production facility and shown to produce high yields of butyric acid. In addition, the cell-free supernatant of the fermentation broth from NRRL B-67062 contained antibacterial activity against certain Gram-positive bacteria. To determine the source of this antibacterial activity, we report the genome and genome mining of this strain. The complete genome of NRRL B-67062 showed one circular chromosome of 3,242,608 nucleotides, 3114 predicted coding sequences, 79 RNA genes, and a G+C content of 31.0%. Analyses of the genome data for genes potentially associated with antimicrobial features were sought after by using BAGEL-4 and anti-SMASH databases. Among the leads, a polypeptide of 66 amino acids (PEG 446) contains the DUF4177 domain, which is an uncharacterized highly conserved domain (pfam13783). The cloning and expression of the peg446 gene in Escherichia coli and Bacillus subtilis confirmed the antibacterial property against Lactococcus lactis LM 0230, Limosilactobacillus fermentum 0315-25, and Listeria innocua NRRL B-33088 by gel overlay and well diffusion assays. Molecular modeling suggested that PEG 446 contains one alpha-helix and three anti-parallel short beta-sheets. These results will aid further functional studies and facilitate simultaneously fermentative production of both butyric acid and a putative bacteriocin from agricultural waste and lignocellulosic biomass materials.


Assuntos
Antibacterianos , Bacteriocinas , Clostridium tyrobutyricum , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Bacteriocinas/genética , Bacteriocinas/biossíntese , Bacteriocinas/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Limosilactobacillus fermentum/genética , Limosilactobacillus fermentum/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Genoma Bacteriano , Escherichia coli/genética
13.
Cell Host Microbe ; 32(7): 1103-1113.e6, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38838675

RESUMO

Antibiotic treatment promotes the outgrowth of intestinal Candida albicans, but the mechanisms driving this fungal bloom remain incompletely understood. We identify oxygen as a resource required for post-antibiotic C. albicans expansion. C. albicans depleted simple sugars in the ceca of gnotobiotic mice but required oxygen to grow on these resources in vitro, pointing to anaerobiosis as a potential factor limiting growth in the gut. Clostridia species limit oxygen availability in the large intestine by producing butyrate, which activates peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling to maintain epithelial hypoxia. Streptomycin treatment depleted Clostridia-derived butyrate to increase epithelial oxygenation, but the PPAR-γ agonist 5-aminosalicylic acid (5-ASA) functionally replaced Clostridia species to restore epithelial hypoxia and colonization resistance against C. albicans. Additionally, probiotic Escherichia coli required oxygen respiration to prevent a post-antibiotic bloom of C. albicans, further supporting the role of oxygen in colonization resistance. We conclude that limited access to oxygen maintains colonization resistance against C. albicans.


Assuntos
Candida albicans , Oxigênio , Candida albicans/efeitos dos fármacos , Animais , Camundongos , Oxigênio/metabolismo , PPAR gama/metabolismo , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Candidíase/microbiologia , Anaerobiose , Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , Estreptomicina/farmacologia , Humanos , Ceco/microbiologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Vida Livre de Germes
14.
Heliyon ; 10(14): e34544, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39130480

RESUMO

Current treatment of clostridial infections includes broad-spectrum antibiotics and antitoxins, yet antitoxins are ineffective against all Clostridiumspecies. Moreover, rising antimicrobial resistance (AMR) threatens treatment effectiveness and public health. This study therefore aimed to discover a common drug target for four pathogenic clostridial species, Clostridium botulinum, C. difficile, C. tetani, and C. perfringens through an in-silico core genomic approach. Using four reference genomes of C. botulinum, C. difficile, C. tetani, and C. perfringens, we identified 1484 core genomic proteins (371/genome) and screened them for potential drug targets. Through a subtractive approach, four core proteins were finally identified as drug targets, represented by type III pantothenate kinase (CoaX) and, selected for further analyses. Interestingly, the CoaX is involved in the phosphorylation of pantothenate (vitamin B5), which is a critical precursor for coenzyme A (CoA) biosynthesis. Investigation of druggability analysis on the identified drug target reinforces CoaX as a promising novel drug target for the selected Clostridium species. During the molecular screening of 1201 compounds, a known agonist drug compound (Vibegron) showed strong inhibitory activity against targeted clostridial CoaX. Additionally, we identified tazobactam, a beta-lactamase inhibitor, as effective against the newly proposed target, CoaX. Therefore, identifying CoaX as a single drug target effective against all four clostridial pathogens presents a valuable opportunity to develop a cost-effective treatment for multispecies clostridial infections.

15.
Imeta ; 3(4): e216, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39135697

RESUMO

Hundreds of microbiota gene expressions are significantly different between healthy and diseased humans. The "bottleneck" preventing a mechanistic dissection of how they affect host biology/disease is that many genes are encoded by nonmodel gut commensals and not genetically manipulatable. Approaches to efficiently identify their gene transfer methodologies and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. This paper will introduce a step-by-step protocol to identify gene transfer conditions and build the gene manipulation tools for nonmodel gut microbes, focusing on Gram-negative Bacteroidia and Gram-positive Clostridia organisms. This protocol enables us to identify gene transfer methods and develop gene manipulation tools without prior knowledge of their genome sequences, by targeting bacterial 16s ribosomal RNAs or expanding their compatible replication origins combined with clustered regularly interspaced short palindromic repeats machinery. Such an efficient and generalizable approach will facilitate functional studies that causally connect gut microbiota genes to host diseases.

16.
Microbiome ; 12(1): 86, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730492

RESUMO

BACKGROUND: Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, display microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes with immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. In this study, we aimed to further characterize the functional properties of these bacteria. RESULTS: Clostridiales isolates were profiled for their ability to perform 57 enzymatic reactions and produce short-chain fatty acids (SCFAs) and hydrogen sulfide, revealing that these bacteria were capable of a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T-cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. CONCLUSION: We identified Clostridiales species that are sufficient to induce high levels of Tregs. We also identified a set of metabolic activities linked with Treg differentiation and Trichuris egg hatching mediated by these newly isolated bacteria. Altogether, this study provides functional insights into the microbiotas of individuals residing in a helminth-endemic region. Video Abstract.


Assuntos
Diferenciação Celular , Clostridiales , Microbioma Gastrointestinal , Linfócitos T Reguladores , Trichuris , Animais , Linfócitos T Reguladores/imunologia , Camundongos , Malásia , Clostridiales/isolamento & purificação , Humanos , Ácidos Graxos Voláteis/metabolismo , Feminino , Tricuríase/parasitologia , Tricuríase/imunologia , Tricuríase/microbiologia
17.
Int J Vet Sci Med ; 12(1): 11-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487499

RESUMO

Stress in poultry production is energy-demanding. Nucleotides and yeast cell-wall products are essential nutrients for broiler performance, gut function, and immune response. Antibiotics, like florfenicol, negatively affect the immune system. A total of 600 one-d-old broiler chickens (Cobb-500) were weighed and randomly allotted into four groups with three replicates each. The control group (G1) received the basal diet, G2 received a diet supplemented with a combination of nucleotides and Saccharomyces cerevisiae derivatives (250 g/Ton), G3 received the basal diet and medicated with florfenicol (25 mg/Kg body weight) in drinking water for 5 days, while G4 received a combination of nucleotides and Saccharomyces cerevisiae-derivatives (250 g/Ton) and medicated with florfenicol in drinking water. Growth performance criteria were recorded weekly. Blood, intestinal contents, small-intestine sections, and litter samples were collected to measure birds' performance, carcass yields, leukocytic counts, antioxidant capacity, antibody titres, phagocytic index, caecal Clostridia, intestinal histomorphometry, and litter hygiene. Nucleotide-supplemented groups (G2 and G4) revealed significant (p ≤ 0.05) improvements in feed conversion, and body weight, but not for carcass yields in comparison to the control. Dietary nucleotides in G2 elevated blood total proteins, leucocytic count, antioxidant capacity, and phagocytic index, while they lowered blood lipids and litter moisture and nitrogen (p ≤ 0.05). Dietary nucleotides in G4 ameliorated the immunosuppressive effect of florfenicol (p ≤ 0.05) indicated in reducing caecal Clostridia, improving duodenal and ileal villi length, and increasing blood albumin and globulin levels, and phagocytosis%. Supplementing diets with nucleotides and yeast products has improved the immune system and provided a healthier gut for broilers.

18.
Neurogastroenterol Motil ; 36(9): e14854, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38946176

RESUMO

BACKGROUND: The relationship between gut microbiota and irritable bowel syndrome (IBS) subtype is unclear. We aimed to explore whether differences in fecal bacteria composition and short-chain fatty acid (SCFA) levels were associated with subtypes and symptoms of IBS. METHODS: All participants delivered fecal samples and self-reports on IBS Symptom Severity Score (IBS-SSS), Bristol Stool Scale (BSS), and Gastrointestinal Symptom Rating Scale (GSRS). Fecal bacteria composition was assessed by the GA-map® Dysbiosis Test based on 16S rRNA sequences of bacterial species/groups. SCFAs were analyzed by vacuum distillation followed by gas chromatography. KEY RESULTS: Sixty patients with IBS were included (mean age 38 years, 46 [77%] females): Twenty-one patients were classified as IBS-D (diarrhea), 31 IBS-M (mixed diarrhea and constipation), and eight IBS-C (constipation). Forty-two healthy controls (HCs) (mean age 35 years, 27 [64%] females) were included. Patients had a significantly higher relative frequency of dysbiosis, lower levels of Actinobacteria, and higher levels of Bacilli than HCs. Eight bacterial markers were significantly different across IBS subgroups and HCs, and 13 bacterial markers were weakly correlated with IBS symptoms. Clostridia and Veillonella spp. had a weak negative correlation with constipation scores (GSRS) and a weak positive correlation with loose stools (BSS). Diarrhea scores (GSRS) and looser stool (BSS) were weakly correlated with levels of total SCFAs, acetic and butyric acid. Levels of total SCFAs and acetic acid were weakly correlated with symptom severity (IBS-SSS). CONCLUSIONS & INFERENCES: Patients with IBS had a different fecal bacteria composition compared to HCs, and alterations of SCFAs may contribute to the subtype.


Assuntos
Ácidos Graxos Voláteis , Fezes , Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Humanos , Síndrome do Intestino Irritável/microbiologia , Feminino , Adulto , Masculino , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/análise , Fezes/microbiologia , Fezes/química , Microbioma Gastrointestinal/fisiologia , Pessoa de Meia-Idade , Disbiose/microbiologia
19.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828876

RESUMO

The objective was to determine the influence of long-term supplementation (258 d) of a direct-fed microbial (DFM) and/or yeast cell wall (YCW) product on bacterial populations in beef steers. Single-sourced Charolais × Red Angus steers (n = 256; body weight = 246 ±â€…1.68 kg) were used in a randomized complete block design and blocked by location into one of four treatments: 1) fed no DFM and no YCW (Control); 2) fed only the DFM (DFM; Certillus CP B1801 Dry, 28 g/steer d-1 ); 3) fed only the YCW (YCW; Celmanax; 18 g/steer d-1 ); and 4) fed the DFM and the YCW (DFM+YCW). Steers were vaccinated for respiratory and clostridial diseases and treated for internal and external parasites at processing and individually weighed on days 1, 14, 42, 77, 105, 133, 161, 182, 230, and 258. To determine bacterial prevalence, fecal samples were collected on days 1, 14, 77, 133, 182, and 230 and environmental (pen area, feed, and water) samples were collected at the beginning of the week when cattle were weighed. No treatment × day interactions or treatment effects (P > 0.05) were observed between treatment groups at any sampling days for the bacterial populations. Samples on days 1, 133, and 182 had greater (P < 0.05) Clostridia levels compared to the other sampling points but were not different from each other. Clostridia levels were also greater (P < 0.05) on day 77 compared to days 14 and 230. Samples on days 77 and 230 had greater (P < 0.05) Clostridium perfringens levels compared to the other sampling points but were not different (P > 0.05) from each other. Samples on days 1 and 14 had lower (P < 0.05) total Escherichia coli levels compared to the other sampling points but were not different (P > 0.05) from each other. Escherichia coli levels on day 77 were higher (P < 0.05) compared to days 133, 182, and 230. Little Salmonella prevalence (1.5%) was observed throughout the study. This study had greater levels of Clostridia compared to small and large commercial feedlots in the Church and Dwight research database, but C. perfringens, total and pathogenic E. coli, and Salmonella prevalence were notably lower. Collectively, there were no appreciable treatment influences on bacterial populations. These data further indicate a low pathogenic bacterial challenge at the trial site, which could partially explain the lack of differences with DFM or YCW supplementation. The DFM and YCW used alone or in combination cannot be expected to show additional benefits when animals are relatively unstressed with a low pathogenic bacterial challenge.


The objective of this research was to determine the influence of long-term supplementation (258 d) of a direct-fed microbial (DFM) and/or yeast cell wall (YCW) product on bacterial populations in beef steers. Collectively, there were no appreciable treatment influences on bacterial populations. These data further indicate a low pathogenic bacterial challenge at the trial site, which could further explain the reasons for little differences. The DFM and YCW used alone or in combination cannot be expected to show productive benefits when animals are relatively unstressed with a low pathogenic bacterial challenge.


Assuntos
Ração Animal , Bacillus subtilis , Clostridium perfringens , Dieta , Suplementos Nutricionais , Probióticos , Animais , Bovinos , Masculino , Ração Animal/análise , Dieta/veterinária , Clostridium perfringens/fisiologia , Probióticos/farmacologia , Probióticos/administração & dosagem , Suplementos Nutricionais/análise , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , Salmonella , Escherichia coli , Fezes/microbiologia , Infecções por Clostridium/veterinária , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/microbiologia , Clostridium , Distribuição Aleatória
20.
Front Bioeng Biotechnol ; 11: 1324396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239921

RESUMO

The Lachnospiraceae is a family of anaerobic bacteria in the class Clostridia with potential to advance the bio-economy and intestinal therapeutics. Some species of Lachnospiraceae metabolize abundant, low-cost feedstocks such as lignocellulose and carbon dioxide into value-added chemicals. Others are among the dominant species of the human colon and animal rumen, where they ferment dietary fiber to promote healthy gut and immune function. Here, we summarize recent studies of the physiology, cultivation, and genetics of Lachnospiraceae, highlighting their wide substrate utilization and metabolic products with industrial applications. We examine studies of these bacteria as Live Biotherapeutic Products (LBPs), focusing on in vivo disease models and clinical studies using them to treat infection, inflammation, metabolic syndrome, and cancer. We discuss key research areas including elucidation of intra-specific diversity and genetic modification of candidate strains that will facilitate the exploitation of Lachnospiraceae in industry and medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA