RESUMO
The isolated halophilic bacterial strain Halovibrio variabilis TG-5 showed a good performance in the pretreatment of coal gasification wastewater. With the optimum culture conditions of pH = 7, a temperature of 46 °C, and a salinity of 15%, the chemical oxygen demand and volatile phenol content of pretreated wastewater were decreased to 1721 mg/L and 94 mg/L, respectively. The removal rates of chemical oxygen demand and volatile phenol were over 90% and 70%, respectively. At the optimum salinity conditions of 15%, the total yield of intracellular compatible solutes and the extracellular transient released yield under hypotonic conditions were increased to 6.88 g/L and 3.45 g/L, respectively. The essential compatible solutes such as L-lysine, L-valine, and betaine were important in flocculation mechanism in wastewater pretreatment. This study provided a new method for pretreating coal gasification wastewater by halophilic microorganisms, and revealed the crucial roles of compatible solutes in the flocculation process.
Assuntos
Halomonadaceae , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Floculação , Carvão Mineral , Fenol/análise , Fenóis , Reatores BiológicosRESUMO
The aim of this research is to investigate the effects of biochar (BC) on treatment performance (especially hydrolysis-acidification process) and microbial community shifts during anaerobic degradation of typical phenolic compounds in coal gasification wastewater. Compared to the control group, the removal of phenol, p-cresol and 3, 5-xylenol was gradually enhanced when increasing the BC addition within the test dosage (1-5 g/L). The biodegradation of phenol and p-cresol was significantly enhanced by BC addition while limited improvement for 3, 5-xylenol. The addition of BC significantly accelerated the hydrolysis-acidification process with the hydrolytic removal of phenol improved by 69.14%, the microbial activity was enhanced by 57.01%, and the key hydrolase bamA gene was enriched by 117.27%, respectively. Compared to 1-2 g/L dose, more protein-like and humic acid-like substances were secreted with 5 g/L BC, which probably contributed to higher extracellular electron transfer efficiency. In addition, phenol degrading bacteria (Syntrophorhabdus, Dysgonomonas, Holophaga, etc.) and electroactive microorganisms (Geobacter, Syntrophorhabdus, Methanospirillum, etc.) were enriched by BC addition. The functional genes related to carboxylation, benzoylation and ring cleavage processes of benzoyl-CoA pathway were potentially activated by BC.
RESUMO
Cow dung based activated carbon was successfully modified by Fe3O4 nanoparticles as the novel catalyst (Fe3O4 nanoparticles@CDAC) to improve the microbubble ozonation treating biologically pretreated coal gasification wastewater (BPCGW). When the pH, ozone dosage, ozone bubble diameter and catalyst dosage of the ozonation were 7, 0.4 L/min, 5 µm and 3 g/L, the chemical oxygen demand (COD) removal efficiency reached 74% and the ratio of biochemical oxygen demand in five days/COD (BOD5/COD) increased from 0.04 to 0.52, which were attributed to the electron transfer of Fe2+ and Fe3+ in Fe3O4 and enhanced hydroxyl radicals generation by the reaction of iron ions and ozone. Meanwhile, benzene derivatives, naphthalene and aromatic proteins were significantly removed while multiple chain hydrocarbons and their derivatives composed the main residual organic matters. The catalytic activity was slightly decreased even the catalyst has been reused for five times. Therefore, catalytic microbubble ozonation using Fe3O4 nanoparticles@CDAC represented excellent performance treating BPCGW and it is a promising process for wastewater advanced treatment.
Assuntos
Nanopartículas , Ozônio , Poluentes Químicos da Água , Purificação da Água , Animais , Catálise , Bovinos , Carvão Vegetal , Carvão Mineral , Feminino , Microbolhas , Águas ResiduáriasRESUMO
As a common pretreatment process for coal chemical wastewater, the conventional one-stage coagulation process has the problem of poor removal of small size oil, which will inhibit the subsequent biological treatment. Measures to improve oil removal efficiency based on the development of new coagulants and the addition of composite processes are common in the literature, but two-stage coagulation to improve coagulation efficiency has not been reported to date. Here, we optimized coagulation parameters and compared the oil removal efficiency of two-stage coagulation and one-stage coagulation. Under the same total dosage of coagulant (PAC), the optimum removal of oil in two-stage coagulation was achieved 90% which increased by 11% compared to one-stage process. P10 and P 1 µm were proposed to evaluate the oil removing effect of two-stage coagulation. In addition, SEM scanning was used to conduct flocs analysis and two-stage coagulation process simulation, revealing the principle of the excellent oil removal performance of two-stage coagulation. Finally, coagulant in filter residue was recovered by acidification method and the recovered coagulant was used again in the two-stage coagulation process of coal chemical wastewater. These results suggest that two-stage coagulation is a cost-effective alternative oil removal technique with high energy efficiency and environmental benign. This research may offer helpful insights to develop an advanced oil removal process.
Assuntos
Carvão Mineral/análise , Floculação , Poluição por Petróleo/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodosRESUMO
The selective extraction and concentration of salt from coal gasification brine (CGB) by nanofiltration membranes is a promising technology to achieve near-zero liquid discharge of coal gasification wastewater. To investigate the feasibility of recovery of salts and the interaction of organic compounds, multivalent ions and monovalent ions on the rejection ratio, three nanofiltration membranes (OWNF1, NF270 and Desal-5 DK) with an 1812 spiral-wound module were used in crossflow filtration. The rejection mechanism was analyzed by comparing the rejection performance as a function of the operation pressure (increasing from 1.0â¯MPa to 2.5â¯MPa), the concentration (increasing from 10,000â¯mg/L to 25,000â¯mg/L) and pH values (increasing from 3.0 to 10.0). The concentrations of anions and cations were determined using an ion chromatographic analyzer and an inductively coupled plasma emission spectrometer, respectively. The results show that the rejection of sulfate and the chemical oxygen demand were higher than 92.12% and 78.84%, respectively, at appropriate operation, while negative rejection of chloride was observed in the CGB. The decreasing rejection of organic compounds was due to swelling of the membrane pore in high-concentration solutions. Meanwhile, the organic compounds weakened the negative charge of the membrane active layer, consequently decreasing the ion rejection. More than 85% of the sodium chloride could be recovered, indicating that this technology is suitable for resource recovery from CGB and near-zero liquid discharge of coal gasification industry.
Assuntos
Carvão Mineral , Purificação da Água , Filtração , Membranas Artificiais , Nanotecnologia , SaisRESUMO
In this paper, the inhibition of methanogens by phenol in coal gasification wastewater (CGW) was investigated by both anaerobic toxicity tests and a lab-scale anaerobic biofilter reactor (AF). The anaerobic toxicity tests indicated that keeping the phenol concentration in the influent under 280mg/L could maintain the methanogenic activity. In the AF treating CGW, the result showed that adding glucose solution as co-substrate could be beneficial for the quick start-up of the reactor. The effluent chemical oxygen demand (COD) and total phenol reached 1200 and 100mg/L, respectively, and the methane production rate was 175mLCH4/gCOD/day. However, if the concentration of phenol was increased, the inhibition of anaerobic micro-organisms was irreversible. The threshold of total phenol for AF operation was 200-250mg/L. The extracellular polymeric substances (EPS) and particle size distribution of anaerobic granular sludge in the different stages were also examined, and the results indicated that the influence of toxicity in the system was more serious than its effect on flocculation of EPS. Moreover, the proportion of small size anaerobic granular sludge gradually increased from 10.2% to 34.6%. The results of high through-put sequencing indicated that the abundance of the Chloroflexi and Planctomycetes was inhibited by the toxicity of the CGW, and some shifts in the microbial community were observed at different stages.
Assuntos
Carvão Mineral , Fenóis/análise , Águas Residuárias/química , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Fenóis/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologiaRESUMO
An advanced anaerobic biofilter (AF) was introduced for the treatment of coal gasification wastewater (CGW), and effluent recirculation was adopted to enhance phenol removal and methane production. The results indicated that AF was reliable in treating diluted CGW, while its efficiency and stability were seriously reduced when directly treating raw CGW. However, its performance could be greatly enhanced by effluent recirculation. Under optimal effluent recirculation of 0.5 to the influent, concentrations of chemical oxygen demand (COD) and total phenol in the effluent could reach as low as 234.0 and 14.2mg/L, respectively. Also, the rate of methane production reached 169.0mLCH4/L/day. Though CGW seemed to restrain the growth of anaerobic microorganisms, especially methanogens, the inhibition was temporary and reversible, and anaerobic bacteria presented strong tolerance. The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater (GW). However, the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication. By analysis using the Haldane model, it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters, but only suitable effluent recirculation could result in high methanogenic activity.
Assuntos
Metano/análise , Fenol/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Anaerobiose , Bactérias Anaeróbias , Biodegradação Ambiental , Carvão Mineral , Filtração/instrumentação , Filtração/métodos , Metano/metabolismo , Fenol/análise , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análiseRESUMO
A laboratory-scale intermittent aeration bioreactor was investigated to treat biologically pretreated coal gasification wastewater that was mainly composed of NH3-N and phenol. The results showed that increasing phenol loading had an adverse effect on NH3-N removal; the concentration in effluent at phenol loading of 40mgphenol/(L·day) was 7.3mg/L, 36.3% of that at 200mg phenol/(L·day). The enzyme ammonia monooxygenase showed more sensitivity than hydroxylamine oxidoreductase to the inhibitory effect of phenol, with 32.2% and 10.5% activity inhibition, respectively at 200mg phenol/(L·day). Owing to intermittent aeration conditions, nitritation-type nitrification and simultaneous nitrification and denitrification (SND) were observed, giving a maximum SND efficiency of 30.5%. Additionally, ammonia oxidizing bacteria (AOB) and denitrifying bacteria were the main group identified by fluorescent in situ hybridization. However, their relative abundance represented opposite variations as phenol loading increased, ranging from 30.1% to 17.5% and 7.6% to 18.2% for AOB and denitrifying bacteria, respectively.
Assuntos
Amônia/análise , Reatores Biológicos/microbiologia , Indústria do Carvão Mineral , Fenol/toxicidade , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Poluentes Químicos da Água/toxicidade , Amônia/química , Carvão Mineral , Desnitrificação/efeitos dos fármacos , Nitrificação/efeitos dos fármacos , Águas Residuárias/químicaRESUMO
Sewage sludge from a biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl2 as activation agent, which was used as a support for ferric oxides to form a catalyst (FeOx/SBAC) by a simple impregnation method. The new material was then used to improve the performance of Fenton oxidation of real biologically pretreated coal gasification wastewater (CGW). The results indicated that the prepared FeOx/SBAC significantly enhanced the pollutant removal performance in the Fenton process, so that the treated wastewater was more biodegradable and less toxic. The best performance was obtained over a wide pH range from 2 to 7, temperature 30°C, 15 mg/L of H2O2 and 1g/L of catalyst, and the treated effluent concentrations of COD, total phenols, BOD5 and TOC all met the discharge limits in China. Meanwhile, on the basis of significant inhibition by a radical scavenger in the heterogeneous Fenton process as well as the evolution of FT-IR spectra of pollutant-saturated FeOx/BAC with and without H2O2, it was deduced that the catalytic activity was responsible for generating hydroxyl radicals, and a possible reaction pathway and interface mechanism were proposed. Moreover, FeOx/SBAC showed superior stability over five successive oxidation runs. Thus, heterogeneous Fenton oxidation of biologically pretreated CGW by FeOx/SBAC, with the advantages of being economical, efficient and sustainable, holds promise for engineering application.
Assuntos
Carvão Mineral/análise , Resíduos Industriais/análise , Águas Residuárias/química , Biodegradação Ambiental , Reatores Biológicos , Carbono , Catálise , Cloretos , Compostos Férricos , Microscopia de Força Atômica , Oxirredução , Esgotos , Compostos de ZincoRESUMO
A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW).
Assuntos
Carvão Mineral , Gases/química , Nitrogênio/isolamento & purificação , Águas Residuárias/química , Bactérias/classificação , Bactérias/genética , Sequência de Bases , Primers do DNA , Eletroforese em Gel de Gradiente Desnaturante , Filogenia , Reação em Cadeia da PolimeraseRESUMO
Coal gasification technology is essential for realizing clean and efficient conversion of coal, as well as for reducing carbon emissions. However, coal gasification technology is accompanied by a large amount of coal gasification wastewater that is biodegradable. In this work, tourmaline was applied as a catalyst in electro-Fenton like process for treating coal gasification wastewater. The optimal applied parameters of coal gasification wastewater were investigated as follows: current density of 90 mA cm-2, tourmaline dosage of 8 g L-1, electrode gap of 1 cm, and temperature at 25 °C; the COD removal ratio reached 91.24% after 240-min treatment. In addition, the current density and tourmaline dosage were further optimized by response surface method. The result was about current density with 82.4 mA cm-2 and catalyst with 7.57 g L-1; the predicted COD removal efficiency was 86.91%. Under the optimal parameters the actual COD removal efficiency was 88.25% a little high than the predicted value. To explore the reusability of tourmaline as Fenton reaction catalyst, five cycles of experiments were carried out. The result demonstrated that tourmaline could be used as catalyst for treating coal gasification wastewater by electro-Fenton like process.
Assuntos
Silicatos , Águas Residuárias , Poluentes Químicos da Água , Carvão Mineral , Carbono , Catálise , Peróxido de Hidrogênio , Oxirredução , Eliminação de Resíduos LíquidosRESUMO
Spirulina powder emerged as a novel and suitable co-metabolism substance significantly enhancing the anaerobic degradation of specific nitrogen heterocyclic compounds. On the addition of 1.0â mg/L of Spirulina powder, the reactor demonstrated optimal degradation efficiency for quinoline and indole, achieving ratios of 99.77 ± 1.83% and 99.57 ± 1.98%, respectively. Moreover, the incorporation of Spirulina powder resulted in increased concentrations of mixed liquor suspended solids, mixed liquor volatile suspended solids, proteins, and polysaccharides in anaerobic sludge. In addition, Spirulina powder led to reduced levels of Acinetobacter and enriched Aminicenantes genera incertae sedis, Levilinea, and Longilinea. The analysis of the archaeal community structure confirmed that the addition of Spirulina powder increased archaeal sequences, fostering greater richness and diversity in the archaeal community.
RESUMO
Coal gasification wastewater contains many refractory and toxic pollutants, especially high concentrations of total phenols, which are difficult to degrade by microorganisms. The aim of our study is to explore the anaerobically enhanced degradation of coal gasification wastewater by an ironcarbon micro-electric field coupled with anaerobic co-digestion. The optimal ratio of activated carbon to iron and the optimal dosage of co-substrate (glucoseâ¯=â¯1500â¯mg/L) were investigated by batch tests. In the long-term operation of the ironcarbon reactor, 1500â¯mg/L glucose was added into the influent, and carbon and iron in a ratio of 2:1 were added to the anaerobic sludge. The average effluent COD and total phenols concentrations were kept at approximately 455 and 56.3â¯mg/L, respectively, and removal rates of both reached 90% after treatment with the ironcarbon micro-electric field coupled with anaerobic co-digestion in the ironcarbon reactor. Moreover, compared with the control reactor, the methane production from the ironcarbon reactor increased to 200â¯mL/day, with an increase in the methane production rate by 90%. Microbial community analysis indicated that hydrogenotrophic methanogens were enriched, and syntrophic metabolism via interspecies hydrogen transfer was enhanced. Direct interspecies electron transfer might occur between the potential electroactive bacteria Clostridium, Bacteroidetes, and Anaerolinea and the methanogens Methanosaeta, Methanobacterialies, and Methanobacterium for syntrophic metabolism through the ironcarbon process coupled with anaerobic co-digestion.
Assuntos
Carvão Mineral , Águas Residuárias , Anaerobiose , Reatores Biológicos , Digestão , Ferro , Metano/metabolismo , Fenóis/metabolismo , Esgotos/química , Eliminação de Resíduos Líquidos , Águas Residuárias/químicaRESUMO
Hydroquinone is one of the main pollutants in coal-gasification wastewater, which is biologically toxic and difficult to remove. The aerobic biodegradation rate, organic toxicity, and microbial community structure at different acclimation stages of degradation of hydroquinone by activated sludge were investigated. In each acclimation cycle, the removal of hydroquinone reached 100% after 5 days, indicating that high-concentration hydroquinone in the activated sludge could be completely biodegraded. When the microbial flora was inhibited by the influent hydroquinone, the enzyme system experienced stress conditions and led to the secretion of secondary metabolites, extracellular protein of 5-10 kDa mainly contributing to the sludge organic toxicity. Microbial diversity analysis showed that with the increase of the concentration of hydroquinone, ß-Proteus bacteria such as Azoarcus and Dechloromonas gradually accumulated, which improved the removal of hydroquinone with aerobic activated sludge in the sequencing batch reactor (SBR) system. As the inhibition degree exceeded the appropriate tolerance range of microorganisms, bacteria would secrete much more secondary metabolites, and the organic toxicity of sludge would reach a relatively high level.
Assuntos
Reatores Biológicos , Esgotos , Aclimatação , Hidroquinonas , Esgotos/química , Eliminação de Resíduos Líquidos , Águas ResiduáriasRESUMO
Coal gasification wastewater (CGW) contains high concentration phenols which lead to poor anaerobic biodegradability and resource utilization. In this paper, new insights to improve synthetic CGW anaerobic degradation with the help of graphene under co-digestion conditions were investigated. Batch tests showed that with the addition of graphene dosage of 10 g/L and glucose as a co-substrate with chemical oxygen demand (COD) concentration of 2000 mg/L, the average COD concentration decreased from 3995 mg/L on day 1 to 983 mg/L on day 12. The average total phenol (TP) concentration decreased from 431 mg/L on day 1 to 23 mg/L on day 12. The cumulative methane production for 12 days was about 200 mL. Long-term experiments showed the average effluent COD and total phenol reached 1137 mg/L and 200 mg/L, respectively. While methane production stabilized at 500 mL/d. In addition, the coenzyme F420 concentration increased from 1.075 µmol/g/VSS to 2.3 µmol/g/VSS. The analysis of microbial community structure indicated that the performance of phenols removal and methane production was related to the main microbial flora. The enriched Clostridium, Pseudomonas and species from Firmicutes and Chloroflexi participated in the stages of hydrolysis and acidogenesis. The electrogens Pseudomonas and archaea Methanosaeta were likely the major groups taking part in the direct interspecies electron transfer (DIET). The results obtained in this paper provide a theoretical basis for high-efficiency anaerobic degradation of CGW in practical engineering applications.
Assuntos
Grafite , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Digestão , Metano , Fenóis , Esgotos , Águas ResiduáriasRESUMO
Magnetite nanoparticles (Fe3O4 NPs) was firstly used to enhance pollutants removal during coal gasification wastewater (CGW) treatment in anaerobic digestion (AD) system. Bench-scale results revealed that 200 mg/L and 20-40 nm of Fe3O4 NPs addition resulted in a maximum removal capacity of total phenol (TPh) at a temperature of 36 °C and hydraulic retention time (HRT) of 36 h. Meanwhile, Fe3O4 NPs addition reduced the oxidation reduction potential (ORP) values and biological toxicity, and enhanced the stability of AD system. Pilot-scale results showed that the TPh and chemical oxygen demand (COD) removal efficiency (53% and 49%) were obtained with the optimal dosage of Fe3O4 NPs. Moreover, electron nanowires may be established with Fe3O4 NPs assisted to perform direct interspecies electron transfer (DIET) among Geobacter, Pseudomonas and Methanosaeta species, and finally enhanced the pollutants removal efficiency.
Assuntos
Resíduos Industriais , Nanopartículas de Magnetita/química , Indústria de Petróleo e Gás , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Carvão Mineral , Elétrons , Fenol , Fenóis , Pseudomonas , Águas ResiduáriasRESUMO
Coal gasification wastewater (CGW) is a typical toxic and refractory industrial wastewater with abundant phenols contained. Two identical anoxic/aerobic membrane bioreactors (with (R2) and without (R1) polyurethane (PU) foam) were carried out in parallel to investigate the role of PU foam addition in enhancing pollutants removal in CGW. Results showed that both systems exhibited effective removal of chemical oxygen demand (>93%) and total phenols (>97%) but poor ammonia nitrogen removal (<35%) constrained by ammonia oxidation process. GC-MS analysis revealed that aromatic and other refractory intermediates were dramatically reduced in R2. Moreover, the PU addition had negligible influence on the total soluble microbial products and extracellular polymeric substances contents but significantly alleviated membrane fouling with the operating time 33% prolonged. Microbial community revealed that Flavobacterium, Holophaga, and Geobacter were enriched on PU. Influent type might be a main driver for microbial community succession.
Assuntos
Microbiota , Águas Residuárias , Reatores Biológicos , Carvão Mineral , Poliuretanos , Eliminação de Resíduos LíquidosRESUMO
The autotrophic iron-depended denitrification (AIDD), triggered by microelectrolysis, was established in the microelectrolysis-assistant up-flow anaerobic sludge blanket (MEA-UASB) with the purpose of low-strength coal gasification wastewater (LSCGW) treatment while control UASB operated in parallel. The results revealed that chemical oxygen demand (COD) removal efficiency and total nitrogen (TN) removal load at optimum current (2.5 A/m3) in MEA-UASB (83.2 ± 2.6% and 0.220 ± 0.010 kg N/m3·d) were 1.42-fold and 1.57-fold higher than those (58.5 ± 2.1% and 0.139 ± 0.011 kg N/m3·d) in UASB, verifying that AIDD and following dissimilatory iron reduction (DIR) process could offer the novel pathway to solve the electron donor-deficient and traditionally denitrification-infeasible problems. High-throughput 16S rRNA gene pyrosequencing shown that iron-oxidizing denitrifiers (Thiobacillus and Acidovorax species) and iron reducing bacteria (Geothrix and Ignavibacterium speices), acted as microbial iron cycle of contributors, were specially enriched at optimum operating condition. Additionally, the activities of microbial electron transfer chain, electron transporters (complex I, II, III and cytochrome c) and abundance of genes encoding important enzymes (narG, nirK/S, norB and nosZ) were remarkably promoted, suggesting that electron transport and consumption capacities were stimulated during denitrification process. This study could shed light on better understanding about microelectrolysis-triggered AIDD for treatment of refractory LSCGW and further widen its application potential in the future.
Assuntos
Desnitrificação , Águas Residuárias , Processos Autotróficos , Reatores Biológicos , Carvão Mineral , Compostos Férricos , Compostos Ferrosos , Nitratos , Nitrogênio , RNA Ribossômico 16S/genética , Eliminação de Resíduos LíquidosRESUMO
Phenolic and quinoline compounds are the most primary organic pollutants in coal gasification wastewater (CGW), but the biotransformation of quinoline compounds under methanogenic condition and their potential impacts on treatment performance of CGW are still unclear. Anaerobic biotransformation pathways of quinoline in an upflow anaerobic sludge blanket reactor treating synthetic CGW and response of microbial community were firstly investigated. The result indicated that the degradation of 2(1â¯H)-quinolinone was the rate-limiting step for the complete conversion of quinoline under methanogenic condition. The reactor performed stably at total phenols concentration of 1000â¯mgâ¯L-1 with a gradual increase of quinoline concentration from 100 to 600â¯mgâ¯L-1. However, the reactor performance was rapidly deteriorated from 98% of COD removal to about 80% at quinoline concentration of 1200â¯mgâ¯L-1 resulting from the accumulation of 2(1â¯H)-quinolinone. Correspondingly, phenol utilization rate of sludge was significantly reduced by 61% while quinoline utilization rate of sludge was increased by 132%. As phenol degraders, Syntrophorhabdus gradually predominated along with the increase of quinoline concentration, but Syntrophus declined inversely. Compared with syntrophs, acetotrophic methanogens could quickly adapt to quinoline toxicity and tolerate higher quinoline stress. Therefore, anaerobic digestion is an effective method for eliminating quinoline and phenol in CGW.
Assuntos
Reatores Biológicos , Metano/metabolismo , Quinolinas/metabolismo , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Carvão Mineral , Resíduos Industriais , Microbiota , Fenóis/metabolismo , RNA Ribossômico 16S/genética , Águas Residuárias , Poluentes Químicos da ÁguaRESUMO
Coal gasification wastewater (CGW) has attracted considerable industrial attention because of its high toxicity and poor biodegradability. Ozonation is a promising process for CGW treatment. In this study, the effects of ozone concentration, pH, and ozonation time on CGW treatment were investigated. The results confirmed that CGW was degraded effectively and that the chemical oxygen demand (COD) was reduced from 1057 to 362 mgL-1, utilizing 50 mgL-1 ozone for 90 min. Further, the color of CGW changed from brown to clear and colorless, and the pH decreased from 8.5 to 4.7. Importantly, molds were observed in the oxidized CGW after 14 d at room temperature (23 ± 2 °C), indicating that CGW is significantly biodegradable by ozonation. The CGW components were extracted with three different organic solvents (chloroform, n-hexane, and benzene), and their compositions were analyzed by gas chromatography-mass spectrometry (GC-MS) before and after ozonation. The results proved that considerable amounts of highly toxic refractory compounds in CGW, such as phenolic compounds, polynuclear aromatic hydrocarbons (PAHs), and nitrogenous heterocyclic compounds (NHCs), were degraded to compounds that included olefins, carboxylic acids, and cycloalkanes, or minerals, which are relatively environmentally benign. Moreover, the number of substances in CGW decreased significantly from 127 to 74 after ozonation. Summarily, ozonation is a promising approach for the treatment of highly toxic refractory wastewater, such as CGW.