Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Small ; : e2404162, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958083

RESUMO

The synergistic effect of rare earth single-atoms and transition metal single-atoms may enable us to achieve some unprecedented performance and characteristics. Here, Co-Dy dual-atoms on black phosphorus with a P-Co-Dy charge-transfer bridge are designed and fabricated as the active center for the CO2 photoreduction reaction. The synergistic effect of Co-Dy on the performance of black phosphorus is studied by combining X-ray absorption spectroscopy, ultrafast spectral analysis, and in situ technology with DFT calculations. The results show that the Co and Dy bimetallic active site can promote charge transfer by the charge transfer bridge from P to Dy, and then to Co, thereby improving the photocatalytic activity of black phosphorus. The performance of catalysts excited at different wavelength light indicates that the 4G11/2/2I15/2/4F9/2→6H15/2 and 4F9/2→6H13/2 emissions of Dy can be absorbed by black phosphorus to improve the utilization of sunlight. The in situ DRIFTS and density functional theory (DFT) calculations are used to investigate the CO2 photoreduction pathway. This work provides an depth insight into the mechanism of dual-atom catalysts with enhanced photocatalytic performance, which helps to design novel atomic photocatalysts with excellent activity for CO2 reduction reactions.

2.
Appl Environ Microbiol ; 89(11): e0149323, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37943058

RESUMO

IMPORTANCE: Branched-chain aldehydes are the primary compounds that contribute to the nutty flavor in cheddar cheese. Lactococcus lactis, which is often applied as primary starter culture, is a significant contributor to the nutty flavor of cheddar cheese due to its ability of conversion of BCAAs into branched-chain aldehydes. In the present study, we found that the regulatory role of CodY is crucial for the conversion. CodY acts as a pleiotropic transcriptional regulator via binding to various regulatory regions of key genes. The results presented valuable knowledge into the role of CodY on the regulation and biosynthetic pathway of branched-chain amino acids and the related aldehydes. Furthermore, it provided new insight for increasing the nutty flavor produced during the manufacture and ripening of cheese.


Assuntos
Queijo , Lactococcus lactis , Aminoácidos de Cadeia Ramificada/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Aldeídos/metabolismo
3.
Appl Environ Microbiol ; 88(5): e0184721, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35044848

RESUMO

Bacteria adapt to the constantly changing environment by regulating their metabolism. The global transcriptional regulator CodY is known to regulate metabolism in low-G+C Gram-positive bacteria. Systems-level identification of its direct targets by proteome and chromatin immunoprecipitation followed by sequencing (ChIP-seq) assays have rarely been reported. Here, we identified that CodY serves as an activator or a repressor of hundreds of genes involved in nitrogen metabolism, carbohydrate metabolism, and transcription through iTRAQ proteome and ChIP-seq. Combined with the electrophoretic mobility shift assay (EMSA), apart from the genes associated with amino acid biosynthesis (ilvD, leuA, optS, ybbD, dtpT, and pepN), genes involved in cell wall synthesis (murD and ftsW) and nisin immunity (nisI) were identified as being regulated by CodY. Moreover, it was demonstrated by nisin resistance assay that CodY activated the transcription of nisI and contributed to nisin immunity. Intriguingly, CodY showed a self-regulation through binding to the motif AAAGGTGTGACAACT in the coding sequence (CDS) region of codY, as verified by DNase I footprinting assay and MEME analysis. In addition, a novel conserved AT-rich motif, AATWTTCTGACAATT, was obtained in L. lactis F44. This study provides new insights into the comprehensive CodY regulation in L. lactis by controlling metabolism, nisin immunity, and self-expression. IMPORTANCE Lactococcus lactis, a species of lactic acid bacteria (LAB) widely used in food fermentation, has been the model strain in genetic engineering, and its application has extended from food to microbial cell factories. CodY is a global regulator in low-G+C Gram-positive bacteria. Its function and direct target genes at the genome-level are little known in L. lactis. In this study, we describe the comprehensive regulation mechanism of CodY. It widely modulated the metabolism of nitrogen and carbohydrate, cell wall synthesis, and nisin immunity in L. lactis F44, and its expression level was regulated by feedback control.


Assuntos
Lactococcus lactis , Nisina , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Nisina/genética
4.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887256

RESUMO

CodY is a dominant regulator in low G + C, Gram-positive Firmicutes that governs the regulation of various metabolic pathways and cellular processes. By using various bioinformatics analyses and DNA affinity precipitation assay (DAPA), this study confirmed the presence of CodY orthologues and corresponding regulons in Gram-negative Synergistetes. A novel palindromic sequence consisting of AT-rich arms separated by a spacer region of variable length and sequence was identified in the promoters of the putative codY-containing operons in Synergistetes. The consensus sequence from genera Synergistes and Cloacibacillus (5'-AATTTTCTTAAAATTTCSCTTGATATTTACAATTTT) contained three AT-rich regions, resulting in two palindromic sequences; one of which is identical to Firmicutes CodY box (5'-AATTTTCWGAAAATT). The function of the consensus sequence was tested by using a recombinant CodY protein (His-CodYDSM) of Cloacibacillus evryensis DSM19522 in DAPA. Mutations in the central AT-rich sequence reduced significantly the binding of His-CodYDSM, whereas mutations in the 5' or 3' end AT-rich sequence slightly reduced the binding, indicating that CodYDSM could recognize both palindromic sequences. The proposed binding sequences were found in the promoters of multiple genes involved in amino acids biosynthesis, metabolism, regulation, and stress responses in Synergistetes. Thus, a CodY-like protein from Synergistetes may function similarly to Firmicutes CodY.


Assuntos
Regulação Bacteriana da Expressão Gênica , Regulon , Proteínas de Bactérias/metabolismo , Regiões Promotoras Genéticas , Regulon/genética , Proteínas Repressoras/genética
5.
Mol Microbiol ; 113(4): 841-858, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31944451

RESUMO

CodY is a global transcriptional regulator that controls, directly or indirectly, the expression of dozens of genes and operons in Listeria monocytogenes. We used in vitro DNA affinity purification combined with massively parallel sequencing (IDAP-Seq) to identify genome-wide L. monocytogenes chromosomal DNA regions that CodY binds in vitro. The total number of CodY-binding regions exceeded 2,000, but they varied significantly in their strengths of binding at different CodY concentrations. The 388 strongest CodY-binding regions were chosen for further analysis. A strand-specific analysis of the data allowed pinpointing CodY-binding sites at close to single-nucleotide resolution. Gel shift and DNase I footprinting assays confirmed the presence and locations of several CodY-binding sites. Surprisingly, most of the sites were located within genes' coding regions. The binding site within the beginning of the coding sequence of the prfA gene, which encodes the master regulator of virulence genes, has been previously implicated in regulation of prfA, but this site was weaker in vitro than hundreds of other sites. The L. monocytogenes CodY protein was functionally similar to Bacillus subtilis CodY when expressed in B. subtilis cells. Based on the sequences of the CodY-binding sites, a model of CodY interaction with DNA is proposed.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Listeria monocytogenes , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo , Sítios de Ligação , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Ligação Proteica
6.
J Bacteriol ; 202(8)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32015143

RESUMO

The global regulator CodY links nutrient availability to the regulation of virulence factor gene expression in Staphylococcus aureus, including many genes whose products affect biofilm formation. Antithetical phenotypes of both biofilm deficiency and accumulation have been reported for codY-null mutants; thus, the role of CodY in biofilm development remains unclear. codY mutant cells of a strain producing a robust biofilm elaborate proaggregation surface-associated features not present on codY mutant cells that do not produce a robust biofilm. Biochemical analysis of the clinical isolate SA564, which aggregates when deficient for CodY, revealed that these features are sensitive to nuclease treatment and are resistant to protease exposure. Genetic analyses revealed that disrupting lgt (the diacylglycerol transferase gene) in codY mutant cells severely weakened aggregation, indicating a role for lipoproteins in the attachment of the biofilm matrix to the cell surface. An additional and critical role of IcaB in producing functional poly-N-acetylglucosamine (PIA) polysaccharide in extracellular DNA (eDNA)-dependent biofilm formation was shown. Moreover, overproducing PIA is sufficient to promote aggregation in a DNA-dependent manner regardless of source of nucleic acids. Taken together, our results point to PIA synthesis as the primary determinant of biofilm formation when CodY activity is reduced and suggest a modified electrostatic net model for matrix attachment whereby PIA associates with eDNA, which interacts with the cell surface via covalently attached membrane lipoproteins. This work counters the prevailing view that polysaccharide- and eDNA/protein-based biofilms are mutually exclusive. Rather, we demonstrate that eDNA and PIA can work synergistically to form a biofilm.IMPORTANCEStaphylococcus aureus remains a global health concern and exemplifies the ability of an opportunistic pathogen to adapt and persist within multiple environments, including host tissue. Not only does biofilm contribute to persistence and immune evasion in the host environment, it also may aid in the transition to invasive disease. Thus, understanding how biofilms form is critical for developing strategies for dispersing biofilms and improving biofilm disease-related outcomes. Using biochemical, genetic, and cell biology approaches, we reveal a synergistic interaction between PIA and eDNA that promotes cell aggregation and biofilm formation in a CodY-dependent manner in S. aureus We also reveal that envelope-associated lipoproteins mediate attachment of the biofilm matrix to the cell surface.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , DNA Bacteriano/metabolismo , Matriz Extracelular/metabolismo , Polissacarídeos Bacterianos/metabolismo , Proteínas Repressoras/metabolismo , Staphylococcus aureus/fisiologia , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Matriz Extracelular/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Polissacarídeos Bacterianos/genética , Proteínas Repressoras/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
7.
J Bacteriol ; 202(2)2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31659010

RESUMO

The anaerobic spore former Clostridioides difficile causes significant diarrheal disease in humans and other mammals. Infection begins with the ingestion of dormant spores, which subsequently germinate within the host gastrointestinal tract. There, the vegetative cells proliferate and secrete two exotoxins, TcdA and TcdB, which cause disease symptoms. Although spore formation and toxin production are critical for C. difficile pathogenesis, the regulatory links between these two physiological processes are not well understood and are strain dependent. Previously, we identified a conserved C. difficile regulator, RstA, that promotes sporulation initiation through an unknown mechanism and directly and indirectly represses toxin and motility gene transcription in the historical isolate 630Δerm To test whether perceived strain-dependent differences in toxin production and sporulation are mediated by RstA, we created an rstA mutant in the epidemic ribotype 027 strain R20291. RstA affected sporulation and toxin gene expression similarly but more robustly in R20291 than in 630Δerm In contrast, no effect on motility gene expression was observed in R20291. Reporter assays measuring transcriptional regulation of tcdR, the sigma factor gene essential for toxin gene expression, identified sequence-dependent effects influencing repression by RstA and CodY, a global nutritional sensor, in four diverse C. difficile strains. Finally, sequence- and strain-dependent differences were evident in RstA negative autoregulation of rstA transcription. Altogether, our data suggest that strain-dependent differences in RstA regulation contribute to the sporulation and toxin phenotypes observed in R20291. Our data establish RstA as an important regulator of C. difficile virulence traits.IMPORTANCE Two critical traits of Clostridioides difficile pathogenesis are toxin production, which causes disease symptoms, and spore formation, which permits survival outside the gastrointestinal tract. The multifunctional regulator RstA promotes sporulation and prevents toxin production in the historical strain 630Δerm Here, we show that RstA exhibits stronger effects on these phenotypes in an epidemic isolate, R20291, and additional strain-specific effects on toxin and rstA expression are evident. Our data demonstrate that sequence-specific differences within the promoter for the toxin regulator TcdR contribute to the regulation of toxin production by RstA and CodY. These sequence differences account for some of the variability in toxin production among isolates and may allow strains to differentially control toxin production in response to a variety of signals.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Clostridioides difficile/genética , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Regiões Promotoras Genéticas/genética
8.
Appl Environ Microbiol ; 86(22)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32769193

RESUMO

Peptides present in growth media are essential for nitrogen nutrition and optimal growth of lactic acid bacteria. In addition, according to their amino acid composition, they can also directly or indirectly play regulatory roles and influence global metabolism. This is especially relevant during the propagation phase to produce high cell counts of active lactic acid bacteria used as starters in the dairy industry. In the present work, we aimed at investigating how the respective compositions of two different yeast extracts, with a specific focus on peptide content, influenced Streptococcus thermophilus metabolism during growth under pH-controlled conditions. In addition to free amino acid quantification, we used a multi-omics approach (peptidomics, proteomics, and transcriptomics) to identify peptides initially present in the two culture media and to follow S. thermophilus gene expression and bacterial protein production during growth. The free amino acid and peptide compositions of the two yeast extracts differed qualitatively and quantitatively. Nevertheless, the two yeast extracts sustained similar levels of growth of S. thermophilus and led to equivalent final biomasses. However, transcriptomics and proteomics showed differential gene expression and protein production in several S. thermophilus metabolic pathways, especially amino acid, citrate, urease, purine, and pyrimidine metabolisms. The probable role of the regulator CodY is discussed in this context. Moreover, we observed significant differences in the production of regulators and of a quorum sensing regulatory system. The possible roles of yeast extract peptides on the modulation of the quorum sensing system expression are evaluated.IMPORTANCE Improving the performance and industrial robustness of bacteria used in fermentations and food industry remains a challenge. We showed here that two Streptococcus thermophilus fermentations, performed with the same strain in media that differ only by their yeast extract compositions and, more especially, their peptide contents, led to similar growth kinetics and final biomasses, but several genes and proteins were differentially expressed/produced. In other words, subtle variations in peptide composition of the growth medium can finely tune the metabolism status of the starter. Our work, therefore, suggests that acting on growth medium components and especially on their peptide content, we could modulate bacterial metabolism and produce bacteria differently programmed for further purposes. This might have applications for preparing active starter cultures.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/metabolismo , Expressão Gênica , Peptídeos/metabolismo , Saccharomyces cerevisiae/química , Streptococcus thermophilus/metabolismo , Fermentação , Proteínas Fúngicas/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Peptídeos/administração & dosagem , Percepção de Quorum , Streptococcus thermophilus/efeitos dos fármacos
9.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32005740

RESUMO

Lactococcus lactis subsp. cremoris MG1363 is a model for the lactic acid bacteria (LAB) used in the dairy industry. The proteolytic system, consisting of a proteinase, several peptide and amino acid uptake systems, and a host of intracellular peptidases, plays a vital role in nitrogen metabolism and is of eminent importance for flavor formation in dairy products. The dipeptidase PepV functions in the last stages of proteolysis. A link between nitrogen metabolism and peptidoglycan (PG) biosynthesis was underlined by the finding that deletion of the dipeptidase gene pepV (creating strain MGΔpepV) resulted in a prolonged lag phase when the mutant strain was grown with a high concentration of glycine. In addition, most MGΔpepV cells lyse and have serious defects in their shape. This phenotype is due to a shortage of alanine, since adding alanine can rescue the growth and shape defects. Strain MGΔpepV is more resistant to vancomycin, an antibiotic targeting peptidoglycan d-Ala-d-Ala ends, which confirmed that MGΔpepV has an abnormal PG composition. A mutant of MGΔpepV was obtained in which growth inhibition and cell shape defects were alleviated. Genome sequencing showed that this mutant has a single point mutation in the codY gene, resulting in an arginine residue at position 218 in the DNA-binding motif of CodY being replaced by a cysteine residue. Thus, this strain was named MGΔpepVcodYR218C Transcriptome sequencing (RNA-seq) data revealed a dramatic derepression in peptide uptake and amino acid utilization in MGΔpepVcodYR218C A model of the connections among PepV activity, CodY regulation, and PG synthesis of L. lactis is proposed.IMPORTANCE Precise control of peptidoglycan synthesis is essential in Gram-positive bacteria for maintaining cell shape and integrity as well as resisting stresses. Although neither the dipeptidase PepV nor alanine is essential for L. lactis MG1363, adequate availability of either ensures proper cell wall synthesis. We broaden the knowledge about the dipeptidase PepV, which acts as a linker between nitrogen metabolism and cell wall synthesis in L. lactis.


Assuntos
Proteínas de Bactérias/genética , Dipeptidases/genética , Lactococcus/genética , Mutação , Proteínas de Bactérias/metabolismo , Dipeptidases/metabolismo , Genes Bacterianos , Pleiotropia Genética , Lactococcus/metabolismo
10.
J Bacteriol ; 200(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29967117

RESUMO

Capsule is one of many virulence factors produced by Staphylococcus aureus, and its expression is highly regulated. Here, we report the repression of capsule by direct interaction of XdrA and CodY with the capsule promoter region. We found, by footprinting analyses, that XdrA repressed capsule by binding to a broad region that extended from upstream of the -35 region of the promoter to the coding region of capA, the first gene of the 16-gene cap operon. Footprinting analyses also revealed that CodY bound to a large region that overlapped extensively with that of XdrA. We found that repression of the cap genes in the xdrA mutant could be achieved by the overexpression of codY but not vice versa, suggesting codY is epistatic to xdrA However, we found XdrA had no effect on CodY expression. These results suggest that XdrA plays a secondary role in capsule regulation by promoting CodY repression of the cap genes. Oxacillin slightly induced xdrA expression and reduced cap promoter activity, but the effect of oxacillin on capsule was not mediated through XdrA.IMPORTANCEStaphylococcus aureus employs a complex regulatory network to coordinate the expression of various virulence genes to achieve successful infections. How virulence genes are coordinately regulated is still poorly understood. We have been studying capsule regulation as a model system to explore regulatory networking in S. aureus In this study, we found that XdrA and CodY have broad binding sites that overlap extensively in the capsule promoter region. Our results also suggest that XdrA assists CodY in the repression of capsule. As capsule gene regulation by DNA-binding regulators has not been fully investigated, the results presented here fill an important knowledge gap, thereby further advancing our understanding of the global virulence regulatory network in S. aureus.


Assuntos
Cápsulas Bacterianas/genética , Proteínas de Bactérias/genética , Proteínas Repressoras/genética , Staphylococcus aureus/genética , Sítios de Ligação , Epistasia Genética , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Regiões Promotoras Genéticas , Virulência
11.
J Bacteriol ; 200(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30297357

RESUMO

The translationally silent 100S ribosome is a poorly understood form of the dimeric 70S complex that is ubiquitously found in all bacterial phyla. The elimination of the hibernating 100S ribosome leads to translational derepression, ribosome instability, antibiotic sensitivity, and biofilm defects in some bacteria. In Firmicutes, such as the opportunistic pathogen Staphylococcus aureus, a 190-amino acid protein called hibernating-promoting factor (HPF) dimerizes and conjoins two 70S ribosomes through a direct interaction between the HPF homodimer, with each HPF monomer tethered on an individual 70S complex. While the formation of the 100S ribosome in gammaproteobacteria and cyanobacteria is exclusively induced during postexponential growth phase and darkness, respectively, the 100S ribosomes in Firmicutes are constitutively produced from the lag-logarithmic phase through the post-stationary phase. Very little is known about the regulatory pathways that control hpf expression and 100S ribosome abundance. Here, we show that a general stress response (GSR) sigma factor (SigB) and a GTP-sensing transcription factor (CodY) integrate nutrient and thermal signals to regulate hpf synthesis in S. aureus, resulting in an enhanced virulence of the pathogen in a mouse model of septicemic infection. CodY-dependent regulation of hpf is strain specific. An epistasis analysis further demonstrated that CodY functions upstream of the GSR pathway in a condition-dependent manner. The results reveal an important link between S. aureus stress physiology, ribosome metabolism, and infection biology.IMPORTANCE The dimerization of 70S ribosomes (100S complex) plays an important role in translational regulation and infectivity of the major human pathogen Staphylococcus aureus Although the dimerizing factor HPF has been characterized biochemically, the pathways that regulate 100S ribosome abundance remain elusive. We identified a metabolite- and nutrient-sensing transcription factor, CodY, that serves both as an activator and a repressor of hpf expression in nutrient- and temperature-dependent manners. Furthermore, CodY-mediated activation of hpf masks a secondary hpf transcript derived from a general stress response SigB promoter. CodY and SigB regulate a repertoire of virulence genes. The unexpected link between ribosome homeostasis and the two master virulence regulators provides new opportunities for alternative druggable sites.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Ribossômicas/metabolismo , Fator sigma/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Dimerização , Epistasia Genética , Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , Staphylococcus aureus/metabolismo
12.
J Bacteriol ; 200(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29941424

RESUMO

Staphylococcus aureus has a complex regulatory network for controlling the production of capsule polysaccharide. In S. aureus, capsule production is controlled by several regulators in response to various environmental stimuli. Previously, we described MsaB as a new regulator that specifically binds to the cap promoter in a growth phase- or nutrient-dependent manner. In addition to MsaB, several other regulators have also been shown to bind the same region. In this study, we examined the interactions between MsaB and other nutrient-sensing regulators (CodY and CcpE) with respect to binding to the cap promoter in a nutrient-dependent manner. We observed that msaABCR and ccpE interact in a complex fashion to regulate capsule production. However, we confirmed that ccpE does not bind cap directly. We also defined the regulatory relationship between msaABCR and CodY. When nutrients (branched-chain amino acids) are abundant, CodY binds to the promoter region of the cap operon and represses its transcription. However, when nutrient concentrations decrease, MsaB, rather than CodY, binds to the cap promoter. Binding of MsaB to the cap promoter activates transcription of the cap operon. We hypothesize that this same mechanism may be used by S. aureus to regulate other virulence factors.IMPORTANCE Findings from this study define the mechanism of regulation of capsule production in Staphylococcus aureus Specifically, we show that two key regulators, MsaB and CodY, coordinate their functions to control the expression of capsule in response to nutrients. S. aureus fine-tunes the production of capsule by coordinating the activity of several regulators and by sensing nutrient levels. This study demonstrates the importance of incorporating multiple inputs prior to the expression of costly virulence factors, such as capsule.


Assuntos
Cápsulas Bacterianas/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Nutrientes/metabolismo , Proteínas Repressoras/metabolismo , Staphylococcus aureus/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Proteínas de Bactérias/genética , Óperon , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/genética , Staphylococcus aureus/metabolismo , Fatores de Transcrição , Virulência , Fatores de Virulência
13.
J Bacteriol ; 200(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29229701

RESUMO

Elevated levels of the second messenger c-di-GMP suppress virulence in diverse pathogenic bacteria, yet mechanisms are poorly characterized. In the foodborne pathogen Listeria monocytogenes, high c-di-GMP levels inhibit mammalian cell invasion. Here, we show that invasion is impaired because of the decreased expression levels of internalin genes whose products are involved in invasion. We further show that at high c-di-GMP levels, the expression of the entire virulence regulon is suppressed, and so is the expression of the prfA gene encoding the master activator of the virulence regulon. Analysis of mechanisms controlling prfA expression pointed to the transcription factor CodY as a c-di-GMP-sensitive component. In high-c-di-GMP strains, codY gene expression is decreased, apparently due to the lower activity of CodY, which functions as an activator of codY transcription. We found that listerial CodY does not bind c-di-GMP in vitro and therefore investigated whether c-di-GMP levels affect two known cofactors of listerial CodY, branched-chain amino acids and GTP. Our manipulation of branched-chain amino acid levels did not perturb the c-di-GMP effect; however, our replacement of listerial CodY with the streptococcal CodY homolog, whose activity is GTP independent, abolished the c-di-GMP effect. The results of this study suggest that elevated c-di-GMP levels decrease the activity of the coordinator of metabolism and virulence, CodY, possibly via lower GTP levels, and that decreased CodY activity suppresses L. monocytogenes virulence by the decreased expression of the PrfA virulence regulon.IMPORTANCEListeria monocytogenes is a pathogen causing listeriosis, a disease responsible for the highest mortality rate among foodborne diseases. Understanding how the virulence of this pathogen is regulated is important for developing treatments to decrease the frequency of listerial infections in susceptible populations. In this study, we describe the mechanism through which elevated levels of the second messenger c-di-GMP inhibit listerial invasion in mammalian cells. Inhibition is caused by the decreased activity of the transcription factor CodY that coordinates metabolism and virulence.


Assuntos
GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Fatores de Transcrição/genética , Aminoácidos de Cadeia Ramificada/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , GMP Cíclico/análise , GMP Cíclico/genética , GMP Cíclico/metabolismo , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Células HT29 , Interações Hospedeiro-Patógeno/genética , Humanos , Listeriose/microbiologia , Fatores de Terminação de Peptídeos/genética , Regiões Promotoras Genéticas , Regulon , Virulência/genética
14.
J Bacteriol ; 200(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29378891

RESUMO

Staphylococcus aureus subverts innate defenses during infection in part by killing host immune cells to exacerbate disease. This human pathogen intercepts host cues and activates a transcriptional response via the S. aureus exoprotein expression (SaeR/SaeS [SaeR/S]) two-component system to secrete virulence factors critical for pathogenesis. We recently showed that the transcriptional repressor CodY adjusts nuclease (nuc) gene expression via SaeR/S, but the mechanism remained unknown. Here, we identified two CodY binding motifs upstream of the sae P1 promoter, which suggested direct regulation by this global regulator. We show that CodY shares a binding site with the positive activator SaeR and that alleviating direct CodY repression at this site is sufficient to abrogate stochastic expression, suggesting that CodY represses sae expression by blocking SaeR binding. Epistasis experiments support a model that CodY also controls sae indirectly through Agr and Rot-mediated repression of the sae P1 promoter. We also demonstrate that CodY repression of sae restrains production of secreted cytotoxins that kill human neutrophils. We conclude that CodY plays a previously unrecognized role in controlling virulence gene expression via SaeR/S and suggest a mechanism by which CodY acts as a master regulator of pathogenesis by tying nutrient availability to virulence gene expression.IMPORTANCE Bacterial mechanisms that mediate the switch from a commensal to pathogenic lifestyle are among the biggest unanswered questions in infectious disease research. Since the expression of most virulence genes is often correlated with nutrient depletion, this implies that virulence is a response to the lack of nourishment in host tissues and that pathogens like S. aureus produce virulence factors in order to gain access to nutrients in the host. Here, we show that specific nutrient depletion signals appear to be funneled to the SaeR/S system through the global regulator CodY. Our findings reveal a strategy by which S. aureus delays the production of immune evasion and immune-cell-killing proteins until key nutrients are depleted.


Assuntos
Proteínas de Bactérias/metabolismo , Nutrientes , Proteínas Quinases/metabolismo , Proteínas Repressoras/metabolismo , Staphylococcus aureus/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Células Cultivadas , Meios de Cultura/química , Regulação Bacteriana da Expressão Gênica , Humanos , Leucocidinas/metabolismo , Neutrófilos/microbiologia , Regiões Promotoras Genéticas , Proteínas Quinases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Staphylococcus aureus/genética , Fatores de Transcrição/genética , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
15.
BMC Genomics ; 19(1): 386, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29792173

RESUMO

BACKGROUND: Streptococcus salivarius is an abundant isolate of the human oral microbiota. Since both pH and glucose availability fluctuate frequently in the oral cavity, the goal of this study was to investigate regulation by CodY, a conserved pleiotropic regulator of Gram positive bacteria, in response to these two signals. The chemostat culture system was employed to precisely control the growth parameters, and the transcriptomes of wild-type S. salivarius 57.I and its CodY-null derivative (ΔcodY) grown at pH 7 and 5.5, with limited and excessive glucose supply were determined. RESULTS: The transcriptomic analysis revealed that CodY was most active at pH 7 under conditions of glucose limitation. Based on whether a CodY binding consensus could be located in the 5' flanking region of the identified target, the transcriptomic analysis also found that CodY shaped the transcriptome via both direct and indirect regulation. Inactivation of codY reduced the glycolytic capacity and the viability of S. salivarius at pH 5.5 or in the presence of H2O2. Studies using the Galleria mellonella larva model showed that CodY was essential for the toxicity generated from S. salivarius infection, suggesting that CodY regulation was critical for immune evasion and systemic infections. Furthermore, the CodY-null mutant strain exhibited a clumping phenotype and reduced attachment in biofilm assays, suggesting that CodY also modulates cell wall metabolism. Finally, the expression of genes belonging to the CovR regulon was affected by codY inactivation, but CodY and CovR regulated these genes in opposite directions. CONCLUSIONS: Metabolic adaptation in response to nutrient availability and growth pH is tightly linked to stress responses and virulence expression in S. salivarius. The regulation of metabolism by CodY allows for the maximal utilization of available nutrients and ATP production. The counteractive regulation of the CovR regulon could fine tune the transcriptomes in response to environmental changes.


Assuntos
Proteínas de Bactérias/metabolismo , Glucose/farmacologia , Streptococcus salivarius/crescimento & desenvolvimento , Streptococcus salivarius/metabolismo , Fatores de Transcrição/metabolismo , Relação Dose-Resposta a Droga , Glicólise/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Estresse Oxidativo/efeitos dos fármacos , Streptococcus salivarius/efeitos dos fármacos
16.
Metab Eng ; 49: 143-152, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096425

RESUMO

Bacillus subtilis is extensively applied as a microorganism for the high-level production of heterologous proteins. Traditional strategies for increasing the productivity of this microbial cell factory generally focused on the targeted modification of rate-limiting components or steps. However, the longstanding problems of limited productivity of the expression host, metabolic burden and non-optimal nutrient intake, have not yet been completely solved to achieve significant production-strain improvements. To tackle this problem, we systematically rewired the regulatory networks of the global nitrogen and carbon metabolism by random mutagenesis of the pleiotropic transcriptional regulators CodY and CcpA, to allow for optimal nutrient intake, translating into significantly higher heterologous protein production yields. Using a ß-galactosidase expression and screening system and consecutive rounds of mutagenesis, we identified mutant variants of both CodY and CcpA that in conjunction increased production levels up to 290%. RNA-Seq and electrophoretic mobility shift assay (EMSA) showed that amino acid substitutions within the DNA-binding domains altered the overall binding specificity and regulatory activity of the two transcription factors. Consequently, fine-tuning of the central metabolic pathways allowed for enhanced protein production levels. The improved cell factory capacity was further demonstrated by the successfully increased overexpression of GFP, xylanase and a peptidase in the double mutant strain.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Carbono/metabolismo , Expressão Gênica , Nitrogênio/metabolismo , Fatores de Transcrição , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Infect Immun ; 85(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28052992

RESUMO

Clostridium perfringens type D strains cause enterotoxemia and enteritis in livestock via epsilon toxin production. In type D strain CN3718, CodY was previously shown to increase the level of epsilon toxin production and repress sporulation. C. perfringens type A strains producing C. perfringens enterotoxin (CPE) cause human food poisoning and antibiotic-associated diarrhea. Sporulation is critical for C. perfringens type A food poisoning since spores contribute to transmission and resistance in the harsh food environment and sporulation is essential for CPE production. Therefore, the current study asked whether CodY also regulates sporulation and CPE production in SM101, a derivative of C. perfringens type A food-poisoning strain NCTC8798. An isogenic codY-null mutant of SM101 showed decreased levels of spore formation, along with lower levels of CPE production. A complemented strain recovered wild-type levels of both sporulation and CPE production. When this result was coupled with the earlier results obtained with CN3718, it became apparent that CodY regulation of sporulation varies among different C. perfringens strains. Results from quantitative reverse transcriptase PCR analysis clearly demonstrated that, during sporulation, codY transcript levels remained high in SM101 but rapidly declined in CN3718. In addition, abrB gene expression patterns varied significantly between codY-null mutants of SM101 and CN3718. Compared to the levels in their wild-type parents, the level of abrB gene expression decreased in the CN3718 codY-null mutant strain but significantly increased in the SM101 codY-null mutant strain, demonstrating CodY-dependent regulation differences in abrB expression between these two strains. This difference appears to be important since overexpression of the abrB gene in SM101 reduced the levels of sporulation and enterotoxin production, supporting the involvement of AbrB repression in regulating C. perfringens sporulation.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium perfringens/fisiologia , Enterotoxinas/biossíntese , Esporos Bacterianos/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Infecções por Clostridium/microbiologia , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Mutação , Fatores de Transcrição/genética
18.
Infect Immun ; 85(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28652311

RESUMO

The signaling molecule cyclic diguanylate (c-di-GMP) mediates physiological adaptation to extracellular stimuli in a wide range of bacteria. The complex metabolic pathways governing c-di-GMP synthesis and degradation are highly regulated, but the specific cues that impact c-di-GMP signaling are largely unknown. In the intestinal pathogen Clostridium difficile, c-di-GMP inhibits flagellar motility and toxin production and promotes pilus-dependent biofilm formation, but no specific biological functions have been ascribed to any of the individual c-di-GMP synthases or phosphodiesterases (PDEs). Here, we report the functional and biochemical characterization of a c-di-GMP PDE, PdcA, 1 of 37 confirmed or putative c-di-GMP metabolism proteins in C. difficile 630. Our studies reveal that pdcA transcription is controlled by the nutrient-regulated transcriptional regulator CodY and accordingly increases during stationary phase. In addition, PdcA PDE activity is allosterically regulated by GTP, further linking c-di-GMP levels to nutrient availability. Mutation of pdcA increased biofilm formation and reduced toxin biosynthesis without affecting swimming motility or global intracellular c-di-GMP. Analysis of the transcriptional response to pdcA mutation indicates that PdcA-dependent phenotypes manifest during stationary phase, consistent with regulation by CodY. These results demonstrate that inactivation of this single PDE gene is sufficient to impact multiple c-di-GMP-dependent phenotypes, including the production of major virulence factors, and suggest a link between c-di-GMP signaling and nutrient availability.


Assuntos
Toxinas Bacterianas/metabolismo , Biofilmes/crescimento & desenvolvimento , Clostridioides difficile/enzimologia , Clostridioides difficile/fisiologia , GMP Cíclico/análogos & derivados , Diester Fosfórico Hidrolases/metabolismo , Clostridioides difficile/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Locomoção , Diester Fosfórico Hidrolases/genética
19.
Curr Genet ; 63(3): 417-425, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27744611

RESUMO

A growing body of evidence points to CodY, a global regulator in Gram-positive bacteria, as a critical link between microbial physiology and pathogenesis in diverse environments. Recent studies uncovering graded regulation of CodY gene targets reflect the true nature of this transcription factor controlled by ligands and reveal nutrient availability as a potentially critical factor in modulating pathogenesis. This review will serve to update the status of the field and raise new questions to be answered.


Assuntos
Aminoácidos de Cadeia Ramificada/genética , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Bacillus subtilis/patogenicidade , Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica/genética , Ligação Proteica , Proteínas Repressoras/biossíntese , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Fatores de Transcrição/biossíntese
20.
Appl Microbiol Biotechnol ; 101(16): 6375-6383, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28601894

RESUMO

Lichenysin is categorized into the family of lipopeptide biosurfactants and has a variety of applications in the petroleum industry, bioremediation, pharmaceuticals, and the food industry. Currently, large-scale production is limited due to the low yield. This study found that lichenysin production was repressed by supplementation of extracellular amino acids. The global transcriptional factor CodY was hypothesized to prevent lichenysin biosynthesis under an amino acid-rich condition in Bacillus licheniformis. Thus, the codY null strain was constructed, and lichenysin production was increased by 31.0% to 2356 mg/L with the addition of precursor amino acids, and the lichenysin production efficiency was improved by 42.8% to 98.2 mg/L• h. Correspondingly, the transcription levels of the lichenysin synthetase gene lchAA, and its corresponding regulator genes comA, degQ, and degU, were upregulated. Also, the codY deletion enhanced biosynthesis of lichenysin precursor amino acids (Gln, Ile, Leu, and Val) and reduced the formation of byproducts, acetate, acetoin, and 2,3-butanediol. This study firstly reported that lichenysin biosynthesis was negatively regulated by CodY and lichenysin production could be further improved with the precursor amino acid amendment in the codY null strain.


Assuntos
Aminoácidos/farmacologia , Bacillus licheniformis/efeitos dos fármacos , Bacillus licheniformis/metabolismo , Lipoproteínas/biossíntese , Peptídeos Cíclicos/biossíntese , Fatores de Transcrição/deficiência , Bacillus licheniformis/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Ligases/genética , Transativadores/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA