Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.143
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 176(5): 1128-1142.e18, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30686582

RESUMO

Collateral arteries are an uncommon vessel subtype that can provide alternate blood flow to preserve tissue following vascular occlusion. Some patients with heart disease develop collateral coronary arteries, and this correlates with increased survival. However, it is not known how these collaterals develop or how to stimulate them. We demonstrate that neonatal mouse hearts use a novel mechanism to build collateral arteries in response to injury. Arterial endothelial cells (ECs) migrated away from arteries along existing capillaries and reassembled into collateral arteries, which we termed "artery reassembly". Artery ECs expressed CXCR4, and following injury, capillary ECs induced its ligand, CXCL12. CXCL12 or CXCR4 deletion impaired collateral artery formation and neonatal heart regeneration. Artery reassembly was nearly absent in adults but was induced by exogenous CXCL12. Thus, understanding neonatal regenerative mechanisms can identify pathways that restore these processes in adults and identify potentially translatable therapeutic strategies for ischemic heart disease.


Assuntos
Circulação Colateral/fisiologia , Coração/crescimento & desenvolvimento , Regeneração/fisiologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Quimiocina CXCL12/metabolismo , Vasos Coronários/crescimento & desenvolvimento , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/fisiologia , Receptores CXCR4/metabolismo , Transdução de Sinais
2.
Cell ; 177(3): 541-555.e17, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30955887

RESUMO

Neutrophils are attracted to and generate dense swarms at sites of cell damage in diverse tissues, often extending the local disruption of organ architecture produced by the initial insult. Whether the inflammatory damage resulting from such neutrophil accumulation is an inescapable consequence of parenchymal cell death has not been explored. Using a combination of dynamic intravital imaging and confocal multiplex microscopy, we report here that tissue-resident macrophages rapidly sense the death of individual cells and extend membrane processes that sequester the damage, a process that prevents initiation of the feedforward chemoattractant signaling cascade that results in neutrophil swarms. Through this "cloaking" mechanism, the resident macrophages prevent neutrophil-mediated inflammatory damage, maintaining tissue homeostasis in the face of local cell injury that occurs on a regular basis in many organs because of mechanical and other stresses. VIDEO ABSTRACT.


Assuntos
Macrófagos/imunologia , Neutrófilos/imunologia , Alarminas/metabolismo , Animais , Endocitose , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Fibras Musculares Esqueléticas/patologia , Ativação de Neutrófilo , Neutrófilos/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo
3.
Cell ; 179(2): 448-458.e11, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564454

RESUMO

Bacteria and archaea possess a striking diversity of CRISPR-Cas systems divided into six types, posing a significant barrier to viral infection. As part of the virus-host arms race, viruses encode protein inhibitors of type I, II, and V CRISPR-Cas systems, but whether there are natural inhibitors of the other, mechanistically distinct CRISPR-Cas types is unknown. Here, we present the discovery of a type III CRISPR-Cas inhibitor, AcrIIIB1, encoded by the Sulfolobus virus SIRV2. AcrIIIB1 exclusively inhibits CRISPR-Cas subtype III-B immunity mediated by the RNase activity of the accessory protein Csx1. AcrIIIB1 does not appear to bind Csx1 but, rather, interacts with two distinct subtype III-B effector complexes-Cmr-α and Cmr-γ-which, in response to protospacer transcript binding, are known to synthesize cyclic oligoadenylates (cOAs) that activate the Csx1 "collateral" RNase. Taken together, we infer that AcrIIIB1 inhibits type III-B CRISPR-Cas immunity by interfering with a Csx1 RNase-related process.


Assuntos
Proteínas Associadas a CRISPR/fisiologia , Sistemas CRISPR-Cas , Interações Hospedeiro-Patógeno , Rudiviridae/metabolismo , Sulfolobus/virologia , Ribonucleases/metabolismo
4.
Cell ; 172(1-2): 121-134.e14, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29307490

RESUMO

Chronic Pseudomonas aeruginosa infections evade antibiotic therapy and are associated with mortality in cystic fibrosis (CF) patients. We find that in vitro resistance evolution of P. aeruginosa toward clinically relevant antibiotics leads to phenotypic convergence toward distinct states. These states are associated with collateral sensitivity toward several antibiotic classes and encoded by mutations in antibiotic resistance genes, including transcriptional regulator nfxB. Longitudinal analysis of isolates from CF patients reveals similar and defined phenotypic states, which are associated with extinction of specific sub-lineages in patients. In-depth investigation of chronic P. aeruginosa populations in a CF patient during antibiotic therapy revealed dramatic genotypic and phenotypic convergence. Notably, fluoroquinolone-resistant subpopulations harboring nfxB mutations were eradicated by antibiotic therapy as predicted by our in vitro data. This study supports the hypothesis that antibiotic treatment of chronic infections can be optimized by targeting phenotypic states associated with specific mutations to improve treatment success in chronic infections.


Assuntos
Fibrose Cística/microbiologia , Farmacorresistência Bacteriana , Evolução Molecular , Fenótipo , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Fibrose Cística/complicações , Proteínas de Ligação a DNA/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Seleção Genética , Fatores de Transcrição/genética
5.
EMBO Rep ; 25(1): 128-143, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177907

RESUMO

Collateral circulation is essential for blood resupply to the ischemic heart, which is dictated by the contractile phenotypic restoration of vascular smooth muscle cells (VSMC). Here we investigate whether S-nitrosylation of AMP-activated protein kinase (AMPK), a key regulator of the VSMC phenotype, impairs collateral circulation. In rats with collateral growth and development, nitroglycerin decreases coronary collateral blood flow (CCBF), inhibits vascular contractile phenotypic restoration, and increases myocardial infarct size, accompanied by reduced AMPK activity in the collateral zone. Nitric oxide (NO) S-nitrosylates human recombinant AMPKγ1 at cysteine 131 and decreases AMP sensitivity of AMPK. In VSMCs, exogenous expression of S-nitrosylation-resistant AMPKγ1 or deficient NO synthase (iNOS) prevents the disruption of VSMC reprogramming. Finally, hyperhomocysteinemia or hyperglycemia increases AMPKγ1 S-nitrosylation, prevents vascular contractile phenotypic restoration, reduces CCBF, and increases the infarct size of the heart in Apoe-/- mice, all of which is rescued in Apoe-/-/iNOSsm-/- mice or Apoe-/- mice with enforced expression of the AMPKγ1-C130A mutant following RI/MI. We conclude that nitrosative stress disrupts coronary collateral circulation during hyperhomocysteinemia or hyperglycemia through AMPK S-nitrosylation.


Assuntos
Hiperglicemia , Hiper-Homocisteinemia , Ratos , Camundongos , Humanos , Animais , Circulação Colateral , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Músculo Liso Vascular , Hiper-Homocisteinemia/metabolismo , Apolipoproteínas E/metabolismo , Hiperglicemia/metabolismo
6.
J Neurosci ; 44(15)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38471780

RESUMO

Following peripheral nerve injury, denervated tissues can be reinnervated via regeneration of injured neurons or collateral sprouting of neighboring uninjured afferents into denervated territory. While there has been substantial focus on mechanisms underlying regeneration, collateral sprouting has received less attention. Here, we used immunohistochemistry and genetic neuronal labeling to define the subtype specificity of sprouting-mediated reinnervation of plantar hindpaw skin in the mouse spared nerve injury (SNI) model, in which productive regeneration cannot occur. Following initial loss of cutaneous afferents in the tibial nerve territory, we observed progressive centripetal reinnervation by multiple subtypes of neighboring uninjured fibers into denervated glabrous and hairy plantar skin of male mice. In addition to dermal reinnervation, CGRP-expressing peptidergic fibers slowly but continuously repopulated denervated epidermis, Interestingly, GFRα2-expressing nonpeptidergic fibers exhibited a transient burst of epidermal reinnervation, followed by a trend towards regression. Presumptive sympathetic nerve fibers also sprouted into denervated territory, as did a population of myelinated TrkC lineage fibers, though the latter did so inefficiently. Conversely, rapidly adapting Aß fiber and C fiber low threshold mechanoreceptor (LTMR) subtypes failed to exhibit convincing sprouting up to 8 weeks after nerve injury in males or females. Optogenetics and behavioral assays in male mice further demonstrated the functionality of collaterally sprouted fibers in hairy plantar skin with restoration of punctate mechanosensation without hypersensitivity. Our findings advance understanding of differential collateral sprouting among sensory neuron subpopulations and may guide strategies to promote the progression of sensory recovery or limit maladaptive sensory phenomena after peripheral nerve injury.


Assuntos
Traumatismos dos Nervos Periféricos , Feminino , Camundongos , Masculino , Animais , Regeneração Nervosa/fisiologia , Pele/inervação , Neurogênese , Neurônios Aferentes/fisiologia
7.
Am J Hum Genet ; 109(10): 1814-1827, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36167069

RESUMO

Ischemic stroke, caused by vessel blockage, results in cerebral infarction, the death of brain tissue. Previously, quantitative trait locus (QTL) mapping of cerebral infarct volume and collateral vessel number identified a single, strong genetic locus regulating both phenotypes. Additional studies identified RAB GTPase-binding effector protein 2 (Rabep2) as the casual gene. However, there is yet no evidence that variation in the human ortholog of this gene plays any role in ischemic stroke outcomes. We established an in vivo evaluation platform in mice by using adeno-associated virus (AAV) gene replacement and verified that both mouse and human RABEP2 rescue the mouse Rabep2 knockout ischemic stroke volume and collateral vessel phenotypes. Importantly, this cross-species complementation enabled us to experimentally investigate the functional effects of coding sequence variation in human RABEP2. We chose four coding variants from the human population that are predicted by multiple in silico algorithms to be damaging to RABEP2 function. In vitro and in vivo analyses verify that all four led to decreased collateral vessel connections and increased infarct volume. Thus, there are naturally occurring loss-of-function alleles. This cross-species approach will expand the number of targets for therapeutics development for ischemic stroke.


Assuntos
AVC Isquêmico , Alelos , Animais , Encéfalo/metabolismo , Mapeamento Cromossômico , Humanos , Camundongos , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
8.
J Virol ; 98(3): e0147623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376991

RESUMO

The ability of virulent bacteriophages to lyse bacteria influences bacterial evolution, fitness, and population structure. Knowledge of both host susceptibility and resistance factors is crucial for the successful application of bacteriophages as biological control agents in clinical therapy, food processing, and agriculture. In this study, we isolated 12 bacteriophages termed SPLA phage which infect the foodborne pathogen Salmonella enterica. To determine phage host range, a diverse collection of Enterobacteriaceae and Salmonella enterica was used and genes involved in infection by six SPLA phages were identified using Salmonella Typhimurium strain ST4/74. Candidate host receptors included lipopolysaccharide (LPS), cellulose, and BtuB. Lipopolysaccharide was identified as a susceptibility factor for phage SPLA1a and mutations in LPS biosynthesis genes spontaneously emerged during culture with S. Typhimurium. Conversely, LPS was a resistance factor for phage SPLA5b which suggested that emergence of LPS mutations in culture with SPLA1a represented collateral sensitivity to SPLA5b. We show that bacteria-phage co-culture with SPLA1a and SPLA5b was more successful in limiting the emergence of phage resistance compared to single phage co-culture. Identification of host susceptibility and resistance genes and understanding infection dynamics are critical steps in the rationale design of phage cocktails against specific bacterial pathogens.IMPORTANCEAs antibiotic resistance continues to emerge in bacterial pathogens, bacterial viruses (phage) represent a potential alternative or adjunct to antibiotics. One challenge for their implementation is the predisposition of bacteria to rapidly acquire resistance to phages. We describe a functional genomics approach to identify mechanisms of susceptibility and resistance for newly isolated phages that infect and lyse Salmonella enterica and use this information to identify phage combinations that exploit collateral sensitivity, thus increasing efficacy. Collateral sensitivity is a phenomenon where resistance to one class of antibiotics increases sensitivity to a second class of antibiotics. We report a functional genomics approach to rationally design a phage combination with a collateral sensitivity dynamic which resulted in increased efficacy. Considering such evolutionary trade-offs has the potential to manipulate the outcome of phage therapy in favor of resolving infection without selecting for escape mutants and is applicable to other virus-host interactions.


Assuntos
Bacteriófagos , Microbiologia Ambiental , Salmonella enterica , Antibacterianos/uso terapêutico , Bacteriófagos/isolamento & purificação , Sensibilidade Colateral a Medicamentos , Lipopolissacarídeos , Salmonella enterica/virologia , Terapia por Fagos , Infecções por Salmonella/terapia , Humanos
9.
Drug Resist Updat ; 73: 101065, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367548

RESUMO

AIMS: To investigate the collateral sensitivity (CS) of ABCB1-positive multidrug resistant (MDR) colorectal cancer cells to the survivin inhibitor MX106-4C and the mechanism. METHODS: Biochemical assays (MTT, ATPase, drug accumulation/efflux, Western blot, RT-qPCR, immunofluorescence, flow cytometry) and bioinformatic analyses (mRNA-sequencing, reversed-phase protein array) were performed to investigate the hypersensitivity of ABCB1 overexpressing colorectal cancer cells to MX106-4C and the mechanisms. Synergism assay, long-term selection, and 3D tumor spheroid test were used to evaluate the anti-cancer efficacy of MX106-4C. RESULTS: MX106-4C selectively killed ABCB1-positive colorectal cancer cells, which could be reversed by an ABCB1 inhibitor, knockout of ABCB1, or loss-of-function ABCB1 mutation, indicating an ABCB1 expression and function-dependent mechanism. MX106-4C's selective toxicity was associated with cell cycle arrest and apoptosis through ABCB1-dependent survivin inhibition and activation on caspases-3/7 as well as modulation on p21-CDK4/6-pRb pathway. MX106-4C had good selectivity against ABCB1-positive colorectal cancer cells and retained this in multicellular tumor spheroids. In addition, MX106-4C could exert a synergistic anti-cancer effect with doxorubicin or re-sensitize ABCB1-positive cancer cells to doxorubicin by reducing ABCB1 expression in the cell population via long-term exposure. CONCLUSIONS: MX106-4C selectively kills ABCB1-positive MDR colorectal cancer cells via a novel ABCB1-dependent survivin inhibition mechanism, providing a clue for designing CS compound as an alternative strategy to overcome ABCB1-mediated colorectal cancer MDR.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Survivina/genética , Survivina/metabolismo , Survivina/farmacologia , Resistência a Múltiplos Medicamentos/genética , Sensibilidade Colateral a Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Antineoplásicos/uso terapêutico , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/farmacologia
10.
Proc Natl Acad Sci U S A ; 119(15): e2109370119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385351

RESUMO

Collateral sensitivity is an evolutionary trade-off whereby acquisition of the adaptive phenotype of resistance to an antibiotic leads to the nonadaptive increased susceptibility to another. The feasibility of harnessing such a trade-off to design evolutionary-based approaches for treating bacterial infections has been studied using model strains. However, clinical application of collateral sensitivity requires its conservation among strains presenting different mutational backgrounds. Particularly relevant is studying collateral sensitivity robustness of already-antibiotic-resistant mutants when challenged with a new antimicrobial, a common situation in clinics that has hardly been addressed. We submitted a set of diverse Pseudomonas aeruginosa antibiotic-resistant mutants to short-term evolution in the presence of different antimicrobials. Ciprofloxacin selects different clinically relevant resistance mutations in the preexisting resistant mutants, which gave rise to the same, robust, collateral sensitivity to aztreonam and tobramycin. We then experimentally determined that alternation of ciprofloxacin with aztreonam is more efficient than ciprofloxacin­tobramycin alternation in driving the extinction of the analyzed antibiotic-resistant mutants. Also, we show that the combinations ciprofloxacin­aztreonam or ciprofloxacin­tobramycin are the most effective strategies for eliminating the tested P. aeruginosa antibiotic-resistant mutants. These findings support that the identification of conserved collateral sensitivity patterns may guide the design of evolution-based strategies to treat bacterial infections, including those due to antibiotic-resistant mutants. Besides, this is an example of phenotypic convergence in the absence of parallel evolution that, beyond the antibiotic-resistance field, could facilitate the understanding of evolution processes, where the selective forces giving rise to new, not clearly adaptive phenotypes remain unclear.


Assuntos
Antibacterianos , Ciprofloxacina , Sensibilidade Colateral a Medicamentos , Farmacorresistência Bacteriana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Sensibilidade Colateral a Medicamentos/genética , Farmacorresistência Bacteriana/genética , Humanos , Testes de Sensibilidade Microbiana , Mutação , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética
11.
J Neurosci ; 43(8): 1281-1297, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36623877

RESUMO

Autonomously firing GABAergic neurons in the external globus pallidus (GPe) form a local synaptic network. In slices, most GPe neurons receive a continuous inhibitory synaptic barrage from 1 or 2 presynaptic GPe neurons. We measured the barrage's effect on the firing rate and regularity of GPe neurons in male and female mice using perforated patch recordings. Silencing the firing of parvalbumin-positive (PV+) GPe neurons by activating genetically expressed Archaerhodopsin current increased the firing rate and regularity of PV- neurons. In contrast, silencing Npas1+ GPe neurons with Archaerhodopsin had insignificant effects on Npas1- neuron firing. Blocking spontaneous GABAergic synaptic input with gabazine reproduced the effects of silencing PV+ neuron firing on the firing rate and regularity of Npas1+ neurons and had similar effects on PV+ neuron firing. To simulate the barrage, we constructed conductance waveforms for dynamic clamp based on experimentally measured inhibitory postsynaptic conductance trains from 1 or 2 unitary local connections. The resulting inhibition replicated the effect on firing seen in the intact active network in the slice. We then increased the number of unitary inputs to match estimates of local network connectivity in vivo As few as 5 unitary inputs produced large increases in firing irregularity. The firing rate was also reduced initially, but PV+ neurons exhibited a slow spike-frequency adaptation that partially restored the rate despite sustained inhibition. We conclude that the irregular firing pattern of GPe neurons in vivo is largely due to the ongoing local inhibitory synaptic barrage produced by the spontaneous firing of other GPe neurons.SIGNIFICANCE STATEMENT Functional roles of local axon collaterals in the external globus pallidus (GPe) have remained elusive because of difficulty in isolating local inhibition from other GABAergic inputs in vivo, and in preserving the autonomous firing of GPe neurons and detecting their spontaneous local inputs in slices. We used perforated patch recordings to detect spontaneous local inputs during rhythmic firing. We found that the autonomous firing of single presynaptic GPe neurons produces inhibitory synaptic barrages that significantly alter the firing regularity of other GPe neurons. Our findings suggest that, although GPe neurons receive input from only a few other GPe neurons, each local connection has a large impact on their firing.


Assuntos
Neurônios GABAérgicos , Globo Pálido , Camundongos , Masculino , Feminino , Animais , Globo Pálido/fisiologia , Axônios , Parvalbuminas , Proteínas do Tecido Nervoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos
12.
Stroke ; 55(5): 1405-1408, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38533665

RESUMO

BACKGROUND: The topography of arterial territories has been defined using digital maps of supratentorial infarcts. Regions with a high probability of infarction (Pi) exist in the deep compartment due to a paucity of collaterals. However, less attention has been given to regions with a low Pi. METHODS: Using published digital maps, patients with cortical stroke and documented vessel occlusion were included. Infarcts from T2-weighted magnetic resonance images were segmented and registered onto a standard brain template (Montreal Neurological Institute 152). Segmented magnetic resonance images were averaged to yield the Pi at a voxel level. The overall Pi for the combined arterial territories was calculated to ensure that Pi was in the range of 0 to 1. Sanctuary sites were identified as regions with Pi <0.1. RESULTS: There were 154 patients (63% men; median age, 69 years; and interquartile range, 57-78 years). The magnetic resonance imaging scan used for segmentation was performed at a median interval of 35 (interquartile range, 3-66) days after stroke onset. Sanctuary sites were present in the frontal (gyrus rectus, the paracentral lobule, and orbitofrontal and precentral gyrus), parietal (postcentral, supramarginal, and angular gyrus, superior and inferior parietal lobule, and precuneus and posterior cingulate), and occipital cortex (cuneus, middle, and superior occipital gyrus). CONCLUSIONS: We propose that following vessel occlusion, there are cortical regions with a low Pi, which we termed sanctuary sites. The anatomic basis for this observation is the compensatory capacity of leptomeningeal collaterals.

13.
Stroke ; 55(3): 715-724, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38258570

RESUMO

BACKGROUND: Moyamoya disease (MMD) is a rare and complex pathological condition characterized by an abnormal collateral circulation network in the basal brain. The diagnosis of MMD and its progression is unpredictable and influenced by many factors. MMD can affect the blood vessels supplying the eyes, resulting in a range of ocular symptoms. In this study, we developed a deep learning model using real-world data to assist a diagnosis and determine the stage of the disease using retinal photographs. METHODS: This retrospective observational study conducted from August 2006 to March 2022 included 498 retinal photographs from 78 patients with MMD and 3835 photographs from 1649 healthy participants. Photographs were preprocessed, and an ResNeXt50 model was developed. Model performance was measured using receiver operating curves and their area under the receiver operating characteristic curve, accuracy, sensitivity, and F1-score. Heatmaps and progressive erasing plus progressive restoration were performed to validate the faithfulness. RESULTS: Overall, 322 retinal photographs from 67 patients with MMD and 3752 retinal photographs from 1616 healthy participants were used to develop a screening and stage prediction model for MMD. The average age of the patients with MMD was 44.1 years, and the average follow-up time was 115 months. Stage 3 photographs were the most prevalent, followed by stages 4, 5, 2, 1, and 6 and healthy. The MMD screening model had an average area under the receiver operating characteristic curve of 94.6%, with 89.8% sensitivity and 90.4% specificity at the best cutoff point. MMD stage prediction models had an area under the receiver operating characteristic curve of 78% or higher, with stage 3 performing the best at 93.6%. Heatmap identified the vascular region of the fundus as important for prediction, and progressive erasing plus progressive restoration result shows an area under the receiver operating characteristic curve of 70% only with 50% of the important regions. CONCLUSIONS: This study demonstrated that retinal photographs could be used as potential biomarkers for screening and staging of MMD and the disease stage could be classified by a deep learning algorithm.


Assuntos
Aprendizado Profundo , Doença de Moyamoya , Humanos , Adulto , Doença de Moyamoya/diagnóstico por imagem , Algoritmos , Curva ROC
14.
Am J Physiol Heart Circ Physiol ; 326(4): H1037-H1044, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38391315

RESUMO

Recently, a novel method to estimate wedge pressure (Pw)-corrected minimal microvascular resistance (MR) was introduced. However, this method has not been validated since, and there are some theoretical concerns regarding the impact of different physiological conditions on the derivation of Pw measurements. This study sought to validate the recently introduced method to estimate Pw-corrected MR in a Doppler-derived study population and to evaluate the impact of different physiological conditions on the Pw measurements and the derivation of Pw-corrected MR. The method to derive "estimated" hyperemic microvascular resistance (HMR) without the need for Pw measurements was validated by estimating the coronary fractional flow reserve (FFRcor) from myocardial fractional flow reserve (FFRmyo) in a Doppler-derived study population (N = 53). From these patients, 24 had hyperemic Pw measurements available for the evaluation of hyperemic conditions on the derivation of Pw and its effect on the derivation of both "true" (with measured Pw) and "estimated" Pw-corrected HMR. Nonhyperemic Pw differed significantly from Pw measured in hyperemic conditions (26 ± 14 vs. 35 ± 14 mmHg, respectively, P < 0.005). Nevertheless, there was a strong linear relationship between FFRcor and FFRmyo in nonhyperemic conditions (R2 = 0.91, P < 0.005), as well as in hyperemic conditions (R2 = 0.87, P < 0.005). There was a strong linear relationship between "true" HMR and "estimated" HMR using either nonhyperemic (R2 = 0.86, P < 0.005) or hyperemic conditions (R2 = 0.85, P < 0.005) for correction. In contrast to a modest agreement between nonhyperemic Pw-corrected HMR and apparent HMR (R2 = 0.67, P < 0.005), hyperemic Pw-corrected HMR showed a strong agreement with apparent HMR (R2 = 0.88, P < 0.005). We validated the calculation method for Pw-corrected MR in a Doppler velocity-derived population. In addition, we found a significant impact of hyperemic conditions on the measurement of Pw and the derivation of Pw-corrected HMR.NEW & NOTEWORTHY The following are what is known: 1) wedge-pressure correction is often considered for the derivation of indices of minimal microvascular resistance, and 2) the Yong method for calculating wedge pressure-corrected index of microvascular resistance (IMR) without balloon inflation has never been validated in a Doppler-derived population and has not been tested under different physiological conditions. This study 1) adds validation for the Yong method for calculated wedge-pressure correction in a Doppler-derived study population and 2) shows significant influence of the physiological conditions on the derivation of coronary wedge pressure.


Assuntos
Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Hiperemia , Humanos , Vasos Coronários/diagnóstico por imagem , Coração , Velocidade do Fluxo Sanguíneo , Circulação Coronária/fisiologia , Angiografia Coronária
15.
Breast Cancer Res Treat ; 207(1): 129-141, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38739311

RESUMO

PURPOSE: Patients from diverse racial, ethnic, and socio-economic backgrounds may be particularly vulnerable to experiencing undue social and financial burdens ("collateral damage") from a metastatic breast cancer (mBC) diagnosis; however, these challenges have not been well explored in diverse populations. METHODS: From May 2022 to May 2023, English- or Spanish-speaking adults with mBC treated at four New York-Presbyterian (NYP) sites were invited to complete a survey that assessed collateral damage, social determinants of health, physical and psychosocial well-being, and patient-provider communication. Fisher's exact and the Kruskal-Wallis rank-sum tests assessed differences by race and ethnicity. RESULTS: Of 87 respondents, 14% identified as Hispanic, 28% non-Hispanic Black (NHB), 41% non-Hispanic White (NHW), 7% Asian American Pacific Islander (AAPI), and 10% other/multiracial. While 100% of Hispanic, NHW, and AAPI participants reported stable housing, 29% of NHB participants were worried about losing housing (p = 0.002). Forty-two percent of Hispanic and 46% of NHB participants (vs. 8%, NHW and 0%, AAPI, p = 0.005) were food insecure; 18% of Hispanic and 17% of NHB adults indicated lack of reliable transportation in the last year (vs. 0%, NHW/AAPI, p = 0.033). Participants were generally satisfied with the quality of communication that they had with their healthcare providers and overall physical and mental well-being were modestly poorer relative to healthy population norms. CONCLUSIONS: In our study, NHB and Hispanic mBC patients reported higher levels of financial concern and were more likely to experience food and transportation insecurity compared to NHW patients. Systematically connecting patients with resources to address unmet needs should be prioritized to identify feasible approaches to support economically vulnerable patients following an mBC diagnosis.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Cidade de Nova Iorque/epidemiologia , Masculino , Pessoa de Meia-Idade , Neoplasias da Mama/patologia , Neoplasias da Mama/psicologia , Idoso , Adulto , Etnicidade/psicologia , Etnicidade/estatística & dados numéricos , Metástase Neoplásica , Fatores Socioeconômicos , Inquéritos e Questionários
16.
Microcirculation ; 31(3): e12849, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354046

RESUMO

OBJECTIVE: An improved understanding of the role of the leptomeningeal collateral circulation in blood flow compensation following middle cerebral artery (MCA) occlusion can contribute to more effective treatment development for ischemic stroke. The present study introduces a model of the cerebral circulation to predict cerebral blood flow and tissue oxygenation following MCA occlusion. METHODS: The model incorporates flow regulation mechanisms based on changes in pressure, shear stress, and metabolic demand. Oxygen saturation in cerebral vessels and tissue is calculated using a Krogh cylinder model. The model is used to assess the effects of changes in oxygen demand and arterial pressure on cerebral blood flow and oxygenation after MCA occlusion. RESULTS: An increase from five to 11 leptomeningeal collateral vessels was shown to increase the oxygen saturation in the region distal to the occlusion by nearly 100%. Post-occlusion, the model also predicted a loss of autoregulation and a decrease in flow to the ischemic territory as oxygen demand was increased; these results were consistent with data from experiments that induced cerebral ischemia. CONCLUSIONS: This study highlights the importance of leptomeningeal collaterals following MCA occlusion and reinforces the idea that lower oxygen demand and higher arterial pressure improve conditions of flow and oxygenation.


Assuntos
Isquemia Encefálica , Hipertensão , Humanos , Infarto da Artéria Cerebral Média , Circulação Colateral/fisiologia , Circulação Cerebrovascular , Oxigênio , Artéria Cerebral Média
17.
Small ; : e2401061, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963320

RESUMO

The precise mapping of collateral circulation and ischemic penumbra is crucial for diagnosing and treating acute ischemic stroke (AIS). Unfortunately, there exists a significant shortage of high-sensitivity and high-resolution in vivo imaging techniques to fulfill this requirement. Herein, a contrast enhanced susceptibility-weighted imaging (CE-SWI) using the minimalist dextran-modified Fe3O4 nanoparticles (Fe3O4@Dextran NPs) are introduced for the highly sensitive and high-resolution AIS depiction under 9.4 T for the first time. The Fe3O4@Dextran NPs are synthesized via a simple one-pot coprecipitation method using commercial reagents under room temperature. It shows merits of small size (hydrodynamic size 25.8 nm), good solubility, high transverse relaxivity (r2) of 51.3 mM-1s-1 at 9.4 T, and superior biocompatibility. The Fe3O4@Dextran NPs-enhanced SWI can highlight the cerebral vessels readily with significantly improved contrast and ultrahigh resolution of 0.1 mm under 9.4 T MR scanner, enabling the clear spatial identification of collateral circulation in the middle cerebral artery occlusion (MCAO) rat model. Furthermore, Fe3O4@Dextran NPs-enhanced SWI facilitates the precise depiction of ischemia core, collaterals, and ischemic penumbra post AIS through matching analysis with other multimodal MR sequences. The proposed Fe3O4@Dextran NPs-enhanced SWI offers a high-sensitivity and high-resolution imaging tool for individualized characterization and personally precise theranostics of stroke patients.

18.
Crit Rev Microbiol ; 50(2): 196-211, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38400715

RESUMO

Antimicrobial resistance (AMR) in clinically priority pathogensis now a major threat to public health worldwide. Phages are bacterial parasites that efficiently infect or kill specific strains and represent the most abundant biological entities on earth, showing great attraction as potential antibacterial therapeutics in combating AMR. This review provides a summary of phage-inspired strategies to combat AMR. We firstly cover the phage diversity, and then explain the biological principles of phage therapy that support the use of phages in the post-antimicrobial era. Furthermore, we state the versatility methods of phage therapy both from direct access as well as collateral access. Among the direct access approaches, we discuss the use of phage cocktail therapy, phage-encoded endolysins and the bioengineering for function improvement of used phages or endolysins. On the other hand, we introduce the collateral access, including the phages antimicrobial immunity combined therapy and phage-based novel antibacterial mimic molecules. Nowadays, more and more talented and enthusiastic scientist, doctors, pharmacists, media, authorities, and industry are promoting the progress of phage therapy, and proposed more phages-inspired strategy to make them more tractable to combat AMR and benefit more people, more animal and diverse environment in "one health" framework.


Assuntos
Bacteriófagos , Animais , Humanos , Bactérias/genética , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
19.
J Cardiovasc Electrophysiol ; 35(1): 25-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37890043

RESUMO

BACKGROUND: Despite the potential benefits of ethanol infusion into the vein of Marshall (EIVOM) for atrial fibrillation (AF) ablation, concerns about its reversible and unpredictable effects persist. OBJECTIVE: To assess the effectiveness of EIVOM in the vein of Marshall (VOM) with collateral veins (CVs) during mitral isthmus and AF ablation. METHODS: We included 142 AF patients. EIVOM was performed before radiofrequency ablation, and low-voltage areas (<0.5 mV) were measured before, immediately after, and 1 h after EIVOM. RESULTS: Among the 142 patients, 93 (65%) underwent EIVOM, and among these, 35 (37%) were found to have CVs. In the VOM with CVs group, areas with low voltage measured 0 (0-1.85) cm2 before EIVOM, 6.9 (4.1-11.2) cm2 immediately after EIVOM, and 5.7 (3.5-10.6) cm2 1 h after EIVOM. Conversely, in the group designated as VOM without CVs-from which the nine leakage cases were excluded-the areas measured 0 (0-1.35) cm2 , 5.5 (2.6-11.8) cm2 , and 4.7 (1.8-13.5) cm2 at the respective time points. MI line block was fully achieved in 89% (31/35) of cases in the VOM with CVs group and 88% (44/49) in the VOM without CVs groups (p = .94). There was no significant difference in the outcome of AF ablation between these groups (log-rank p = .73). Additionally, no significant difference was observed between EIVOM (+) and EIVOM (-) groups (log-rank p = .59). CONCLUSION: EIVOM effectively creates MI line block, and its beneficial effects are sustained for at least 1 h after the procedure despite the low-voltage areas showing a slight reduction in size.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Ablação por Radiofrequência , Humanos , Etanol/efeitos adversos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Vasos Coronários , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Veias Pulmonares/cirurgia
20.
Cardiovasc Diabetol ; 23(1): 26, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218859

RESUMO

BACKGROUND: To investigate the correlation between triglyceride glucose index (TyG) and collateral circulation in patients with chronic total occlusion (CTO) of coronary arteries in different glucose metabolic states. METHODS: A total of 681 patients who underwent coronary angiography between January 2020 and December 2021 to determine the presence of CTO lesions in at least one major coronary artery were retrospectively included in this study. Patients were categorized into a group with poor collateral circulation formation (Rentrop grade 0-1, n = 205) and a group with good collateral circulation formation (Rentrop grade 2-3, n = 476) according to the Rentrop scale. They were also categorized according to their glucose metabolism status: normal glucose regulation (NGR) (n = 139), prediabetes mellitus (Pre-DM) (n = 218), and diabetes mellitus (DM) (n = 324). Correlation between TyG index and collateral circulation formation was analyzed by logistic regression analysis and receiver operating characteristic (ROC) curves. RESULTS: Among patients with CTO, TyG index was significantly higher in the group with poor collateral circulation formation than in the group with good collateral circulation formation. Logistic regression analysis showed that TyG index was an independent risk factor for poor collateral circulation formation (OR 5.104, 95% CI 3.323-7.839, P < 0.001). The accuracy of TyG index in predicting collateral circulation formation was evaluated by the ROC curve, which had an area under the curve of 0.779 (95% CI 0.738-0.820, P < 0.001). The restrictive cubic spline curves showed that the risk of poor collateral circulation formation in the Pre-DM and DM groups was initially flat and finally increased rapidly, except for the NGR group. TyG index was significantly associated with an increased risk of poor collateral circulation formation in the Pre-DM and DM groups. CONCLUSIONS: TyG index was significantly associated with the risk of poor collateral circulation formation in patients with CTO, especially those with Pre-DM and DM.


Assuntos
Oclusão Coronária , Vasos Coronários , Humanos , Vasos Coronários/diagnóstico por imagem , Glucose , Estudos Retrospectivos , Triglicerídeos , Circulação Colateral/fisiologia , Oclusão Coronária/diagnóstico por imagem , Glicemia , Circulação Coronária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA