Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Cell ; 184(3): 615-627.e17, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33453153

RESUMO

The microbiota shields the host against infections in a process known as colonization resistance. How infections themselves shape this fundamental process remains largely unknown. Here, we show that gut microbiota from previously infected hosts display enhanced resistance to infection. This long-term functional remodeling is associated with altered bile acid metabolism leading to the expansion of taxa that utilize the sulfonic acid taurine. Notably, supplying exogenous taurine alone is sufficient to induce this alteration in microbiota function and enhance resistance. Mechanistically, taurine potentiates the microbiota's production of sulfide, an inhibitor of cellular respiration, which is key to host invasion by numerous pathogens. As such, pharmaceutical sequestration of sulfide perturbs the microbiota's composition and promotes pathogen invasion. Together, this work reveals a process by which the host, triggered by infection, can deploy taurine as a nutrient to nourish and train the microbiota, promoting its resistance to subsequent infection.


Assuntos
Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Contagem de Colônia Microbiana , Microbioma Gastrointestinal/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Imunidade , Camundongos Endogâmicos C57BL , Sulfetos/metabolismo , Taurina/farmacologia
2.
Cell ; 181(7): 1533-1546.e13, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32631492

RESUMO

The gut microbiome is the resident microbial community of the gastrointestinal tract. This community is highly diverse, but how microbial diversity confers resistance or susceptibility to intestinal pathogens is poorly understood. Using transplantation of human microbiomes into several animal models of infection, we show that key microbiome species shape the chemical environment of the gut through the activity of the enzyme bile salt hydrolase. The activity of this enzyme reduced colonization by the major human diarrheal pathogen Vibrio cholerae by degrading the bile salt taurocholate that activates the expression of virulence genes. The absence of these functions and species permits increased infection loads on a personal microbiome-specific basis. These findings suggest new targets for individualized preventative strategies of V. cholerae infection through modulating the structure and function of the gut microbiome.


Assuntos
Cólera/metabolismo , Suscetibilidade a Doenças/microbiologia , Microbioma Gastrointestinal/fisiologia , Adulto , Animais , Ácidos e Sais Biliares , Cólera/microbiologia , Modelos Animais de Doenças , Transplante de Microbiota Fecal/métodos , Feminino , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Hidrolases/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Ácido Taurocólico/metabolismo , Vibrio cholerae/patogenicidade , Vibrio cholerae/fisiologia , Virulência
3.
Mol Cell ; 78(4): 597-613, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32208169

RESUMO

Commensal microbial communities inhabit biological niches in the mammalian host, where they impact the host's physiology through induction of "colonization resistance" against infections by a multitude of molecular mechanisms. These colonization-regulating activities involve microbe-microbe and microbe-host interactions, which induce, through utilization of complex bacterial networks, competition over nutrients, inhibition by antimicrobial peptides, stimulation of the host immune system, and promotion of mucus and intestinal epithelial barrier integrity. Distinct virulent pathogens overcome this colonization resistance and host immunity as part of a hostile takeover of the host niche, leading to clinically overt infection. The following review provides a mechanistic overview of the role of commensal microbes in modulating colonization resistance and pathogenic infections and means by which infectious agents may overcome such inhibition. Last, we outline evidence, unknowns, and challenges in developing strategies to harness this knowledge to treat infections by microbiota transfer, phage therapy, or supplementation by rationally defined bacterial consortia.


Assuntos
Bactérias/imunologia , Resistência Microbiana a Medicamentos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Infecções/imunologia , Infecções/microbiologia , Microbiota , Virulência/imunologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Humanos , Infecções/metabolismo , Microbiota/efeitos dos fármacos
4.
Immunity ; 49(6): 1103-1115.e6, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30566883

RESUMO

Retinoic acid (RA), a vitamin A metabolite, regulates transcriptional programs that drive protective or pathogenic immune responses in the intestine, in a manner dependent on RA concentration. Vitamin A is obtained from diet and is metabolized by intestinal epithelial cells (IECs), which operate in intimate association with microbes and immune cells. Here we found that commensal bacteria belonging to class Clostridia modulate RA concentration in the gut by suppressing the expression of retinol dehydrogenase 7 (Rdh7) in IECs. Rdh7 expression and associated RA amounts were lower in the intestinal tissue of conventional mice, as compared to germ-free mice. Deletion of Rdh7 in IECs diminished RA signaling in immune cells, reduced the IL-22-dependent antimicrobial response, and enhanced resistance to colonization by Salmonella Typhimurium. Our findings define a regulatory circuit wherein bacterial regulation of IEC-intrinsic RA synthesis protects microbial communities in the gut from excessive immune activity, achieving a balance that prevents colonization by enteric pathogens.


Assuntos
Disbiose/metabolismo , Células Epiteliais/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/metabolismo , Tretinoína/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Disbiose/microbiologia , Células Epiteliais/microbiologia , Interações entre Hospedeiro e Microrganismos , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Linfócitos/metabolismo , Linfócitos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/genética , Microbiota/fisiologia , RNA Ribossômico 16S/genética , Salmonella typhimurium/genética , Salmonella typhimurium/fisiologia , Simbiose , Interleucina 22
5.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35145031

RESUMO

Bacteria are efficient colonizers of a wide range of secluded microhabitats, such as soil pores, skin follicles, or intestinal crypts. How the structural diversity of these habitats modulates microbial self-organization remains poorly understood, in part because of the difficulty to precisely manipulate the physical structure of microbial environments. Using a microfluidic device to grow bacteria in crypt-like incubation chambers of systematically varied lengths, we show that small variations in the physical structure of the microhabitat can drastically alter bacterial colonization success and resistance against invaders. Small crypts are uncolonizable; intermediately sized crypts can stably support dilute populations, while beyond a second critical length scale, populations phase separate into a dilute region and a jammed region. The jammed state is characterized by extreme colonization resistance, even if the resident strain is suppressed by an antibiotic. Combined with a flexible biophysical model, we demonstrate that colonization resistance and associated priority effects can be explained by a crowding-induced phase transition, which results from a competition between proliferation and density-dependent cell leakage. The emerging sensitivity to scale underscores the need to control for scale in microbial ecology experiments. Systematic flow-adjustable length-scale variations may serve as a promising strategy to elucidate further scale-sensitive tipping points and to rationally modulate the stability and resilience of microbial colonizers.


Assuntos
Acetobacter/fisiologia , Dispositivos Lab-On-A-Chip , Acetobacter/efeitos dos fármacos , Antibacterianos/farmacologia , Técnicas Bacteriológicas , Farmacorresistência Bacteriana , Tetraciclina/farmacologia
6.
Microbiol Immunol ; 68(6): 206-211, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38644589

RESUMO

Colonization resistance, conferred by the host's microbiota through both direct and indirect protective actions, serves to protect the host from enteric infections. Here, we identified the specific members of the gut microbiota that impact gastrointestinal colonization by Citrobacter rodentium, a murine pathogen causing colonic crypt hyperplasia. The gut colonization levels of C. rodentium in C57BL/6 mice varied among breeding facilities, probably due to differences in microbiota composition. A comprehensive analysis of the microbiota revealed that specific members of the microbiota may influence gut colonization by C. rodentium, thus providing a potential link between the two.


Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Microbioma Gastrointestinal , Trato Gastrointestinal , Camundongos Endogâmicos C57BL , Animais , Citrobacter rodentium/patogenicidade , Citrobacter rodentium/fisiologia , Infecções por Enterobacteriaceae/microbiologia , Camundongos , Trato Gastrointestinal/microbiologia , Colo/microbiologia , Colo/patologia , Fezes/microbiologia , RNA Ribossômico 16S/genética
7.
J Bacteriol ; 205(6): e0013323, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37195186

RESUMO

The increasing prevalence of drug-resistant bacteria has significantly diminished the effectiveness of antibiotics in clinical settings, leading to the emergence of untreatable bacterial infections. To address this public health challenge, the gut microbiome represents a promising source of novel antimicrobial therapeutics. In this study, we screened mouse intestinal isolates for growth inhibitory activity against the human enteric pathogen Vibrio cholerae and identified a strain of spore-forming Bacillus velezensis, named BVM7, that produced a potent antibiotic with activity against V. cholerae and a broad spectrum of enteric and opportunistic pathogens. Characterization of the antimicrobial compounds produced by BVM7 revealed that they were primarily secreted antimicrobial peptides (AMPs) produced during stationary-phase growth. Furthermore, our results showed that introducing either BVM7 vegetative cells or spores into mice precolonized with V. cholerae or Enterococcus faecalis significantly reduced the burden of infection. Interestingly, we also observed that BVM7 was sensitive to a group of Lactobacillus probiotic strains and that inoculation of Lactobacilli could eliminate BVM7 and potentially restore the native gut microbiome. These findings highlight the potential of bacteria from the gut microbiome as a source for novel antimicrobial compounds and a tool for managing bacterial infections by in situ bio-delivery of multiple AMPs. IMPORTANCE The rise of antibiotic-resistant pathogens poses a challenge to public health. The gut microbiome presents a promising source of new antimicrobials and treatments. By screening murine gut commensals, we found a spore-forming Bacillus velezensis strain, BVM7, that exhibited antimicrobial activity toward a wide array of enteric and opportunistic bacterial pathogens. In addition to showing that this killing effect occurred through the action of secreted antimicrobial peptides (AMPs), we demonstrate that BVM7 vegetative cells and spores can be used to treat infections of both Gram-positive and Gram-negative pathogens in vivo. By expanding our knowledge of the antimicrobial properties of bacteria in the gut microbiome, we hope to contribute insights for developing novel drugs and therapeutic interventions.


Assuntos
Anti-Infecciosos , Bacillus , Vibrio cholerae , Humanos , Animais , Camundongos , Antibacterianos/farmacologia , Bactérias , Peptídeos Antimicrobianos
8.
Ecotoxicol Environ Saf ; 254: 114734, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950985

RESUMO

Antibiotic resistance is currently one of the greatest threats to human health. Widespread use and residues of antibiotics in humans, animals, and the environment can exert selective pressure on antibiotic resistance bacteria (ARB) and antibiotic resistance gene (ARG), accelerating the flow of antibiotic resistance. As ARG spreads to the population, the burden of antibiotic resistance in humans increases, which may have potential health effects on people. Therefore, it is critical to mitigate the spread of antibiotic resistance to humans and reduce the load of antibiotic resistance in humans. This review briefly described the information of global antibiotic consumption information and national action plans (NAPs) to combat antibiotic resistance and provided a set of feasible control strategies for the transmission of ARB and ARG to humans in three areas including (a) Reducing the colonization capacity of exogenous ARB, (b) Enhancing human colonization resistance and mitigating the horizontal gene transfer (HGT) of ARG, (c) Reversing ARB antibiotic resistance. With the hope of achieving interdisciplinary one-health prevention and control of bacterial resistance.


Assuntos
Antagonistas de Receptores de Angiotensina , Bactérias , Animais , Humanos , Bactérias/genética , Inibidores da Enzima Conversora de Angiotensina , Genes Bacterianos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Farmacorresistência Bacteriana/genética
9.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958628

RESUMO

The gut microbiome is intimately intertwined with the host immune system, having effects on the systemic immune system. Dysbiosis of the gut microbiome has been linked not only to gastrointestinal disorders but also conditions of the skin, lungs, and brain. Commensal bacteria can affect the immune status of the host through a stimulation of the innate immune system, training of the adaptive immune system, and competitive exclusion of pathogens. Commensal bacteria improve immune response through the production of immunomodulating compounds such as microbe-associated molecular patterns (MAMPs), short-chain fatty acids (SCFAs), and secondary bile acids. The microbiome, especially when in dysbiosis, is plastic and can be manipulated through the introduction of beneficial bacteria or the adjustment of nutrients to stimulate the expansion of beneficial taxa. The complex nature of the gastrointestinal tract (GIT) ecosystem complicates the use of these methods, as similar treatments have various results in individuals with different residential microbiomes and differential health statuses. A more complete understanding of the interaction between commensal species, host genetics, and the host immune system is needed for effective microbiome interventions to be developed and implemented in a clinical setting.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Disbiose , Trato Gastrointestinal/microbiologia , Bactérias , Microbioma Gastrointestinal/fisiologia
10.
Angew Chem Int Ed Engl ; 62(5): e202214010, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36428226

RESUMO

Metabolic labeling with clickable noncanonical amino acids has enabled nascent proteome profiling, which can be performed in a cell-type-specific manner. However, nascent proteomics in an intercellular communication-dependent manner remains challenging. Here we develop communication-activated profiling of protein expression (CAPPEX), which integrates the LuxI/LuxR quorum sensing circuit with the cell-type-specific nascent proteomics method to enable selective click-labeling of newly synthesized proteins in a specific bacterium upon receiving chemical signals from another reporter bacterium. CAPPEX reveals that E. coli competes with Salmonella for tryptophan as the precursor for indole, and the resulting indole suppressed the expression of virulence factors in Salmonella. This tryptophan-indole axis confers attenuation of Salmonella invasion in host cells and living mice. The CAPPEX strategy should be widely applicable for investigating various interbacterial communication processes.


Assuntos
Escherichia coli , Proteômica , Animais , Camundongos , Escherichia coli/metabolismo , Proteômica/métodos , Triptofano , Proteínas , Percepção de Quorum , Salmonella/metabolismo , Indóis/farmacologia , Indóis/metabolismo , Proteínas de Bactérias/metabolismo
11.
Annu Rev Genet ; 48: 361-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25251855

RESUMO

The gastrointestinal (GI) microbiota is a complex community of microorganisms residing within the mammalian gastrointestinal tract. The GI microbiota is vital to the development of the host immune system and plays a crucial role in human health and disease. The composition of the GI microbiota differs immensely among individuals yet specific shifts in composition and diversity have been linked to inflammatory bowel disease, obesity, atopy, and susceptibility to infection. In this review, we describe the GI microbiota and its role in enteric diseases caused by pathogenic Escherichia coli, Salmonella enterica, and Clostridium difficile. We discuss the central role of the GI microbiota in protective immunity, resistance to enteric pathogens, and resolution of enteric colitis.


Assuntos
Colite/genética , Trato Gastrointestinal/microbiologia , Microbiota/genética , Animais , Clostridioides difficile/imunologia , Clostridioides difficile/patogenicidade , Colite/imunologia , Colite/microbiologia , Escherichia coli/imunologia , Escherichia coli/patogenicidade , Trato Gastrointestinal/imunologia , Humanos , Microbiota/imunologia , Salmonella enterica/imunologia , Salmonella enterica/patogenicidade
12.
Curr Top Microbiol Immunol ; 431: 233-263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33620654

RESUMO

Human infections with the food-borne pathogen Campylobacter jejuni are progressively increasing worldwide and constitute a significant socioeconomic burden to mankind. Intestinal campylobacteriosis in humans is characterized by bloody diarrhea, fever, abdominal pain, and severe malaise. Some individuals develop chronic post-infectious sequelae including neurological and autoimmune diseases such as reactive arthritis and Guillain-Barré syndrome. Studies unraveling the molecular mechanisms underlying campylobacteriosis and post-infectious sequelae have been hampered by the scarcity of appropriate experimental in vivo models. Particularly, conventional laboratory mice are protected from C. jejuni infection due to the physiological colonization resistance exerted by the murine gut microbiota composition. Additionally, as compared to humans, mice are up to 10,000 times more resistant to C. jejuni lipooligosaccharide (LOS) constituting a major pathogenicity factor responsible for the immunopathological host responses during campylobacteriosis. In this chapter, we summarize the recent progress that has been made in overcoming these fundamental obstacles in Campylobacter research in mice. Modification of the murine host-specific gut microbiota composition and sensitization of the mice to C. jejuni LOS by deletion of genes encoding interleukin-10 or a single IL-1 receptor-related molecule as well as by dietary zinc depletion have yielded reliable murine infection models resembling key features of human campylobacteriosis. These substantial improvements pave the way for a better understanding of the molecular mechanisms underlying pathogen-host interactions. The ongoing validation and standardization of these novel murine infection models will provide the basis for the development of innovative treatment and prevention strategies to combat human campylobacteriosis and collateral damages of C. jejuni infections.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Animais , Modelos Animais de Doenças , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL
13.
Int Immunol ; 33(12): 761-766, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232990

RESUMO

The collection of micro-organisms living in the mammalian gastrointestinal tract, termed the gut microbiota, has been shown to have profound impacts on host health and increasingly is regarded as a viable therapeutic target. Clinical studies of fecal microbiota transplantation have demonstrated potential efficacy of microbiota-based therapies for diseases including Clostridioides difficile infections, inflammatory bowel disease, graft-versus-host disease and cancer. However, the lack of understanding of the active ingredients and potential risks of such therapies pose challenges for clinical application. Meanwhile, efforts are being made to identify effector microbes directly associated with a given phenotype, to establish causality and to devise well-characterized microbial therapeutics for clinical use. Strategies based on defined microbial components will likely enhance the potential of microbiota-targeted therapies.


Assuntos
Infecções por Clostridium/terapia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/imunologia , Animais , Infecções por Clostridium/imunologia , Humanos , Fenótipo
14.
Artigo em Inglês | MEDLINE | ID: mdl-33168609

RESUMO

Effective antimicrobial stewardship requires a better understanding of the impact of different antibiotics on the gut microflora. Studies with humans are confounded by large interindividual variability and difficulty in identifying control cohorts. However, controlled murine models can provide valuable information. In this study, we examined the impact of a penicillin-like antibiotic (piperacillin-tazobactam [TZP]) or a third-generation cephalosporin (ceftriaxone [CRO]) on the murine gut microbiota by analysis of changes in fecal microbiome composition by 16S rRNA amplicon sequencing and standard microbiology. Resistance to colonization by multidrug-resistant Escherichia coli sequence type 131 (ST131) and Klebsiella pneumoniae ST258 was also tested. Changes in microbiome composition and a significant (P < 0.05) decrease in diversity occurred in all treated mice, but dysbiosis was more marked and prolonged after CRO exposure, with a persistent rise in ProteobacteriaEnterobacteriaceae blooms occurred in all antibiotic-treated mice, but for TZP, unlike CRO, these were significant only under direct antibiotic pressure. At the height of dysbiosis after antibiotic termination, the murine gut was highly susceptible to colonization with both multidrug-resistant enterobacterial pathogens. Cohabitation of treated mice with untreated individuals had a notable mitigating effect on dysbiosis of treated guts. The administration of a third-generation cephalosporin caused a more severe imbalance in the murine fecal microflora than that caused by a penicillin/ß-lactam inhibitor combination with comparable activity against medically important virulent bacteria. At the height of dysbiosis, both antibiotic treatments equally led to microbial instability associated with loss of resistance to gut colonization by antibiotic-resistant pathogens.


Assuntos
Ceftriaxona , Microbioma Gastrointestinal , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Camundongos , Combinação Piperacilina e Tazobactam , RNA Ribossômico 16S/genética
15.
Proc Biol Sci ; 288(1947): 20203106, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33757361

RESUMO

Biological invasions can alter ecosystem stability and function, and predicting what happens when a new species or strain arrives remains a major challenge in ecology. In the mammalian gastrointestinal tract, susceptibility of the resident microbial community to invasion by pathogens has important implications for host health. However, at the community level, it is unclear whether susceptibility to invasion depends mostly on resident community composition (which microbes are present), or also on local abiotic conditions (such as nutrient status). Here, we used a gut microcosm system to disentangle some of the drivers of susceptibility to invasion in microbial communities sampled from humans. We found resident microbial communities inhibited an invading Escherichia coli strain, compared to community-free control treatments, sometimes excluding the invader completely (colonization resistance). These effects were stronger at later time points, when we also detected altered community composition and nutrient availability. By separating these two components (microbial community and abiotic environment), we found taxonomic composition played a crucial role in suppressing invasion, but this depended critically on local abiotic conditions (adapted communities were more suppressive in nutrient-depleted conditions). This helps predict when resident communities will be most susceptible to invasion, with implications for optimizing treatments based on microbiota management.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Ecologia , Humanos
16.
Int J Mol Sci ; 22(12)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34202945

RESUMO

Trillions of microbes exist in the human body, particularly the gastrointestinal tract, coevolved with the host in a mutually beneficial relationship. The main role of the intestinal microbiome is the fermentation of non-digestible substrates and increased growth of beneficial microbes that produce key antimicrobial metabolites such as short-chain fatty acids, etc., to inhibit the growth of pathogenic microbes besides other functions. Intestinal microbiota can prevent pathogen colonization through the mechanism of colonization resistance. A wide range of resistomes are present in both beneficial and pathogenic microbes. Giving antibiotic exposure to the intestinal microbiome (both beneficial and hostile) can trigger a resistome response, affecting colonization resistance. The following review provides a mechanistic overview of the intestinal microbiome and the impacts of antibiotic therapy on pathogen colonization and diseases. Further, we also discuss the epidemiology of immunocompromised patients who are at high risk for nosocomial infections, colonization and decolonization of multi-drug resistant organisms in the intestine, and the direct and indirect mechanisms that govern colonization resistance to the pathogens.


Assuntos
Antibiose , Suscetibilidade a Doenças , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/etiologia , Resistência a Múltiplos Medicamentos , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Sepse/etiologia
17.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885715

RESUMO

Antibiotics played an important role in controlling the development of enteric infection. However, the emergence of antibiotic resistance and gut dysbiosis led to a growing interest in the use of natural antimicrobial agents as alternatives for therapy and disinfection. Chitosan is a nontoxic natural antimicrobial polymer and is approved by GRAS (Generally Recognized as Safe by the United States Food and Drug Administration). Chitosan and chitosan derivatives can kill microbes by neutralizing negative charges on the microbial surface. Besides, chemical modifications give chitosan derivatives better water solubility and antimicrobial property. This review gives an overview of the preparation of chitosan, its derivatives, and the conjugates with other polymers and nanoparticles with better antimicrobial properties, explains the direct and indirect mechanisms of action of chitosan, and summarizes current treatment for enteric infections as well as the role of chitosan and chitosan derivatives in the antimicrobial agents in enteric infections. Finally, we suggested future directions for further research to improve the treatment of enteric infections and to develop more useful chitosan derivatives and conjugates.


Assuntos
Anti-Infecciosos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Quitosana/uso terapêutico , Gastroenteropatias/tratamento farmacológico , Antibacterianos/uso terapêutico , Anti-Infecciosos/química , Infecções Bacterianas/microbiologia , Quitosana/análogos & derivados , Quitosana/química , Gastroenteropatias/microbiologia , Humanos , Nanopartículas/química
18.
Immunol Rev ; 279(1): 90-105, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28856737

RESUMO

The human gastrointestinal tract hosts a diverse network of microorganisms, collectively known as the microbiota that plays an important role in health and disease. For instance, the intestinal microbiota can prevent invading microbes from colonizing the gastrointestinal tract, a phenomenon known as colonization resistance. Perturbations to the microbiota, such as antibiotic administration, can alter microbial composition and result in the loss of colonization resistance. Consequently, the host may be rendered susceptible to colonization by a pathogen. This is a particularly relevant concern in the hospital setting, where antibiotic use and antibiotic-resistant pathogen exposure are more frequent. Many nosocomial infections arise from gastrointestinal colonization. Due to their resistance to antibiotics, treatment is often very challenging. However, recent studies have demonstrated that manipulating the commensal microbiota can prevent and treat various infections in the intestine. In this review, we discuss the members of the microbiota, as well as the mechanisms, that govern colonization resistance against specific pathogens. We also review the effects of antibiotics on the microbiota, as well as the unique epidemiology of immunocompromised patients that renders them a particularly high-risk population to intestinal nosocomial infections.


Assuntos
Antibacterianos/uso terapêutico , Infecções Bacterianas/imunologia , Infecção Hospitalar/imunologia , Microbioma Gastrointestinal/imunologia , Animais , Antibacterianos/efeitos adversos , Infecções Bacterianas/microbiologia , Infecção Hospitalar/microbiologia , Resistência a Medicamentos , Disbiose/etiologia , Interações Hospedeiro-Patógeno , Humanos , Hospedeiro Imunocomprometido
19.
Immunol Rev ; 279(1): 70-89, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28856738

RESUMO

The intestinal tract of mammals is colonized by a large number of microorganisms including trillions of bacteria that are referred to collectively as the gut microbiota. These indigenous microorganisms have co-evolved with the host in a symbiotic relationship. In addition to metabolic benefits, symbiotic bacteria provide the host with several functions that promote immune homeostasis, immune responses, and protection against pathogen colonization. The ability of symbiotic bacteria to inhibit pathogen colonization is mediated via several mechanisms including direct killing, competition for limited nutrients, and enhancement of immune responses. Pathogens have evolved strategies to promote their replication in the presence of the gut microbiota. Perturbation of the gut microbiota structure by environmental and genetic factors increases the risk of pathogen infection, promotes the overgrowth of harmful pathobionts, and the development of inflammatory disease. Understanding the interaction of the microbiota with pathogens and the immune system will provide critical insight into the pathogenesis of disease and the development of strategies to prevent and treat inflammatory disease.


Assuntos
Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Imunidade , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Animais , Homeostase , Humanos , Mucosa Intestinal/microbiologia , Simbiose
20.
Artigo em Inglês | MEDLINE | ID: mdl-32253213

RESUMO

Recent studies highlight the abundance of commensal coagulase-negative staphylococci (CoNS) on healthy skin. Evidence suggests that CoNS actively shape the skin immunological and microbial milieu to resist colonization or infection by opportunistic pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), in a variety of mechanisms collectively termed colonization resistance. One potential colonization resistance mechanism is the application of quorum sensing, also called the accessory gene regulator (agr) system, which is ubiquitous among staphylococci. Common and rare CoNS make autoinducing peptides (AIPs) that function as MRSA agr inhibitors, protecting the host from invasive infection. In a screen of CoNS spent media, we found that Staphylococcus simulans, a rare human skin colonizer and frequent livestock colonizer, released potent inhibitors of all classes of MRSA agr signaling. We identified three S. simulans agr classes and have shown intraspecies cross talk between noncognate S. simulans agr types for the first time. The S. simulans AIP-I structure was confirmed, and the novel AIP-II and AIP-III structures were solved via mass spectrometry. Synthetic S. simulans AIPs inhibited MRSA agr signaling with nanomolar potency. S. simulans in competition with MRSA reduced dermonecrotic and epicutaneous skin injury in murine models. The addition of synthetic AIP-I also effectively reduced MRSA dermonecrosis and epicutaneous skin injury in murine models. These results demonstrate potent anti-MRSA quorum sensing inhibition by a rare human skin commensal and suggest that cross talk between CoNS and MRSA may be important in maintaining healthy skin homeostasis and preventing MRSA skin damage during colonization or acute infection.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Proteínas de Bactérias/genética , Humanos , Camundongos , Peptídeos , Percepção de Quorum , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA