Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Insect Biochem Physiol ; 112(3): e21993, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36546461

RESUMO

The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is an insect pest that threatens potato crops. Multiple options exist to limit the impact of this pest even though insecticides remain a primary option for its control. Insecticide resistance has been reported in Colorado potato beetles and a better understanding of the molecular players underlying such process is of utmost importance to optimize the tools used to mitigate the impact of this insect. Resistance against the insecticide spinosad has been reported in this insect and this work thus aims at exploring the expression of targets previously associated with insecticide response in Colorado potato beetles exposed to this compound. Amplification and quantification of transcripts coding for cytochrome P450s and glutathione S-transferases were conducted via qRT-PCR in insects treated with varying doses of spinosad and for different time duration. This approach notably revealed differential expression of CYP6a23 and CYP12a5 in insects exposed to low doses of spinosad for 4 h as well as modulation of CYP6a13, CYP6d4, GST, GST1, and GST1-Like in insects treated with high doses of spinosad for the same duration. RNAi-based targeting of CYP4g15 and CYP6a23 was associated with marked reduction of transcript expression 7 days following dsRNA injection and reduction of the former had a marked impact on insect viability. In general, results presented here provide novel information regarding the expression of transcripts relevant to spinosad response in Colorado potato beetles and reveal a novel target to consider in the development of RNAi-based strategies aimed at this potato pest.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Animais , Inseticidas/metabolismo , Besouros/genética , Neonicotinoides , Solanum tuberosum/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Transferases/metabolismo , Glutationa/metabolismo
2.
Arch Insect Biochem Physiol ; 103(1): e21642, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31667890

RESUMO

The Colorado potato beetle (Leptinotarsa decemlineata [Say]) is an insect pest that can significantly harm potato plants worldwide. Control of this insect relies heavily on chemical insecticides such as chlorantraniliprole. Nevertheless, the complete molecular signature associated with response to this compound is lacking in L. decemlineata. In this study, amplification and quantification by qRT-PCR (quantitative reverse transcription-polymerase chain reaction) of targets relevant to chlorantraniliprole were undertaken in insects exposed to this chemical. This approach showed modulation of numerous cytochrome P450s, such as CYP350D1 and CYP4Q3, as well as upregulation of microRNAs (miRNAs), including miR-1-3p and miR-305-5p, in chlorantraniliprole-exposed insects. Functional assessment of transcript targets predicted to be regulated by these miRNAs was performed and revealed their likely impact on transcriptional regulation. RNAi-based targeting of CYP350D1 notably provided preliminary evidence of its underlying implication for chlorantraniliprole response in L. decemlineata. Overall, this study strengthens the current knowledge of the molecular changes linked to chlorantraniliprole response in L. decemlineata and provides novel targets with potential relevance to chlorantraniliprole susceptibility in this insect pest of global relevance.


Assuntos
Besouros/efeitos dos fármacos , Besouros/metabolismo , Inseticidas/farmacologia , ortoaminobenzoatos/farmacologia , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Int J Mol Sci ; 18(12)2017 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-29258192

RESUMO

The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is a significant pest of potato plants that has been controlled for more than two decades by neonicotinoid imidacloprid. L. decemlineata can develop resistance to this agent even though the molecular mechanisms underlying this resistance are not well characterized. MicroRNAs (miRNAs) are short ribonucleic acids that have been linked to response to various insecticides in several insect models. Unfortunately, the information is lacking regarding differentially expressed miRNAs following imidacloprid treatment in L. decemlineata. In this study, next-generation sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) were used to identify modulated miRNAs in imidacloprid-treated versus untreated L. decemlineata. This approach identified 33 differentially expressed miRNAs between the two experimental conditions. Of interest, miR-282 and miR-989, miRNAs previously shown to be modulated by imidacloprid in other insects, and miR-100, a miRNA associated with regulation of cytochrome P450 expression, were significantly modulated in imidacloprid-treated beetles. Overall, this work presents the first report of a miRNA signature associated with imidacloprid exposure in L. decemlineata using a high-throughput approach. It also reveals interesting miRNA candidates that potentially underly imidacloprid response in this insect pest.


Assuntos
Besouros/efeitos dos fármacos , Besouros/metabolismo , MicroRNAs/metabolismo , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Inseticidas/farmacologia , MicroRNAs/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Insects ; 15(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38535343

RESUMO

The Colorado potato beetle (Leptinotarsa decemlineata (Say)) can cause extensive damage to agricultural crops worldwide and is a significant insect pest. This insect is notorious for its ability to evade various strategies deployed to control its spread and is known for its relative ease in developing resistance against different insecticides. Various molecular levers are leveraged by L. decemlineata for this resistance to occur, and a complete picture of the genes involved in this process is lacking. While small non-coding RNAs, including miRNAs, are differentially expressed in insects exposed to insecticides, levels of transcript coding for proteins underlying their synthesis remain to be characterized fully. The overarching objective of this work aims to fill that gap by assessing the expression of such targets in L. decemlineata exposed to cyantraniliprole and thiamethoxam. The expression status of Ago1, Ago2, Ago3, Dcr2a, Dcr2b, Expo-5, Siwi-1 and Siwi-2 transcripts were quantified via qRT-PCR in adult L. decemlineata treated with low and high doses of these compounds for different lengths of time. Variation in Ago1 and Dcr2b expression was notably observed in L. decemlineata exposed to cyantraniliprole, while thiamethoxam exposure was associated with the modulation of Dcr2a and Siwi-1 transcript levels. The down-regulation of Ago1 expression in L. decemlineata using dsRNA, followed by cyantraniliprole treatment, was associated with a reduction in the survival of insects with reduced Ago1 transcript expression. Overall, this work presents the insecticide-mediated modulation of transcripts associated with small non-coding RNA processing and showcases Ago1 as a target to further investigate its relevance in cyantraniliprole response.

5.
Insects ; 13(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35735842

RESUMO

The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is known for its capacity to cause significant damages to potato crops worldwide. Multiple approaches have been considered to limit its spread including the use of a diverse arsenal of insecticides. Unfortunately, this insect frequently develops resistance towards these compounds. Investigating the molecular bases underlying the response of L. decemlineata against insecticides is of strong interest to ultimately devise novel and targeted approaches aimed at this pest. This work aimed to characterize, via qRT-PCR, the expression status of targets with relevance to insecticide response, including ones coding for cytochrome P450s, glutathione s-transferases, and cuticular proteins, in L. decemlineata exposed to four insecticides; chlorantraniliprole, clothianidin, imidacloprid, and spinosad. Modulation of levels associated with transcripts coding for selected cytochrome P450s was reported in insects treated with three of the four insecticides studied. Clothianidin treatment yielded the most variations in transcript levels, leading to significant changes in transcripts coding for CYP4c1, CYP4g15, CYP6a13, CYP9e2, GST, and GST-1-Like. Injection of dsRNA targeting CYP4c1 and CYP9e2 was associated with a substantial decrease in expression levels and was, in the case of the latter target, linked to a greater susceptibility of L. decemlineata towards this neonicotinoid, supporting a potential role for this target in clothianidin response. Overall, this data further highlights the differential expression of transcripts with potential relevance in insecticide response, as well as generating specific targets that warrant investigation as novel dsRNA-based approaches are developed against this insect pest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA