Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(5): e202301606, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353648

RESUMO

Combretum micranthum (Combretaceae) is a medicinal plant widely known and used in Africa to treat a variety of conditions such as diabetes, fever, coughs, bronchitis, diarrhea, pain, malaria and liver disorders, among others. Due to its wide traditional use, in this review, published scientific reports on its composition and pharmacological properties were explored by conducting a literature search of databases. To date, 155 organic compounds including 34 flavonoids, 16 phenolic acids, 14 alkaloids, 15 fatty acids, 14 terpenoids/steroids, 24 amino acids, 8 carbohydrate substances and 30 other organic compounds have been identified from this plant. In addition to these organic compounds, 6 minerals (potassium nitrate, calcium, magnesium, potassium, sodium, iron and zinc) have also been reported. In vitro and in vivo studies have shown that these phytochemicals and plant extracts have a wide range of pharmacological potential, including antibacterial, antiviral, antioxidant, antidiabetic, anti-inflammatory, analgesic, antihypertensive, nephroprotective, hepatoprotective, anxiolytic, anti-cholinesterase and antidiarrheal activities. Additionally, no harmful effects have been revealed through studies. Thus, this study could constitute a valuable reference for the valorization of C. micranthum in the pharmaceutical industry.


Assuntos
Compostos Fitoquímicos , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais/química
2.
Molecules ; 29(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731582

RESUMO

Clinicians often have to face infections caused by microorganisms that are difficult to eradicate due to their resistance and/or tolerance to antimicrobials. Among these pathogens, Pseudomonas aeruginosa causes chronic infections due to its ability to form biofilms on medical devices, skin wounds, ulcers and the lungs of patients with Cystic Fibrosis. In this scenario, the plant world represents an important reservoir of natural compounds with antimicrobial and/or antibiofilm properties. In this study, an extract from the leaves of Combretum micranthum G. Don, named Cm4-p, which was previously investigated for its antimicrobial activities, was assayed for its capacity to inhibit biofilm formation and/or to eradicate formed biofilms. The model strain P. aeruginosa PAO1 and its isogenic biofilm hyperproducer derivative B13 were treated with Cm4-p. Preliminary IR, UV-vis, NMR, and mass spectrometry analyses showed that the extract was mainly composed of catechins bearing different sugar moieties. The phytocomplex (3 g/L) inhibited the biofilm formation of both the PAO1 and B13 strains in a significant manner. In light of the obtained results, Cm4-p deserves deeper investigations of its potential in the antimicrobial field.


Assuntos
Antibacterianos , Biofilmes , Catequina , Combretum , Testes de Sensibilidade Microbiana , Extratos Vegetais , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Catequina/farmacologia , Catequina/química , Combretum/química , Folhas de Planta/química , Açúcares , Humanos
3.
Molecules ; 28(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838778

RESUMO

Kinkéliba (Combretum micranthum, Seh-Haw in Wolof) is a popular bush tea in West African countries. Although the kinkéliba plant's leaves have been widely consumed for its nutritional and medicinal properties, its benefits on skin health potential have been practically untouched. In human epidermal primary keratinocytes, vitexin and isovitexin-rich kinkéliba extract treatment significantly (p < 0.001) enhanced up to 39.6% of the cell survival rate decreased by UV radiation irritation. The treatment of kinkéliba leaf extracts also reduced the production of UV-induced pro-inflammatory cytokines IL-6 and IL-8 by 57.6% and 42.5%, respectively (p < 0.001), which cause skin redness and skin barrier dysfunction, as well as wrinkles and collagen degradation. The anti-inflammation efficacy of kinkéliba leaf extracts might involve significant inhibition on the levels of cellular reactive oxygen species (ROS) (-70.8%, p < 0.001) and nitrotyrosine (-56.9%, p < 0.05). Further topical applications of kinkéliba leaf extract gel were found to reduce sodium lauryl sulfate (SLS)-induced skin inflammation: at D7, the skin trans-epidermal water loss (TEWL) and skin redness (a* value) were both reduced by 59.81% (p < 0.001) and 22.4% (p < 0.001), compared with D0. In vitro and in vivo data support a new topical application of the kinkéliba leaf as an effective active ingredient for the treatment of skin inflammation, as well as subsequent barrier dysfunction and inflammaging.


Assuntos
Combretum , Dermatite , Humanos , Extratos Vegetais/farmacologia , Pele , Queratinócitos
4.
Molecules ; 27(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35164024

RESUMO

Tomato brown rugose fruit virus (ToBRFV) is a new damaging plant virus of great interest from both an economical and research point of view. ToBRFV is transmitted by contact, remains infective for months, and to-date, no resistant cultivars have been developed. Due to the relevance of this virus, new effective, sustainable, and operator-safe antiviral agents are needed. Thus, 4-hydroxybenzoic acid was identified as the main product of the alkaline autoxidation at high temperature of the methanolic extract of the leaves of C. micranthum, known for antiviral activity. The autoxidized extract and 4-hydroxybenzoic acid were assayed in in vitro experiments, in combination with a mechanical inoculation test of tomato plants. Catechinic acid, a common product of rearrangement of catechins in hot alkaline solution, was also tested. Degradation of the viral particles, evidenced by the absence of detectable ToBRFV RNA and the loss of virus infectivity, as a possible consequence of disassembly of the virus coat protein (CP), were shown. Homology modeling was then applied to prepare the protein model of ToBRFV CP, and its structure was optimized. Molecular docking simulation showed the interactions of the two compounds, with the amino acid residues responsible for CP-CP interactions. Catechinic acid showed the best binding energy value in comparison with ribavirin, an anti-tobamovirus agent.


Assuntos
Antivirais/farmacologia , Combretum/química , Doenças das Plantas/prevenção & controle , Solanum lycopersicum/efeitos dos fármacos , Tobamovirus/efeitos dos fármacos , Antivirais/química , Homeostase , Solanum lycopersicum/virologia , Metanol/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Simulação de Acoplamento Molecular , Oxirredução , Doenças das Plantas/virologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Vírus de Plantas/química , Vírus de Plantas/efeitos dos fármacos , Vírus de Plantas/patogenicidade , Tobamovirus/química , Tobamovirus/patogenicidade
5.
Molecules ; 25(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007965

RESUMO

The first total synthesis of novel skeleton natural compounds kinkeloids A and B, a group of newly discovered flavan alkaloids isolated from the African plant Combretum micranthum, are described in this study. The key and final step are achieved by Mannich reaction, through which the piperidine moiety couples to the flavan moiety. The identities of synthesized kinkeloids were further confirmed through a comparison with the ones in the plant leaves extract using LC/MS.


Assuntos
Alcaloides/síntese química , Flavonoides/síntese química , Alcaloides/química , Combretum , Flavonoides/química
6.
Molecules ; 25(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527058

RESUMO

Tyrosinase is an important component of the enzyme polyphenol oxidase, which upon contact with the phenolic substrates forms the pigment melanin and induces undesirable food browning. The phenolic and triterpenoid compounds that naturally occur in plants are well known as tyrosinase inhibitors. Combretum micranthum (CM) leaves, Euphorbia hirta (EH) plant, and Anacardium occidentale (AO) fruits are traditionally known to have potential anti-tyrosinase activities. The aim of this study was to optimize the ultrasound-assisted extraction of secondary metabolites from these matrices, and to evaluate in tubo the antityrosinase activity of these extracts. Efforts were also taken to profile the secondary metabolites, mainly the phenolic and triterpenoid compounds, in order to understand their probable association with tyrosinase inhibition. The optimal ultrasound-assisted extraction conditions for simultaneous extraction of phenolic, and triterpenoid compounds were determined. The aqueous fraction of these extracts showed significant antityrosinase activity, with the CM leaves exhibiting the strongest inhibitory effect (IC50 of 0.58 g·L-1). The predominant metabolic compounds from these natural extracts were putatively identified by using a high-resolution quadrupole-time of flight (QToF) LC-MS instrument. The high-resolution accurate mass-based screening resulted in identification of 88 predominant metabolites, which included dihydrodaidzein-7-O-glucuronide, micromeric acid, syringic acid, morin, quercetin-3-O-(6″-malonyl-glucoside), 4-hydroxycoumarin, dihydrocaffeic acid-3-O-glucuronide, to name some, with less than 5 ppm of mass error.


Assuntos
Anacardium/química , Combretum/química , Inibidores Enzimáticos/farmacologia , Euphorbia/química , Metaboloma/efeitos dos fármacos , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/normas , Ondas Ultrassônicas
7.
IBRO Neurosci Rep ; 14: 21-27, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36578633

RESUMO

Background: Brain damage is a severe and common pathology that leads to life-threatening diseases. Despite development in the research, the medical evidence of the effectiveness of potential neuroprotective medicines is insufficient. As a result, there is an immense and urgent demand for promising medication. For millennia, herbal remedies were a fundamental aspect of medical treatments. Combretum micranthum (CM), a plant of the family Combretaceae in sub-Saharan Africa, has been utilized in folklore medicine to cure diverse human ailments. In order to develop a neuroprotective phytomedicine, the current research was undertaken to explore the antioxidant, anti-inflammatory, anticholinesterase and neuroprotective potential of CM extract. Methods: Colorimetric methods were used to determine CM antioxidant activity, in-vitro protein denaturation and membrane destabilization assays were used to evaluate its anti-inflammatory capacity, anticholinesterase activity was carried out using Ellman's method, and neuroprotective potential was assessed on brain homogenate stressed with ferric chloride and ascorbic acid (FeCl2-AA) by assessing the lipoperoxidation biomarker malondialdehyde (MDA). Results: In Ferric Reducing Antioxidant Power (IC50 = 27.15 ± 0.06 µg/mL) and Total Antioxidant Capacity (IC50 = 31.13 ± 0.02 µg/mL), CM extract demonstrated strong antioxidant activity. Anti-inflammatory effect were improved in heat-induced Egg albumin and BSA denaturation (IC 50 = 46.35 ± 1.53 and 23.94 ± 1.10 µg/mL) as well as heat and hypotonia induced membrane destabilization (IC 50 = 20.96 ± 0.11 and 16.75 ± 0.94 µg/mL).CM extract showed strong anticholinesterase activity (IC 50 = 59.85 ± 0.91 µg/mL). In an ex-vivo neuroprotective model, CM extract showed substantial inhibition (p < 0.001) of oxidative damage caused by FeCl2-AA in brain tissue. Conclusion: C. micranthum may be a good candidate for its probable neuroprotective potential. Its neuroprotective benefits might be attributed to its antioxidant, anti-inflammatory and anticholinesterase effects.

8.
BioTechnologia (Pozn) ; 102(1): 85-99, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36605715

RESUMO

Gymnema sylvestre and Combretum micranthum are well known for their ethno-medicinal uses in the northwest of Nigeria. In our recent study, we demonstrated the antidiabetic and antioxidant activities of the aqueous-methanol extracts of the two plants and identified some potentially active compounds. The present study aimed to conduct molecular docking and ADME/drug-likeness screening of the identified potentially active candidate compounds from aqueous-methanol extracts of G. sylvestre and C. micranthum leaves by using in silico techniques. Molecular docking of compounds on target proteins (α-amylase, α-glucosidase, and phosphorylated insulin receptor tyrosine kinase) was performed using Molsoft ICM-pro 3.8-3. The physicochemical, ADME, and drug-likeness parameters were computed using the SwissADME online program. The result corroborated the antidiabetic activities of the plants with significant binding interactions between compounds A (2,2-dimethyl-3-[4-(acetyloxy)phenyl]-4-ethy-l2H-1-benzopyran-7-ol acetate), D (9,13-di-cis-retinoic acid), E (4-hydroxycinnamic acid), F ((-)-11-hydroxy-9,10-dihydrojasmonic acid), G (colnelenic acid), H (glyinflanin A), I (6,8a-seco-6,8a-deoxy-5-oxoavermectin "2a" aglycone), and J (3-deshydroxysappanol trimethyl ether) and at least one of the three target proteins. Four compounds, namely A (2,2-dimethyl-3-[4-(acetyloxy)phenyl]-4-ethyl-2H-1-benzopyran-7-ol acetate), E (4-hydroxycinnamic acid), H (glyinflanin A), and J (3-deshydroxysappanol trimethyl ether), yielded the best docking scores with respect to the target proteins, of which three (E (4-hydroxycinnamic acid), H (glyinflanin A), and J (3-deshydroxysappanol trimethyl ether)) were identified to have relatively optimal drug-likeness and medicinal chemistry characteristics. Thus, the present study concluded that these compounds may have contributed to the observed antidiabetic properties of these plants and can be investigated further as drugs or drug-like compound candidates.

9.
Toxicol Rep ; 7: 162-168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31993335

RESUMO

BACKGROUND: Combretum micranthum (CM) (Combretaceae) is widely used in traditional medicine throughout West Africa for the treatment of diabetes, hypertension, inflammation, malaria and liver ailments. In our recent research we demonstrated that CM has nephroprotective potentials in diabetes mellitus, hypertension and renal disorders. However, to the best of our knowledge, no systematic study concerning its toxicity profile has been reported. AIM OF THE STUDY: The study carried out to evaluates the potential toxicity of the hydroalcoholic extract from leaves of the CM, through the method of acute and sub-chronic oral administration in rats. MATERIALS AND METHODS: During the acute toxicity study, male and female rats were orally administrated with CM extract at single doses of 5000 mg/kg (n = 5/group/sex). Abnormal behaviour, toxic symptoms, weight, and death were observed for 14 consecutive days to assess the acute toxicity. For sub-chronic toxicity study, the extract was administered orally at doses of 500 and 1000 mg/kg (n = 5/group/sex) daily to Wistar rats for 28 days. The general behaviour and body weight of the rats was observed daily. A biochemical, haematological, macroscopical and histopathological examinations of several organs were conducted at the end of the treatment period. The CM extract was subjected to Fourier transform infrared spectrophotometric examination in order to detect the presence or absence of cyanide toxic compounds. RESULTS: The absence of absorbance peaks between the 2220-2260 cm-1 region of FT-IR spectrum of CM, indicating the absence of cyanide groups. This suggested that the CM extract may not contain toxic substances. During the acute toxicity test, no mortality or adverse effects were noted at the dose of 5000 mg/kg. In the subchronic study, the CM extract induced no mortality or treatment-related adverse effects with regard to body weight, general behaviour, relative organ weights, hematological, and biochemical parameters. Histopathological examination of vital organs showed normal architecture suggesting no morphological alterations. CONCLUSION: The present study revealed that oral administration of CM extract for 28 days, at dosage up to 1000 mg/kg did not induce toxicological damage in rats. From acute toxicity study, the median lethal dose (LD50) of the extract was estimated to be more than 5000 mg/kg.

10.
J Ethnopharmacol ; 261: 113133, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32673708

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Combretum micranthum G. Don (CM) is extensively used in traditional medicine throughout West Africa and commonly known as "long-life herbal tea" or "plant to heal". Further, traditional healers frequently use the title plant to mitigate of renal disorders. AIM OF THE STUDY: To explore the nephroprotective property of standardised hydroalcoholic extract of Combretum micranthum in nicotinamide-streptozotocin induced diabetic nephropathy in rats. In addition, in-silico computational experiments were performed with bioactive compounds of the title plant against PPARα and PPARγ. MATERIAL AND METHODS: Male rats were made diabetic by a single intraperitoneal (ip) injection of STZ (50 mg/kg), 15 min after ip administration of NA (100 mg/kg) dissolved in normal saline. The diabetic rats received CM extract (200 and 400 mg/kg p.o.) daily, for eight weeks. Body weights and blood glucose (non-fasting and fasting) of rats were measured weekly. Daily food and water consumption were also measured. After 8 weeks of treatment, urine biochemical parameters such as N-Acetyl-ß-D-Glucosaminidase (NAG), urea (UR), uric acid (UA), creatinine (CRE), and serum markers of diabetes, kidney damage and liver damage such as insulin, lipid parameters), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (γGT), albumin (Alb), magnesium (Mg2+), calcium (Ca2+), phosphorus (P), were estimated. Blood glycosylated hemoglobin (HbA1C) were also estimated. kidney and liver were used for biochemical estimation of oxidative stress markers such as lipid peroxidation, superoxide dismutase (SOD) activity and glutathione peroxidase (GPx) activity. The kidney and pancreas were used for histopathological study. Further, HPLC chemoprofiling of CM extract and in-silico molecular simulation experiments were performed. RESULTS: At the end of eight weeks, renal damage induced by the consequence of prolong diabetic condition was confirmed by altered levels of serum and urine kidney and liver function markers, oxidative stress markers and histopathological variations in kidney. Treatment with CM extract ameliorated the diabetes mellitus-induced renal biochemical parameters and histopathological changes. Further, HPLC-UV & MS experiments revealed that CM extract contains several bioactive compounds including hyperozide (62.35 µg/mg of extract) and quercitrin (19.07 µg/mg of extract). In-silico experiment exhibited cianidanol (-17.133), epicatechin (-15.107) exhibited higher docking score against PPARα and luteoforol (-11.038), epigallocatechin (-10.736) against PPARγ. Based on docking and drug likeness score, four bioactive compounds were selected for molecular dynamic experiments. Cianidanol and epigallocatechin out of the 30 compounds are concluded as a potential candidate for the treatment of DN through activating PPARα and PPARγ target protein. CONCLUSIONS: Taken together, the present study provided the scientific footage for the traditional use of Combretum micranthum.


Assuntos
Glicemia/efeitos dos fármacos , Combretum , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Hipoglicemiantes/farmacologia , Rim/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Catequina/análogos & derivados , Catequina/isolamento & purificação , Catequina/farmacologia , Combretum/química , Diabetes Mellitus Experimental/induzido quimicamente , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Hipoglicemiantes/isolamento & purificação , Rim/metabolismo , Rim/patologia , Masculino , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Niacinamida , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/agonistas , PPAR alfa/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Extratos Vegetais/isolamento & purificação , Ratos Wistar , Transdução de Sinais , Estreptozocina
11.
J Food Drug Anal ; 26(2): 487-496, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29567217

RESUMO

Herbal tea kinkéliba prepared from the leaves of Combretum micranthum has been widely consumed in West African countries for its flavor, nutritional and medicinal properties. Under bio-guided screening, the kinkéliba leaves were chemically investigated using various chromatographic and spectrometric methods that led to the identification of thirteen different flavonoid compounds. Further biological tests illustrated that the identified compounds may have synergistic effects to decrease the expression of phosphoenolpyruvate carboxykinase (PEPCK) mRNA and glucose production in an H4IIE hepatoma cell line, indicating its potential use for insulin-resistant diabetes treatment. Further in vivo study on C57BL/6J mice indicates that kinkéliba can lower plasma glucose levels in a dose-dependent manner without significant weight loss and toxicity. The ethyl acetate extract in rich of flavonoids could also increase the glucose tolerance (GT) after seven weeks' administrations. Both in vitro and in vivo experiments support a potential new application of kinkéliba leaves as an anti-diabetes agent.


Assuntos
Combretum/química , Hipoglicemiantes/química , Extratos Vegetais/química , Polifenóis/química , Animais , Glicemia/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Humanos , Hipoglicemiantes/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Extratos Vegetais/administração & dosagem , Folhas de Planta/química , Polifenóis/administração & dosagem
12.
J Pharm Biomed Anal ; 88: 542-51, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24211706

RESUMO

The quality assessment of African traditional herbal medicinal products is a difficult challenge since they are complex mixtures of several herbal drug or herbal drug preparations. The plant source is also often unknown and/or highly variable. Plant metabolites chromatographic profiling is therefore an important tool for quality control of such herbal products. The objective of this work is to propose a protocol for sample preparation and gas chromatographic profiling of non-polar metabolites for quality control of African traditional herbal medicinal products. The methodology is based on the chemometric assessment of chromatographic profiles of non-polar metabolites issued from several batches of leaves of Combretum micranthum and Mitracarpus scaber by high temperature gas chromatography coupled to mass spectrometry, performed on extracts obtained in refluxed dichloromethane, after removal of chlorophyll pigments. The method using high temperature gas chromatography after dichloromethane extraction allows detection of most non-polar bioactive and non-bioactive metabolites already identified in leaves of both species. Chemometric data analysis using Principal Component Analysis and Partial Least Squares after Orthogonal Signal Correction applied to chromatographic profiles of leaves of Combretum micranthum and Mitracarpus scaber showed slight batch to batch differences, and allowed clear differentiation of the two herbal extracts.


Assuntos
Medicinas Tradicionais Africanas/métodos , Preparações de Plantas/análise , Plantas Medicinais/química , África , Artefatos , Técnicas de Química Analítica , Clorofila/análise , Clorofila/química , Combretum/química , Cromatografia Gasosa-Espectrometria de Massas , Análise dos Mínimos Quadrados , Cloreto de Metileno/química , Folhas de Planta/química , Análise de Componente Principal , Controle de Qualidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA