Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 27(3): 109119, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38384841

RESUMO

In a previous report, keratinocytes were shown to share their gene expression profile with surrounding Langerhans cells (LCs), influencing LC biology. Here, we investigated whether transferred material could substitute for lost gene products in cells subjected to Cre/Lox conditional gene deletion. We found that in human Langerin-Cre mice, epidermal LCs and CD11b+CD103+ mesenteric DCs overcome gene deletion if the deleted gene was expressed by neighboring cells. The mechanism of material transfer differed from traditional antigen uptake routes, relying on calcium and PI3K, being susceptible to polyguanylic acid inhibition, and remaining unaffected by inflammation. Termed intracellular monitoring, this process was specific to DCs, occurring in all murine DC subsets tested and human monocyte-derived DCs. The transferred material was presented on MHC-I and MHC-II, suggesting a role in regulating immune responses.

2.
iScience ; 27(4): 109545, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38617557

RESUMO

Dysregulated macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotypes underlies impaired cutaneous wound healing. This study reveals Vγ4+ γδ T cells spatiotemporally calibrate macrophage trajectories during skin repair via sophisticated interferon-γ (IFN-γ) conditioning across multiple interconnected tissues. Locally within wound beds, infiltrating Vγ4+ γδ T cells directly potentiate M1 activation and suppress M2 polarization thereby prolonging local inflammation. In draining lymph nodes, infiltrated Vγ4+ γδ T cells expand populations of IFN-γ-competent lymphocytes which disseminate systemically and infiltrate into wound tissues, further enforcing M1 macrophages programming. Moreover, Vγ4+γδ T cells flushed into bone marrow stimulate increased IFN-γ production, which elevates the output of pro-inflammatory Ly6C+monocytes. Mobilization of these monocytes continually replenishes the M1 macrophage pool in wounds, preventing phenotypic conversion to M2 activation. Thus, multi-axis coordination of macrophage activation trajectories by trafficking Vγ4+ γδ T cells provides a sophisticated immunological mechanism regulating inflammation timing and resolution during skin repair.

3.
iScience ; 27(1): 108728, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38235336

RESUMO

SARS-CoV-2 infection in children typically results in asymptomatic or mild disease. There is a paucity of studies on SARS-CoV-2 antiviral immunity in African children. We investigated SARS-CoV-2-specific T cell responses in 71 unvaccinated asymptomatic South African children who were seropositive or seronegative for SARS-CoV-2. SARS-CoV-2-specific CD4+ T cell responses were detectable in 83% of seropositive and 60% of seronegative children. Although the magnitude of the CD4+ T cell response did not differ significantly between the two groups, their functional profiles were distinct, with SARS-CoV-2 seropositive children exhibiting a higher proportion of polyfunctional T cells compared to their seronegative counterparts. The frequency of SARS-CoV-2-specific CD4+ T cells in seronegative children was associated with the endemic human coronavirus (HCoV) HKU1 IgG response. Overall, the presence of SARS-CoV-2-responding T cells in seronegative children may result from cross-reactivity to endemic coronaviruses and could contribute to the relative protection from disease observed in SARS-CoV-2-infected children.

4.
iScience ; 27(7): 110114, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39015145

RESUMO

Sepsis survivors are at high risk for infection-related rehospitalization and mortality for years following the resolution of the acute septic event. These infection-causing microorganisms generally do not cause disease in immunocompetent hosts, suggesting that the post-septic immune response is compromised. Given the importance of CD4 T cells in the development of long-lasting protective immunity, we analyzed their post-septic function. Here we showed that sepsis induced chronic increased and non-specific production of IL-17 by CD4 T cells, resulting in the inability to mount an effective immune response to a secondary pneumonia challenge. Altered cell function was associated with metabolic reprogramming, characterized by mitochondrial dysfunction and increased glycolysis. This metabolic reprogramming began during the acute septic event and persisted long after sepsis had resolved. Our findings reveal cell metabolism as a potential therapeutic target. Given the critical role of cell metabolism in the physiological and pathophysiological processes of immune cells, these findings reveal a potential new therapeutic target to help mitigate sepsis survivors' susceptibility to secondary infections.

5.
iScience ; 27(5): 109704, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38680663

RESUMO

In addition to cross-presentation, cross-dressing plays an important role in the induction of CD8+ T cell immunity. In the process of cross-dressing, conventional dendritic cells (DCs) acquire major histocompatibility complex class I (MHCI) from other cells and subsequently prime CD8+ T cells via the pre-formed antigen-MHCI complexes without antigen processing. However, the mechanisms underlying the cross-dressing pathway, as well as the relative contributions of cross-presentation and cross-dressing to CD8+ T cell priming are not fully understood. Here, we demonstrate that DCs rapidly acquire MHCI-containing membrane fragments from dead cells via the phosphatidylserine recognition-dependent mechanism for cross-dressing. The MHCI dressing is enhanced by a TLR3 ligand polyinosinic-polycytidylic acid (polyI:C). Further, polyI:C promotes not only cross-presentation but also cross-dressing in vivo. Taken together, these results suggest that cross-dressing as well as cross-presentation is involved in inflammatory diseases associated with cell death and type I IFN production.

6.
iScience ; 27(8): 110528, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39171290

RESUMO

Circulating T cells, which migrate from the periphery to sites of tissue inflammation, play a crucial role in the development of various chronic inflammatory conditions. Recent research has highlighted subsets of tissue-resident T cells that acquire migratory capabilities and re-enter circulation, referred to here as "recirculating T cells." In this review, we examine recent advancements in understanding the biology of T cell trafficking in diseases where T cell infiltration is pivotal, such as multiple sclerosis and inflammatory bowel diseases, as well as in metabolic disorders where the role of T cell migration is less understood. Additionally, we discuss current insights into therapeutic strategies aimed at modulating T cell circulation across tissues and the application of state-of-the-art technologies for studying recirculation in humans. This review underscores the significance of investigating T trafficking as a novel potential target for therapeutic interventions across a spectrum of human chronic inflammatory diseases.

7.
iScience ; 27(7): 110374, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39100929

RESUMO

Total plasma protein N-glycosylation (TPNG) changes are a hallmark of many diseases. Here, we analyzed the TPNG of 169 COVID-19 patients and 12 healthy controls, using mass spectrometry, resulting in the relative quantification of 85 N-glycans. We found a COVID-19 N-glycomic signature, with 59 glycans differing between patients and controls, many of them additionally differentiating between severe and mild COVID-19. Tri- and tetra-antennary N-glycans were increased in patients, showing additionally elevated levels of antennary α2,6-sialylation. Conversely, bisection of di-antennary, core-fucosylated, nonsialylated glycans was low in COVID-19, particularly in severe cases, potentially driven by the previously observed low levels of bisection on antibodies of severely diseased COVID-19 patients. These glycomic changes point toward systemic changes in the blood glycoproteome, particularly involvement of acute-phase proteins, immunoglobulins and the complement cascade. Further research is needed to dissect glycosylation changes in a protein- and site-specific way to obtain specific functional leads.

8.
iScience ; 27(6): 110067, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38883815

RESUMO

Dendritic cells (DC) play a crucial role in the initiation of immune responses. TRIM41, an E3 ubiquitin ligase, can facilitate targeting protein degradation. The purpose of this study is to analyze the role of TRIM41 in the pathogenesis of airway allergy (AA) and the impact of regulating TRIM41 on suppressing AA. We observed that the airway DCs of AA mice had a higher expression of Trim41. The expression of Trim41 in airway DCs was associated with the DCs' tolerogenic functions of AA mice. The AA responses, including increased amounts of eosinophil peroxidase, mast cell protease-1, Th2 cytokines, and specific IgE in bronchoalveolar lavage fluids, were positively correlated with the Trim41 expression in mouse airway DCs. TRIM41 induced c-Maf degradation and interfered with the Il10 expression in airway DCs, which could be counteracted by inhibiting TRIM41. Regulation of TRIM41 mitigated experimental AA responses.

9.
iScience ; 27(6): 109849, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38784008

RESUMO

Cholesterol efflux capacity (CEC) dysfunction in macrophages is important in atherosclerosis. However, the mechanism underlying CEC dysfunction remains unclear. We described the characteristics of ATF4 and inflammasome activation in macrophages during atherosclerosis through scRNA sequencing analysis. Then model of hyperlipemia was established in ApoE-/- mice; some were treated with tauroursodeoxycholic acid (TUDCA). TUDCA decreased the ATF4, Hspa, and inflammasome activation, reduced plaque area of the artery, and promoted CEC in macrophages. Furthermore, TUDCA abolished oxLDL-induced foam cell formation by inhibiting activation of the PERK/eIF2α/ATF4 and AIM2 inflammasome in macrophages. Further assays revealed ATF4 binding to AIM2 promoter, promoting its transcriptional activity significantly. Then we discovered that ATF4 affected AIM2-mediated foam cell formation by targeting ABCA1, which could be blocked by TUDCA. Our study demonstrated that TUDCA alleviates atherosclerosis by inhibiting AIM2 inflammasome and enhancing CEC of macrophage, which provided possibilities for the development of therapies.

10.
iScience ; 27(6): 109960, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38832015

RESUMO

Limited information exists regarding the impact of interferons (IFNs) on the information carried by extracellular vesicles (EVs). This study aimed at investigating whether IFN-α2b, IFN-ß, IFN-γ, and IFN-λ1/2 modulate the content of EVs released by primary monocyte-derived macrophages (MDM). Small-EVs (sEVs) were purified by size exclusion chromatography from supernatants of MDM treated with IFNs. To characterize the concentration and dimensions of vesicles, nanoparticle tracking analysis was used. SEVs surface markers were examined by flow cytometry. IFN treatments induced a significant down-regulation of the exosomal markers CD9, CD63, and CD81 on sEVs, and a significant modulation of some adhesion molecules, major histocompatibility complexes and pro-coagulant proteins, suggesting IFNs influence biogenesis and shape the immunological asset of sEVs. SEVs released by IFN-stimulated MDM also impact lymphocyte function, showing significant modulation of lymphocyte activation and IL-17 release. Altogether, our results show that sEVs composition and activity are affected by IFN treatment of MDM.

11.
iScience ; 27(6): 110097, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38883832

RESUMO

Systemic neutrophil dysregulation contributes to atherosclerosis pathogenesis, and restoring neutrophil homeostasis may be beneficial for treating atherosclerosis. Herein, we report that a homeostatic resolving subset of neutrophils exists in mice and humans characterized by the low expression of TRAM, correlated with reduced expression of inflammatory mediators (leukotriene B4 [LTB4] and elastase) and elevated expression of anti-inflammatory resolving mediators (resolvin D1 [RvD1] and CD200R). TRAM-deficient neutrophils can potently improve vascular integrity and suppress atherosclerosis pathogenesis when adoptively transfused into recipient atherosclerotic animals. Mechanistically, we show that TRAM deficiency correlates with reduced expression of 5-lipoxygenase (LOX5) activating protein (LOX5AP), dislodges nuclear localization of LOX5, and switches the lipid mediator secretion from pro-inflammatory LTB4 to pro-resolving RvD1. TRAM also serves as a stress sensor of oxidized low-density lipoprotein (oxLDL) and/or free cholesterol and triggers inflammatory signaling processes that facilitate elastase release. Together, our study defines a unique neutrophil population characterized by reduced TRAM, capable of homeostatic resolution and treatment of atherosclerosis.

12.
iScience ; 27(2): 109003, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38327792

RESUMO

This study focused on examining the exact role of circulating immune cells in the development of diabetic retinopathy (DR). In vitro co-culture experiments showed that peripheral blood mononuclear cells (PBMCs) from patients with type 1 DR crucially modulated the biological functions of human retinal microvascular endothelial cells (HRMECs), consequently disrupting their normal functionality. Single-cell RNA sequencing (scRNA-seq) study revealed unique differentially expressed genes and pathways in circulating immune cells among healthy controls, non-diabetic retinopathy (NDR) patients, and DR patients. Of significance was the observed upregulation of JUND in each subset of PBMCs in patients with type 1 DR. Further studies showed that downregulating JUND in DR patient-derived PBMCs led to the amelioration of HRMEC dysfunction. These findings highlighted the notable alterations in the transcriptomic patterns of circulating immune cells in type 1 DR patients and underscored the significance of JUND as a key factor for PBMCs in participating in the pathogenesis of DR.

13.
iScience ; 27(4): 109610, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38632993

RESUMO

Immune tolerance fails in autoimmune polyendocrine syndrome type 1 (APS-1) because of AIRE mutations. We have used single cell transcriptomics to characterize regulatory T cells (Tregs) sorted directly from blood and from in vitro expanded Tregs in APS-1 patients compared to healthy controls. We revealed only CD52 and LTB (down) and TXNIP (up) as consistently differentially expressed genes in the datasets. There were furthermore no large differences of the TCR-repertoire of expanded Tregs between the cohorts, but unique patients showed a more restricted use of specific clonotypes. We also found that in vitro expanded Tregs from APS-1 patients had similar suppressive capacity as controls in co-culture assays, despite expanding faster and having more exhausted cells. Our results suggest that APS-1 patients do not have intrinsic defects in their Treg functionality, and that their Tregs can be expanded ex vivo for potential therapeutic applications.

14.
iScience ; 27(6): 109975, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38827398

RESUMO

Severe COVID-19 often leads to secondary infections and sepsis that contribute to long hospital stays and mortality. However, our understanding of the precise immune mechanisms driving severe complications after SARS-CoV-2 infection remains incompletely understood. Here, we provide evidence that the SARS-CoV-2 envelope (E) protein initiates innate immune inflammation, via toll-like receptor 2 signaling, and establishes a sustained state of innate immune tolerance following initial activation. Monocytes in this tolerant state exhibit reduced responsiveness to secondary stimuli, releasing lower levels of cytokines and chemokines. Mice exposed to E protein before secondary lipopolysaccharide challenge show diminished pro-inflammatory cytokine expression in the lung, indicating that E protein drives this tolerant state in vivo. These findings highlight the potential of the SARS-CoV-2 E protein to induce innate immune tolerance, contributing to long-term immune dysfunction that could lead to susceptibility to subsequent infections, and uncovers therapeutic targets aimed at restoring immune function following SARS-CoV-2 infection.

15.
iScience ; 27(8): 110550, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39165839

RESUMO

Patients with long-standing inflammatory bowel disease (IBD) face an increased risk of developing colitis-associated cancer (CAC). Although IBD-induced prolonged inflammation seems to be involved in CAC pathogenesis, the specific molecular changes that contribute remain unknown. Here, we applied digital spatial RNA profiling, RNAscope, and imaging mass cytometry to examine paired uninflamed, inflamed, and early dysplastic mucosa of patients with IBD. We observed robust type 3 (IL-17) responses during inflammation, accompanied by elevated JAK-STAT signaling and phosphorylated STAT3 (P-STAT3) levels, with both inflamed and dysplastic mucosa displaying immune cell activation. Higher stromal P-STAT3 was detected in uninflamed and inflamed mucosa of patients who eventually developed dysplasia. CD8a+ T cells did not infiltrate inflamed or dysplastic epithelial regions in these patients, while control patients showed elevated CD8a in inflamed mucosa. Our study reveals distinct inflammatory patterns throughout CAC development, marked by an activated IL-17 pathway, engaged STAT3, and diminished cytotoxic T cell infiltration.

16.
iScience ; 27(6): 110011, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38868181

RESUMO

Combinatorial signaling by proinflammatory cytokines synergizes to exacerbate toxicity to cells and tissue injury during acute infections. To explore synergism at the gene-regulatory level, we investigated the dynamics of transcription and chromatin signaling in response to dual cytokines by integrating nascent RNA imaging mass spectrometry, RNA sequencing, amplification-independent mRNA quantification, assay for transposase-accessible chromatin using sequencing (ATAC-seq), and transcription factor profiling. Costimulation with interferon-gamma (IFNγ) and tumor necrosis factor alpha (TNFα) synergistically induced a small subset of genes, including the chemokines CXCL9, -10, and -11. Gene induction coincided with increased chromatin accessibility at non-coding regions enriched for p65 and STAT1 binding sites. To discover coactivator dependencies, we conducted a targeted chemogenomic screen of transcriptional inhibitors followed by modeling of inhibitor dose-response curves. These results identified high efficacy of either p300/CREB-binding protein (CBP) or bromodomain and extra-terminal (BET) bromodomain inhibitors to disrupt induction of synergy genes. Combination p300/CBP and BET bromodomain inhibition at half-maximal inhibitory concentrations (subIC50) synergistically abrogated IFNγ/TNFα-induced chemokine gene and protein levels.

17.
iScience ; 27(5): 109814, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38746669

RESUMO

2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) is the endogenous agonist of STING; as such, cGAMP has powerful immunostimulatory activity, due to its capacity to stimulate type I interferon-mediated immunity. Recent evidence indicates that cancer cells, under certain conditions, can release cGAMP extracellularly, a phenomenon currently considered important for therapeutic responses and tumor rejection. Nonetheless, the mechanisms that regulate cGAMP activity in the extracellular environment are still largely unexplored. In this work, we collected evidence demonstrating that CD38 glycohydrolase can inhibit extracellular cGAMP activity through its direct binding. We firstly used different cell lines and clinical samples to demonstrate a link between CD38 and extracellular cGAMP activity; we then performed extensive in silico molecular modeling and cell-free biochemical assays to show a direct interaction between the catalytic pocket of CD38 and cGAMP. Altogether, our findings expand the current knowledge about the regulation of cGAMP activity.

18.
iScience ; 27(1): 108288, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38179063

RESUMO

To elucidate host response elements that define impending decompensation during SARS-CoV-2 infection, we enrolled subjects hospitalized with COVID-19 who were matched for disease severity and comorbidities at the time of admission. We performed combined single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) on peripheral blood mononuclear cells (PBMCs) at admission and compared subjects who improved from their moderate disease with those who later clinically decompensated and required invasive mechanical ventilation or died. Chromatin accessibility and transcriptomic immune profiles were markedly altered between the two groups, with strong signals in CD4+ T cells, inflammatory T cells, dendritic cells, and NK cells. Multiomic signature scores at admission were tightly associated with future clinical deterioration (auROC 1.0). Epigenetic and transcriptional changes in PBMCs reveal early, broad immune dysregulation before typical clinical signs of decompensation are apparent and thus may act as biomarkers to predict future severity in COVID-19.

19.
iScience ; 27(6): 109999, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38883838

RESUMO

The efficacy of T cell therapies in treating solid tumors is limited by poor in vivo persistence, proliferation, and cytotoxicity, which can be attributed to limited and variable ex vivo activation. Herein, we present a 10-day kinetic profile of T cells subjected to fluid shear stress (FSS) ex vivo, with and without stimulation utilizing bead-conjugated anti-CD3/CD28 antibodies. We demonstrate that mechanical stimulation via FSS combined with bead-bound anti-CD3/CD28 antibodies yields a synergistic effect, resulting in amplified and sustained downstream signaling (NF-κB, c-Fos, and NFAT), expression of activation markers (CD69 and CD25), proliferation and production of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-2). This study represents the first characterization of the dynamic response of primary T cells to FSS. Collectively, our findings underscore the critical role of mechanosensitive ion channel-mediated mechanobiological signaling in T cell activation and fitness, enabling the development of strategies to address the current challenges associated with poor immunotherapy outcomes.

20.
iScience ; 26(12): 108366, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38047070

RESUMO

Airway epithelial cells (AEC) infected with SARS-CoV-2 may drive the dysfunction of macrophages during COVID-19. We hypothesized that the direct interaction of AEC with macrophages mediated by CD95/CD95L or indirect interaction mediated by IL-6 signaling are key steps for the COVID-19 severe acute inflammation. The interaction of macrophages with apoptotic and infected AEC increased CD95 and CD163 expression, and induced macrophage death. Macrophages exposed to tracheal aspirate with high IL-6 levels from intubated patients with COVID-19 or to recombinant human IL-6 exhibited decreased HLA-DR expression, increased CD95 and CD163 expression and IL-1ß production. IL-6 effects on macrophages were prevented by both CD95/CD95L antagonist and by IL-6 receptor antagonist and IL-6 or CD95 deficient mice showed significant reduction of acute pulmonary inflammation post-infection. Our findings show a non-canonical CD95L-CD95 pathway that simultaneously drives both macrophage activation and dysfunction and point to CD95/CD95L axis as therapeutic target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA