Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Biol Chem ; 299(7): 104876, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269953

RESUMO

Alzheimer's disease (AD) is characterized by the presence of tau protein inclusions and amyloid beta (Aß) plaques in the brain, with Aß peptides generated by cleavage of the amyloid precursor protein (APP) by BACE1 and γ-secretase. We previously described a primary rat neuron assay in which tau inclusions form from endogenous rat tau after seeding cells with insoluble tau isolated from the human AD brain. Here, we used this assay to screen an annotated library of ∼8700 biologically active small molecules for their ability to reduce immuno-stained neuronal tau inclusions. Compounds causing ≥30% inhibition of tau aggregates with <25% loss of DAPI-positive cell nuclei underwent further confirmation testing and assessment of neurotoxicity, and non-neurotoxic hits were subsequently analyzed for inhibitory activity in an orthogonal ELISA that quantified multimeric rat tau species. Of the 173 compounds meeting all criteria, a subset of 55 inhibitors underwent concentration-response testing and 46 elicited a concentration-dependent reduction of neuronal tau inclusions that were distinct from measures of toxicity. Among the confirmed inhibitors of tau pathology were BACE1 inhibitors, several of which, along with γ-secretase inhibitors/modulators, caused a concentration-dependent lowering of neuronal tau inclusions and a reduction of insoluble tau by immunoblotting, although they did not decrease soluble phosphorylated tau species. In conclusion, we have identified a diverse set of small molecules and related targets that reduce neuronal tau inclusions. Notably, these include BACE1 and γ-secretase inhibitors, suggesting that a cleavage product from a shared substrate, such as APP, might affect tau pathology.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Neurônios , Proteínas tau , Animais , Humanos , Ratos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Neurônios/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Antimicrob Agents Chemother ; 68(1): e0050923, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38063403

RESUMO

The main challenges associated with leishmaniasis chemotherapy are drug toxicity, the possible emergence of resistant parasites, and a limited choice of therapeutic agents. Therefore, new drugs and assays to screen and detect novel active compounds against leishmaniasis are urgently needed. We thus validated Leishmania braziliensis (Lb) and Leishmania infantum (Li) that constitutively express the tandem tomato red fluorescent protein (tdTomato) as a model for large-scale screens of anti-Leishmania compounds. Confocal microscopy of Lb and Li::tdTomato revealed red fluorescence distributed throughout the entire parasite, including the flagellum, and flow cytometry confirmed that the parasites emitted intense fluorescence. We evaluated the infectivity of cloned promastigotes and amastigotes constitutively expressing tdTomato, their growth profiles in THP-1 macrophages, and susceptibility to trivalent antimony, amphotericin, and miltefosine in vitro. The phenotypes of mutant and wild-type parasites were similar, indicating that the constitutive expression of tdTomato did not interfere with the evaluated parameters. We applied our validated model to a repositioning strategy and assessed the susceptibility of the parasites to eight commercially available drugs. We also screened 32 natural plant and fungal extracts and 10 pure substances to reveal new active compounds. The infectivity and Glucantime treatment efficacy of BALB/c mice and golden hamsters infected with Lb and Li::tdTomato mutant lines, respectively, were very similar compared to animals infected with wild-type parasites. Standardizing our methodology would offer more rapid, less expensive, and easier assays to screen of compounds against L. braziliensis and L. infantum in vitro and in vivo. Our method could also enhance the discovery of active compounds for treating leishmaniasis.


Assuntos
Antiprotozoários , Leishmania braziliensis , Leishmania infantum , Leishmaniose , Cricetinae , Animais , Camundongos , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Fluorescência , Leishmaniose/tratamento farmacológico , Leishmania infantum/genética , Leishmania braziliensis/genética , Mesocricetus , Camundongos Endogâmicos BALB C
3.
Biol Pharm Bull ; 46(2): 147-157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724942

RESUMO

Intron recognition by the spliceosome mainly depends on conserved intronic sequences such as 5' splice sites, 3' splice sites, and branch sites. Therefore, even substitution of just a single nucleotide in a 5' or 3' splice site abolishes the splicing at the mutated site and leads to cryptic splice site usage. A number of disease-causative mutations have been found in 5' and 3' splice sites, but the genes with these mutations still maintain the correct protein-coding sequence, so recovery of splicing at the mutated splice site may produce a normal protein. Mutations in the spliceosome components have been shown to change the balance between the conformational transition and disassembly of the spliceosome, which affects the decision about whether the reaction of the incorporated substrate will proceed. In addition, the lower disassembly rate caused by such mutations induces splicing of the mutated splice site. We hypothesized that small compounds targeting the spliceosome may include a compound mimicking the effect of those mutations. Thus, we screened a small-compound library and identified a compound, BAY61-3606, that changed the cellular small nuclear ribonucleoprotein composition and also showed activity of enhancing splicing at the mutated 3' splice site of the reporter gene, as well as splicing at the suboptimal 3' splice site of endogenous cassette exons. These results indicate that further analysis of the mechanism of action of BAY61-3606 could enable modulation of the fidelity of splicing.


Assuntos
Sítios de Splice de RNA , Spliceossomos , Sítios de Splice de RNA/genética , Spliceossomos/genética , Spliceossomos/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Niacinamida , Mutação
4.
Biol Pharm Bull ; 46(7): 1010-1014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394631

RESUMO

Recently, the finding of recurrent mutations in the spliceosome components in cancer has indicated that the spliceosome is a potential target for cancer therapy. However, the number of small molecules known to affect the cellular spliceosome is currently limited probably because of the lack of a robust cell-based approach to identify small molecules that target the spliceosome. We have previously reported the development of a genetic reporter to detect the cellular levels of small nuclear ribonucleoproteins (snRNPs), which are subunits of the spliceosome, using a split luciferase. However, the original protocol was designed for small scale experiments and was not suitable for compound screening. Here, we found that the use of cell lysis buffer used in blue native polyacrylamide gel electrophoresis (BN-PAGE) dramatically improved the sensitivity and the robustness of the assay. Improved assay conditions were used to discover a small molecule that altered the reporter activity. Our method may be used with other cellular macromolecular complexes and may assist in the discovery of small bioactive molecules.


Assuntos
Splicing de RNA , Ribonucleoproteínas , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/metabolismo , Luciferases/genética
5.
J Sep Sci ; 46(16): e2300129, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37339788

RESUMO

As a main source for the recognition and identification of lead compounds, traditional Chinese medicine plays a pivotal role in preventing diseases for years. However, screening bioactive compounds from traditional Chinese medicine remains challenging because of the complexity of the systems and the occurrence of the synergic effect of the compounds. The infructescence of Platycarya strobilacea Sieb. et Zucc is prescribed for allergic rhinitis treatment with unknown bioactive compounds and unclear mechanisms. Herein, we immobilized the ß2 -adrenoceptor and muscarine-3 acetylcholine receptor onto the silica gel surface to prepare the stationary phase in a covalent bond through one step. The feasibility of the columns was investigated by the chromatographic method. Ellagic acid and catechin were identified as the bioactive compounds targeting the receptors. The binding constants of ellagic acid were calculated to be (1.56 ± 0.23)×107  M-1 for muscarine-3 acetylcholine receptor and (2.93 ± 0.15)×107  M-1 for ß2 -adrenoceptor by frontal analysis. While catechin can bind with muscarine-3 acetylcholine receptor with an affinity of (3.21 ± 0.05)×105  M-1 . Hydrogen bonds and van der Waals' force were the main driving forces for the two compounds with the receptors. The established method provides an alternative for multi-target bioactive compound screening in complex matrices.


Assuntos
Catequina , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/análise , Ácido Elágico/química , Catequina/análise , Muscarina , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Afinidade/métodos , Receptores Colinérgicos , Colinérgicos
6.
Biochem Biophys Res Commun ; 596: 22-28, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35108650

RESUMO

AL amyloidosis is a life-threatening disease characterized by the deposition of amyloidogenic immunoglobulin light chain secreted from clonal plasma cells. Here we established an in-vitro screening system of amyloid inhibition of a variable domain in λ6 light chain mutant (Vλ6), Wil, and screened a food-additive compound library to identify compounds inhibiting the fibril formation. We found gossypetin and isoquercitrin as novel inhibitors. NMR analysis showed that both compounds directly interacted with natively-folded Wil, and proteolysis experiments demonstrated that these compounds conferred proteolytic resistance, suggesting that the compounds enhance the kinetic stability of Wil. Since gossypetin and isoquercitrin specifically interacted with the protein at micromolar concentrations, these compounds could be used as lead to further develop inhibitors against AL amyloidosis.


Assuntos
Amiloide/antagonistas & inibidores , Flavonoides/farmacologia , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Cadeias lambda de Imunoglobulina/metabolismo , Quercetina/análogos & derivados , Amiloide/genética , Amiloide/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Catequina/análogos & derivados , Catequina/metabolismo , Catequina/farmacologia , Relação Dose-Resposta a Droga , Flavonoides/química , Humanos , Amiloidose de Cadeia Leve de Imunoglobulina/genética , Cadeias lambda de Imunoglobulina/química , Cadeias lambda de Imunoglobulina/genética , Cinética , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Mutação , Ligação Proteica , Estabilidade Proteica/efeitos dos fármacos , Quercetina/química , Quercetina/farmacologia , Fatores de Tempo
7.
BMC Cancer ; 22(1): 489, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505283

RESUMO

BACKGROUND: Pancreatic cancer is one of the most lethal tumors. The aim of this study is to provide an effective therapeutic discovery platform for pancreatic cancer by establishing and characterizing patient-derived organoids (PDOs). METHODS: PDOs were established from pancreatic tumor surgical specimens, and the mutations were examined using a panel sequence. Expression of markers was assessed by PCR, immunoblotting, and immunohistochemistry; tumorigenicity was examined using immunodeficient mice, and drug responses were examined in vitro and in vivo. RESULTS: PDOs were established from eight primary and metastatic tumors, and the characteristic mutations and expression of cancer stem cell markers and CA19-9 were confirmed. Tumorigenicity of the PDOs was confirmed in subcutaneous transplantation and in the peritoneal cavity in the case of PDOs derived from disseminated nodules. Gemcitabine-sensitive/resistant PDOs showed consistent responses in vivo. High throughput screening in PDOs identified a compound effective for inhibiting tumor growth of a gemcitabine-resistant PDO xenograft model. CONCLUSIONS: This PDO-based platform captures important aspects of treatment-resistant pancreatic cancer and its metastatic features, suggesting that this study may serve as a tool for the discovery of personalized therapies.


Assuntos
Organoides , Neoplasias Pancreáticas , Animais , Descoberta de Drogas , Humanos , Camundongos , Organoides/patologia , Pâncreas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
8.
Cell Mol Life Sci ; 79(1): 27, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971423

RESUMO

The rate-limiting serine biogenesis enzyme PHGDH is overexpressed in cancers. Both serine withdrawal and genetic/pharmacological inhibition of PHGDH have demonstrated promising tumor-suppressing activities. However, the enzyme properties of PHGDH are not well understood and the discovery of PHGDH inhibitors is still in its infancy. Here, oridonin was identified from a natural product library as a new PHGDH inhibitor. The crystal structure of PHGDH in complex with oridonin revealed a new allosteric site. The binding of oridonin to this site reduced the activity of the enzyme by relocating R54, a residue involved in substrate binding. Mutagenesis studies showed that PHGDH activity was very sensitive to cysteine mutations, especially those in the substrate binding domain. Conjugation of oridonin and other reported covalent PHGDH inhibitors to these sites will therefore inhibit PHGDH. In addition to being inhibited enzymatically, PHGDH can also be inhibited by protein aggregation and proteasome-mediated degradation. Several tested PHGDH cancer mutants showed altered enzymatic activity, which can be explained by protein structure and stability. Overall, the above studies present new biophysical and biochemical insights into PHGDH and may facilitate the future design of PHGDH inhibitors.


Assuntos
Fenômenos Biofísicos , Inibidores Enzimáticos/farmacologia , Fosfoglicerato Desidrogenase/antagonistas & inibidores , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Cisteína/genética , Cisteína/metabolismo , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/farmacologia , Inibidores Enzimáticos/química , Ácidos Glicéricos/metabolismo , Humanos , Mutação/genética , NAD/metabolismo , Fosfoglicerato Desidrogenase/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregados Proteicos , Proteólise/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos
9.
Molecules ; 27(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35566279

RESUMO

A method to identify anticancer compounds in plants was proposed based on the hypothesis that these compounds are primarily present in plants to provide them with an ecological advantage over neighboring plants and other competitors. According to this view, identifying plants that contain compounds that inhibit or interfere with the development of other plant species may facilitate the discovery of novel anticancer agents. The method was developed and tested using Magnolia grandiflora, Gynoxys verrucosa, Picradeniopsis oppositifolia, and Hedyosmum racemosum, which are plant species known to possess compounds with cytotoxic activities. Plant extracts were screened for growth inhibitory activity, and then a thin-layer chromatography bioautography assay was conducted. This located the major antileukemic compounds 1, 2, 4, and 5 in the extracts. Once the active compounds were located, they were extracted and purified, and their structures were determined. The growth inhibitory activity of the purified compounds showed a significant correlation with their antileukemic activity. The proposed approach is rapid, inexpensive, and can easily be implemented in areas of the world with high biodiversity but with less access to advanced facilities and biological assays.


Assuntos
Asteraceae , Asteraceae/química , Cromatografia em Camada Fina , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas
10.
Angew Chem Int Ed Engl ; 61(24): e202117724, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35199904

RESUMO

Unprecedented bacterial targets are urgently needed to overcome the resistance crisis. Herein we systematically mine pyridoxal phosphate-dependent enzymes (PLP-DEs) in bacteria to focus on a target class which is involved in crucial metabolic processes. For this, we tailored eight pyridoxal (PL) probes bearing modifications at various positions. Overall, the probes exceeded the performance of a previous generation and provided a detailed map of PLP-DEs in clinically relevant pathogens including challenging Gram-negative strains. Putative PLP-DEs with unknown function were exemplarily characterized via in-depth enzymatic assays. Finally, we screened a panel of PLP binders for antibiotic activity and unravelled the targets of hit molecules. Here, an uncharacterized enzyme, essential for bacterial growth, was assigned as PLP-dependent cysteine desulfurase and confirmed to be inhibited by the marketed drug phenelzine. Our approach provides a basis for deciphering novel PLP-DEs as essential antibiotic targets along with corresponding ways to decipher small molecule inhibitors.


Assuntos
Antibacterianos , Piridoxal , Antibacterianos/farmacologia , Bactérias/metabolismo , Piridoxal/farmacologia , Fosfato de Piridoxal/metabolismo
11.
Arch Toxicol ; 95(9): 3101-3115, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245348

RESUMO

The in vitro micronucleus assay is a globally significant method for DNA damage quantification used for regulatory compound safety testing in addition to inter-individual monitoring of environmental, lifestyle and occupational factors. However, it relies on time-consuming and user-subjective manual scoring. Here we show that imaging flow cytometry and deep learning image classification represents a capable platform for automated, inter-laboratory operation. Images were captured for the cytokinesis-block micronucleus (CBMN) assay across three laboratories using methyl methanesulphonate (1.25-5.0 µg/mL) and/or carbendazim (0.8-1.6 µg/mL) exposures to TK6 cells. Human-scored image sets were assembled and used to train and test the classification abilities of the "DeepFlow" neural network in both intra- and inter-laboratory contexts. Harnessing image diversity across laboratories yielded a network able to score unseen data from an entirely new laboratory without any user configuration. Image classification accuracies of 98%, 95%, 82% and 85% were achieved for 'mononucleates', 'binucleates', 'mononucleates with MN' and 'binucleates with MN', respectively. Successful classifications of 'trinucleates' (90%) and 'tetranucleates' (88%) in addition to 'other or unscorable' phenotypes (96%) were also achieved. Attempts to classify extremely rare, tri- and tetranucleated cells with micronuclei into their own categories were less successful (≤ 57%). Benchmark dose analyses of human or automatically scored micronucleus frequency data yielded quantitation of the same equipotent concentration regardless of scoring method. We conclude that this automated approach offers significant potential to broaden the practical utility of the CBMN method across industry, research and clinical domains. We share our strategy using openly-accessible frameworks.


Assuntos
Aprendizado Profundo , Citometria de Fluxo/métodos , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Automação Laboratorial , Benzimidazóis/administração & dosagem , Benzimidazóis/toxicidade , Carbamatos/administração & dosagem , Carbamatos/toxicidade , Linhagem Celular , Citocinese/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Metanossulfonato de Metila/administração & dosagem , Metanossulfonato de Metila/toxicidade , Mutagênicos/administração & dosagem
12.
Artigo em Inglês | MEDLINE | ID: mdl-32601166

RESUMO

Adenoviruses (AdVs) are prevalent and give rise to chronic and recurrent disease. Human AdV (HAdV) species B and C, such as HAdV-C2, -C5, and -B14, cause respiratory disease and constitute a health threat for immunocompromised individuals. HAdV-Cs are well known for lysing cells owing to the E3 CR1-ß-encoded adenovirus death protein (ADP). We previously reported a high-throughput image-based screening framework and identified an inhibitor of HAdV-C2 multiround infection, nelfinavir mesylate. Nelfinavir is the active ingredient of Viracept, an FDA-approved inhibitor of human immunodeficiency virus (HIV) aspartyl protease that is used to treat AIDS. It is not effective against single-round HAdV infections. Here, we show that nelfinavir inhibits lytic cell-free transmission of HAdV, indicated by the suppression of comet-shaped infection foci in cell culture. Comet-shaped foci occur upon convection-based transmission of cell-free viral particles from an infected cell to neighboring uninfected cells. HAdV lacking ADP was insensitive to nelfinavir but gave rise to comet-shaped foci, indicating that ADP enhances but is not required for cell lysis. This was supported by the notion that HAdV-B14 and -B14p1 lacking ADP were highly sensitive to nelfinavir, although HAdV-A31, -B3, -B7, -B11, -B16, -B21, -D8, -D30, and -D37 were less sensitive. Conspicuously, nelfinavir uncovered slow-growing round HAdV-C2 foci, independent of neutralizing antibodies in the medium, indicative of nonlytic cell-to-cell transmission. Our study demonstrates the repurposing potential of nelfinavir with postexposure efficacy against different HAdVs and describes an alternative nonlytic cell-to-cell transmission mode of HAdV.


Assuntos
Infecções por Adenoviridae , Infecções por Adenovirus Humanos , Adenovírus Humanos , Preparações Farmacêuticas , Adenoviridae , Infecções por Adenovirus Humanos/tratamento farmacológico , Humanos , Nelfinavir/farmacologia
13.
Bioorg Med Chem ; 28(22): 115746, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007558

RESUMO

Human T cell lymphotropic virus type 1 (HTLV-1) is a human retrovirus that infects approximately 10-20 million people worldwide and causes an aggressive neoplasia (adult T-cell leukemia/lymphoma - ATL). Therapeutic approaches for the treatment of ATL have variable effectiveness and poor prognosis, thus requiring strategies to identify novel compounds with activity on infected cells. In this sense, we initially screened a small series of 25 1,2,3-triazole derivatives to discover cell proliferation inhibitors and apoptosis inducers in HTLV-1-infected T-cell line (MT-2) for further assessment of their effect on viral tax activity through inducible-tax reporter cell line (Jurkat LTR-GFP). Eight promising compounds (02, 05, 06, 13, 15, 21, 22 and 25) with activity ≥70% were initially selected, based on a suitable cell-based assay using resazurin reduction method, and evaluated towards cell cycle, apoptosis and Tax/GFP expression analyses through flow cytometry. Compound 02 induced S phase cell cycle arrest and compounds 05, 06, 22 and 25 promoted apoptosis. Remarkably, compounds 22 and 25 also reduced GFP expression in an inducible-tax reporter cell, which suggests an effect on Tax viral protein. More importantly, compounds 02, 22 and 25 were not cytotoxic in human hepatoma cell line (Huh-7). Therefore, the discovery of 3 active and non-cytotoxic compounds against HTLV-1-infected cells can potentially contribute, as an initial promising strategy, to the development process of new drugs against ATL.


Assuntos
Antivirais/farmacologia , Produtos do Gene tax/antagonistas & inibidores , Compostos Heterocíclicos/farmacologia , Vírus Linfotrópico T Tipo 1 Humano/efeitos dos fármacos , Triazóis/farmacologia , Antivirais/síntese química , Antivirais/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Produtos do Gene tax/metabolismo , Compostos Heterocíclicos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/química
14.
Int J Cancer ; 145(8): 2107-2113, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30515800

RESUMO

Oxaliplatin, which is widely used as chemotherapy for certain solid cancers, frequently causes peripheral neuropathy. Commonly described neuropathic symptoms include aberrant sensations such as mechanical allodynia (hypersensitivity to normally innocuous stimuli). Although oxaliplatin neuropathy is a dose-limiting toxicity, there are no established preventive strategies available at present. By screening several sets of small-molecule chemical libraries (more than 3,000 compounds in total) using a newly established in vitro high-throughput phenotypic assay, we identified fulvestrant, a clinically approved drug for the treatment of breast cancer in postmenopausal women, as having a protective effect on oxaliplatin-induced neuronal damage. Furthermore, histological and behavioural analyses using a rat model of oxaliplatin neuropathy demonstrated the in vivo efficacy of fulvestrant to prevent oxaliplatin-induced axonal degeneration of the sciatic nerve and mechanical allodynia. Furthermore, fulvestrant did not interfere with oxaliplatin-induced cytotoxicity against cancer cells. Thus, our findings reveal a previously unrecognised pharmacological effect of fulvestrant to prevent oxaliplatin-induced painful peripheral neuropathy without impairing its cytotoxicity against cancer cells and may represent a novel prophylactic option for patients receiving oxaliplatin chemotherapy.


Assuntos
Fulvestranto/farmacologia , Hiperalgesia/prevenção & controle , Neurônios/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/prevenção & controle , Animais , Linhagem Celular , Hibridomas , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Oxaliplatina , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Ratos Sprague-Dawley
15.
Biochem Biophys Res Commun ; 512(3): 517-523, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30904161

RESUMO

Invasive aspergillosis (IA) is a life-threatening disease impacting immunocompromised individuals. Standard treatments of IA, including polyenes and azoles, suffer from high toxicity and emerging resistance, leading to the need to develop new antifungal agents with novel mechanisms of action. Ergosterol biosynthesis is a classic target for antifungals, and squalene synthase (SQS) catalyzes the first committed step in ergosterol biosynthesis in Aspergillus spp. making SQS of interest in the context of antifungal development. Here, we cloned, expressed, purified and characterized SQS from the pathogen Aspergillus flavus (AfSQS), confirming that it produced squalene. To identify potential leads targeting AfSQS, we tested known squalene synthase inhibitors, zaragozic acid and the phosphonosulfonate BPH-652, finding that they were potent inhibitors. We then screened a library of 744 compounds from the National Cancer Institute (NCI) Diversity Set V for inhibition activity. 20 hits were identified and IC50 values were determined using dose-response curves. 14 compounds that interfered with the assay were excluded and the remaining 6 compounds were analyzed for drug-likeness, resulting in one compound, celastrol, which had an AfSQS IC50 value of 830 nM. Enzyme inhibition kinetics revealed that celastrol binds to AfSQS in a noncompetitive manner, but did not bind covalently. Since celastrol is also known to inhibit growth of the highly virulent Aspergillus fumigatus by inhibiting flavin-dependent monooxygenase siderophore A (SidA, under iron starvation conditions), it may be a promising multi-target lead for antifungal development.


Assuntos
Antifúngicos/farmacologia , Aspergillus flavus/enzimologia , Inibidores Enzimáticos/farmacologia , Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Farnesil-Difosfato Farnesiltransferase/metabolismo , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Clonagem Molecular , Farnesil-Difosfato Farnesiltransferase/genética , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Triterpenos Pentacíclicos , Ácidos Tricarboxílicos/farmacologia , Triterpenos/farmacologia
16.
Small ; 15(25): e1901299, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31058427

RESUMO

Tumor spheroids or microtumors are important 3D in vitro tumor models that closely resemble a tumor's in vivo "microenvironment" compared to 2D cell culture. Microtumors are widely applied in the fields of fundamental cancer research, drug discovery, and precision medicine. In precision medicine tumor spheroids derived from patient tumor cells represent a promising system for drug sensitivity and resistance testing. Established and commonly used platforms for routine screenings of cell spheroids, based on microtiter plates of 96- and 384-well formats, require relatively large numbers of cells and compounds, and often lead to the formation of multiple spheroids per well. In this study, an application of the Droplet Microarray platform, based on hydrophilic-superhydrophobic patterning, in combination with the method of hanging droplet, is demonstrated for the formation of highly miniaturized single-spheroid-microarrays. Formation of spheroids from several commonly used cancer cell lines in 100 nL droplets starting with as few as 150 cells per spheroid within 24-48 h is demonstrated. Established methodology carries a potential to be adopted for routine workflows of high-throughput compound screening in 3D cancer spheroids or microtumors, which is crucial for the fields of fundamental cancer research, drug discovery, and precision medicine.


Assuntos
Análise em Microsséries/métodos , Neoplasias/patologia , Esferoides Celulares/patologia , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Microtecnologia , Água/química
17.
Adv Exp Med Biol ; 1167: 237-248, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31520359

RESUMO

In recent years, there has been growing interest in using Drosophila for drug discovery as it provides a unique opportunity to screen small molecules against complex disease phenotypes in a whole animal setting. Furthermore, gene-compound interaction experiments that combine compound feeding with complex genetic manipulations enable exploration of compound mechanisms of response and resistance to an extent that is difficult to achieve in other experimental models. Here, I discuss how compound screening and testing approaches reported in Drosophila fit into the current cancer drug discovery pipeline. I then propose a framework for a Drosophila-based cancer drug discovery strategy which would allow the Drosophila research community to effectively leverage the power of Drosophila to identify candidate therapeutics and push our discoveries into the clinic.


Assuntos
Antineoplásicos/farmacologia , Drosophila , Descoberta de Drogas , Neoplasias/tratamento farmacológico , Animais , Modelos Animais de Doenças , Técnicas Genéticas , Fenótipo
18.
J Sep Sci ; 39(6): 1099-109, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27027590

RESUMO

Liquid chromatography with quadrupole time-of-flight mass spectrometry coupled with automated data analysis by Peakview software was employed to systematically screen and characterize the astragalosides in Radix Astragali, a Chinese medical preparation. The separation was performed on a poroshell 120 SB-C18 column equipped in a conventional liquid chromatography system. After being separated using a general gradient elution, the analytes were detected by the triple quadrupole time-of-flight mass spectrometer in both positive- and negative-ion modes. The mass defect filtering function built in the Peakview software was utilized to rapidly screen the potential ions of interest, while some functions of Peakview such as Formula Finder, XIC manager, and IDA Explorer were employed to facilitate the assignment or characterization of the screened astragalosides. A total of 42 astragalosides were screened and tentatively characterized or assigned, and 20 of them were firstly detected in Radix Astragali. According to the screened astragalosides, acetylation, glycosidation, hydrogenation, oxidation, and hydration were considered to be the major secondary metabolic pathways involved in the formation of the astragalosides. The combination of liquid chromatography with quadrupole time-of-flight mass spectrometry and automated Peakview analysis is a feasible and efficient tool to screen and identify the constituents in complex matrices of herbal medicines.


Assuntos
Astrágalo/química , Medicamentos de Ervas Chinesas/análise , Glucosídeos/análise , Plantas Medicinais/química , Software , Astragalus propinquus , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/administração & dosagem , Glucosídeos/administração & dosagem , Espectrometria de Massas , Soluções/química , Fatores de Tempo
19.
Biochem Biophys Res Commun ; 465(4): 764-8, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26299929

RESUMO

Immune cells, such as natural killer (NK) cells, recognize virally infected and transformed cells, and eliminate them through the interaction between NKG2D receptors on NK cells and NKG2D ligands on pathogenic cells. Shedding of NKG2D ligands is thought to be a type of counter-mechanism employed by pathogenic cells to evade from NKG2D-mediated immune surveillance. MHC class I polypeptide-related sequence A (MICA) is a prototypical NKG2D ligand. We previously reported that, in soluble form, MICA expression levels are significantly associated with hepatitis virus-induced hepatocellular carcinoma. Here, we report a MICA shedding assay that utilizes membrane-bound MICA tagged at its N-terminus with a nano-luciferase reporter to quantify MICA shedding into culture media. Using this method, we screened a compound library and identified putative regulators of MICA shedding that have the potential to enhance the immune reaction by simultaneously increasing cell surface MICA levels and decreasing soluble MICA levels. This shedding assay may be useful for screening regulators of cell surface molecule shedding.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Antígenos de Histocompatibilidade Classe I/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Transformação Celular Viral/genética , Transformação Celular Viral/imunologia , DNA Complementar/genética , Células Hep G2 , Vírus da Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Ligantes , Metergolina/farmacologia , Midkina , Dados de Sequência Molecular , Molsidomina/farmacologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Fatores de Crescimento Neural/imunologia , Solubilidade
20.
Res Pract Thromb Haemost ; 8(4): 102426, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38882463

RESUMO

Background: The bleeding risk associated with direct oral anticoagulants (DOACs) remains a major concern, and rapid reversal of anticoagulant activity may be required. Although specific and nonspecific hemostatic biotherapies are available, there is a need for small-molecule DOAC reversal agents that are simple and cost-effective to produce, store, and administer. Objectives: To identify and characterize a small molecule with procoagulant activity as a DOAC reversal agent. Methods: We sought to identify a small procoagulant molecule by screening a chemical library with a plasma clotting assay. The selected molecule was assessed for its procoagulant properties and its ability to reverse the effects of the DOACs in a thrombin generation assay. Its activity as a DOAC reversal agent was also evaluated in a tail-clip bleeding assay in mice. Results: The hemostatic molecule (HeMo) dose-dependently promoted thrombin generation in plasma, with dose values effective in producing half-maximum response ranging between 3 and 5 µM, depending on the thrombin generation assay parameter considered. HeMo also restored impaired thrombin generation in DOAC-spiked plasma and reversed DOAC activity in the mouse bleeding model. HeMo significantly reduced apixaban-induced bleeding from 709 to 65 µL (vs 43 µL in controls; P < .01) and dabigatran-induced bleeding from 989 to 155 µL (vs 126 µL in controls; P < .01). Conclusion: HeMo is a small-molecule procoagulant that can counterbalance hemostatic disruption by a thrombin inhibitor (dabigatran) or factor Xa inhibitors (apixaban and rivaroxaban). The compound's effective clot formation and versatility make it a possible option for managing the inherent hemorrhagic risk during DOAC therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA