Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306580

RESUMO

Although both are salient features of genomes, at first glance ribosomal DNAs and transposable elements are genetic elements with not much in common: whereas ribosomal DNAs are mainly viewed as housekeeping genes that uphold all prime genome functions, transposable elements are generally portrayed as selfish and disruptive. These opposing characteristics are also mirrored in other attributes: organization in tandem (ribosomal DNAs) versus organization in a dispersed manner (transposable elements); evolution in a concerted manner (ribosomal DNAs) versus evolution by diversification (transposable elements); and activity that prolongs genomic stability (ribosomal DNAs) versus activity that shortens it (transposable elements). Re-visiting relevant instances in which ribosomal DNA-transposable element interactions have been reported, we note that both repeat types share at least four structural and functional hallmarks: (1) they are repetitive DNAs that shape genomes in evolutionary timescales, (2) they exchange structural motifs and can enter co-evolution processes, (3) they are tightly controlled genomic stress sensors playing key roles in senescence/aging, and (4) they share common epigenetic marks such as DNA methylation and histone modification. Here, we give an overview of the structural, functional, and evolutionary characteristics of both ribosomal DNAs and transposable elements, discuss their roles and interactions, and highlight trends and future directions as we move forward in understanding ribosomal DNA-transposable element associations.


Assuntos
Elementos de DNA Transponíveis , Genômica , DNA Ribossômico , Metilação de DNA , Análise Citogenética , Evolução Molecular
2.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262464

RESUMO

The 5S rRNA genes are among the most conserved nucleotide sequences across all species. Similar to the 5S preservation we observe the occurrence of 5S-related nonautonomous retrotransposons, so-called Cassandras. Cassandras harbor highly conserved 5S rDNA-related sequences within their long terminal repeats, advantageously providing them with the 5S internal promoter. However, the dynamics of Cassandra retrotransposon evolution in the context of 5S rRNA gene sequence information and structural arrangement are still unclear, especially: (1) do we observe repeated or gradual domestication of the highly conserved 5S promoter by Cassandras and (2) do changes in 5S organization such as in the linked 35S-5S rDNA arrangements impact Cassandra evolution? Here, we show evidence for gradual co-evolution of Cassandra sequences with their corresponding 5S rDNAs. To follow the impact of 5S rDNA variability on Cassandra TEs, we investigate the Asteraceae family where highly variable 5S rDNAs, including 5S promoter shifts and both linked and separated 35S-5S rDNA arrangements have been reported. Cassandras within the Asteraceae mirror 5S rDNA promoter mutations of their host genome, likely as an adaptation to the host's specific 5S transcription factors and hence compensating for evolutionary changes in the 5S rDNA sequence. Changes in the 5S rDNA sequence and in Cassandras seem uncorrelated with linked/separated rDNA arrangements. We place all these observations into the context of angiosperm 5S rDNA-Cassandra evolution, discuss Cassandra's origin hypotheses (single or multiple) and Cassandra's possible impact on rDNA and plant genome organization, giving new insights into the interplay of ribosomal genes and transposable elements.


Assuntos
RNA Ribossômico 5S , Retroelementos , RNA Ribossômico 5S/genética , Retroelementos/genética , Genes de RNAr , Sequência de Bases , DNA Ribossômico/genética , Genoma de Planta , Mutação , Evolução Molecular
3.
J Hered ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38447039

RESUMO

Multicopy sequences evolve adaptations for increasing their copy number within nuclei. The activities of multicopy sequences under constraints imposed by cellular and organismal selection result in a rich intranuclear ecology in germline cells. mtDNA and rDNA are managed as domestic herds subject to selective breeding by the genes of the single-copy genome. Transposable elements lead a peripatetic existence in which they must continually move to new sites to keep ahead of inactivating mutations at old sites and undergo exponential outbreaks when the production of new copies exceeds the rate of inactivation of old copies. Centromeres become populated by repeats that do little harm. Organisms with late sequestration of germ cells tend to evolve more 'junk' in their genomes than organisms with early sequestration of germ cells.

4.
Bioessays ; 44(8): e2200023, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748194

RESUMO

Homologous centromeres compete for segregation to the secondary oocyte nucleus at female meiosis I. Centromeric repeats also compete with each other to populate centromeres in mitotic cells of the germline and have become adapted to use the recombinational machinery present at centromeres to promote their own propagation. Repeats are not needed at centromeres, rather centromeres appear to be hospitable habitats for the colonization and proliferation of repeats. This is probably an indirect consequence of two distinctive features of centromeric DNA. Centromeres are subject to breakage by the mechanical forces exerted by microtubules and meiotic crossing-over is suppressed. Centromeric proteins acting in trans are under selection to mitigate the costs of centromeric repeats acting in cis. Collateral costs of mitotic competition at centromeres may help to explain the high rates of aneuploidy observed in early human embryos.


Assuntos
Centrômero , Meiose , Adaptação Fisiológica/genética , Proliferação de Células , Ecossistema , Feminino , Humanos
5.
Cytogenet Genome Res ; 163(1-2): 42-51, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37708873

RESUMO

Constitutive heterochromatin, consisting of repetitive sequences, diverges very rapidly; therefore, its nucleotide sequences and chromosomal distributions are often largely different, even between closely related species. The chromosome C-banding patterns of two Gerbillinae species, Meriones unguiculatus and Gerbillus perpallidus, vary greatly, even though they belong to the same subfamily. To understand the evolution of C-positive heterochromatin in these species, we isolated highly repetitive sequences, determined their nucleotide sequences, and characterized them using chromosomal and filter hybridization. We obtained a centromeric repeat (MUN-HaeIII) and a chromosome 13-specific repeat (MUN-EcoRI) from M. unguiculatus. We also isolated a centromeric/pericentromeric repeat (GPE-MBD) and an interspersed-type repeat that was predominantly amplified in the X and Y chromosomes (GPE-EcoRI) from G. perpallidus. GPE-MBD was found to contain a 17-bp motif that is essential for binding to the centromere-associated protein CENP-B. This indicates that it may play a role in the formation of a specified structure and/or function of centromeres. The nucleotide sequences of the three sequence families, except GPE-EcoRI, were conserved only in Gerbillinae. GPE-EcoRI was derived from the long interspersed nuclear elements 1 retrotransposon and showed sequence homology throughout Muridae and Cricetidae species, indicating that the repeat sequence occurred at least in the common ancestor of Muridae and Cricetidae. Due to a lack of assembly data of highly repetitive sequences constituting heterochromatin in whole-genome sequences of vertebrate species published to date, the knowledge obtained in this study provides useful information for a deep understanding of the evolution of repetitive sequences in not only rodents but also in mammals.


Assuntos
Heterocromatina , Sequências Repetitivas de Ácido Nucleico , Humanos , Animais , Gerbillinae/genética , Sequência de Bases , Heterocromatina/genética , Hibridização in Situ Fluorescente , Sequências Repetitivas de Ácido Nucleico/genética , Centrômero/genética , Muridae/genética , Arvicolinae/genética
6.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37291697

RESUMO

In eukaryotes, the ribosome machinery is encoded by repeats of the ribosomal RNA genes: 26/28S, 18S, 5.8S, and 5S, structured in tandem arrays and frequently homogenized within a genome. This homogenization is thought to be driven by concerted evolution, evolving as a unit, which contributes to its target as the species barcode in modern taxonomy. However, high heterogeneity of rDNA genes has been reported, including in Saccharomycotina yeasts. Here, we describe the polymorphisms and heterogeneity of D1/D2 domains (26S rRNA) and the intergenic transcribed spacer of a new yeast species with affinities to the genus Cyberlindnera and their evolution. Both regions are not homogenized, failing the prediction of concerted evolution. Phylogenetic network analysis of cloned sequences revealed that Cyberlindnera sp. rDNAs are diverse and evolved by reticulation rather than by bifurcating tree evolution model. Predicted rRNA secondary structures also confirmed structural differences, except for some conserved hairpin loops. We hypothesize that some rDNA is inactive within this species and evolves by birth-and-death rather than concerted evolution. Our findings propel further investigation into the evolution of rDNA genes in yeasts.


Assuntos
Ascomicetos , Polimorfismo Genético , DNA Ribossômico/genética , Filogenia , Ascomicetos/genética , Evolução Molecular
7.
Ann Bot ; 131(1): 33-44, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35390127

RESUMO

BACKGROUND AND AIMS: Polyploidy is an important process that often generates genomic diversity within lineages, but it can also cause changes that result in loss of genomic material. Island lineages, while often polyploid, typically show chromosomal stasis but have not been investigated in detail regarding smaller-scale gene loss. Our aim was to investigate post-polyploidization genome dynamics in a chromosomally stable lineage of Malvaceae endemic to New Zealand. METHODS: We determined chromosome numbers and used fluorescence in situ hybridization to localize 18S and 5S rDNA. Gene sequencing of 18S rDNA, the internal transcribed spacers (ITS) with intervening 5.8S rDNA, and a low-copy nuclear gene, GBSSI-1, was undertaken to determine if gene loss occurred in the New Zealand lineage following polyploidy. KEY RESULTS: The chromosome number for all species investigated was 2n = 42, with the first published report for the monotypic Australian genus Asterotrichion. The five species investigated all had two 5S rDNA signals localized interstitially on the long arm of one of the largest chromosome pairs. All species, except Plagianthus regius, had two 18S rDNA signals localized proximally on the short arm of one of the smallest chromosome pairs. Plagianthus regius had two additional 18S rDNA signals on a separate chromosome, giving a total of four. Sequencing of nuclear ribosomal 18S rDNA and the ITS cistron indicated loss of historical ribosomal repeats. Phylogenetic analysis of a low-copy nuclear gene, GBSSI-1, indicated that some lineages maintained three copies of the locus, while others have lost one or two copies. CONCLUSIONS: Although island endemic lineages show chromosomal stasis, with no additional changes in chromosome number, they may undergo smaller-scale processes of gene loss and concerted evolution ultimately leading to further genome restructuring and downsizing.


Assuntos
Cromossomos , Poliploidia , Filogenia , Hibridização in Situ Fluorescente , Austrália , DNA Ribossômico/genética
8.
Malar J ; 22(1): 232, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563610

RESUMO

BACKGROUND: The nuclear ribosomal RNA genes of Plasmodium parasites are assumed to evolve according to a birth-and-death model with new variants originating by duplication and others becoming deleted. For some Plasmodium species, it has been shown that distinct variants of the 18S rRNA genes are expressed differentially in vertebrate hosts and mosquito vectors. The central aim was to evaluate whether avian haemosporidian parasites of the genus Haemoproteus also have substantially distinct 18S variants, focusing on lineages belonging to the Haemoproteus majoris and Haemoproteus belopolskyi species groups. METHODS: The almost complete 18S rRNA genes of 19 Haemoproteus lineages of the subgenus Parahaemoproteus, which are common in passeriform birds from the Palaearctic, were sequenced. The PCR products of 20 blood and tissue samples containing 19 parasite lineages were subjected to molecular cloning, and ten clones in mean were sequenced each. The sequence features were analysed and phylogenetic trees were calculated, including sequence data published previously from eight additional Parahaemoproteus lineages. The geographic and host distribution of all 27 lineages was visualised as CytB haplotype networks and pie charts. Based on the 18S sequence data, species-specific oligonucleotide probes were designed to target the parasites in host tissue by in situ hybridization assays. RESULTS: Most Haemoproteus lineages had two or more variants of the 18S gene like many Plasmodium species, but the maximum distances between variants were generally lower. Moreover, unlike in most mammalian and avian Plasmodium species, the 18S sequences of all but one parasite lineage clustered into reciprocally monophyletic clades. Considerably distinct 18S clusters were only found in Haemoproteus tartakovskyi hSISKIN1 and Haemoproteus sp. hROFI1. The presence of chimeric 18S variants in some Haemoproteus lineages indicates that their ribosomal units rather evolve in a semi-concerted fashion than according to a strict model of birth-and-death evolution. CONCLUSIONS: Parasites of the subgenus Parahaemoproteus contain distinct 18S variants, but the intraspecific variability is lower than in most mammalian and avian Plasmodium species. The new 18S data provides a basis for more thorough investigations on the development of Haemoproteus parasites in host tissue using in situ hybridization techniques targeting specific parasite lineages.


Assuntos
Apicomplexa , Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Aves Canoras , Animais , Filogenia , RNA Ribossômico 18S/genética , Genes de RNAr , Doenças das Aves/parasitologia , Apicomplexa/genética , Plasmodium/genética , Mamíferos/genética , Infecções Protozoárias em Animais/parasitologia
9.
J Hered ; 114(3): 199-206, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36897956

RESUMO

In most animals, mitochondrial DNA is strictly maternally inherited and non-recombining. One exception to this pattern is called doubly uniparental inheritance (DUI), a phenomenon involving the independent transmission of female and male mitochondrial genomes. DUI is known only from the molluskan class Bivalvia. The phylogenetic distribution of male-transmitted mitochondrial DNA (M mtDNA) in bivalves is consistent with several evolutionary scenarios, including multiple independent gains, losses, and varying degrees of recombination with female-transmitted mitochondrial DNA (F mtDNA). In this study, we use phylogenetic methods to test M mtDNA origination hypotheses and infer the prevalence of mitochondrial recombination in bivalves with DUI. Phylogenetic modeling using site concordance factors supported a single origin of M mtDNA in bivalves coupled with recombination acting over long evolutionary timescales. Ongoing mitochondrial recombination is present in Mytilida and Venerida, which results in a pattern of concerted evolution of F mtDNA and M mtDNA. Mitochondrial recombination could be favored to offset the deleterious effects of asexual inheritance and maintain mitonuclear compatibility across tissues. Cardiida and Unionida have gone without recent recombination, possibly due to an extension of the COX2 gene in male mitochondrial DNA. The loss of recombination could be connected to the role of M mtDNA in sex determination or sexual development. Our results support that recombination events may occur throughout the mitochondrial genomes of DUI species. Future investigations may reveal more complex patterns of inheritance of recombinants, which could explain the retention of signal for a single origination of M mtDNA in protein-coding genes.


Assuntos
Bivalves , Genoma Mitocondrial , Animais , Feminino , Masculino , Filogenia , Mitocôndrias/genética , Bivalves/genética , DNA Mitocondrial/genética , Padrões de Herança , Recombinação Genética
10.
Bioessays ; 43(12): e2100179, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34704616

RESUMO

Most eukaryotes possess many copies of rDNA. Organismal selection alone cannot maintain rRNA function because the effects of mutations in one rDNA are diluted by the presence of many other rDNAs. rRNA quality is maintained by processes that increase homogeneity of rRNA within, and heterogeneity among, germ cells thereby increasing the effectiveness of cellular selection on ribosomal function. A successful rDNA repeat will possess adaptations for spreading within tandem arrays by intranuclear selection. These adaptations reside in the non-coding regions of rDNA. Single-copy genes are predicted to manage processes of intranuclear and cellular selection in the germline to maintain the quality of rRNA expressed in somatic cells of future generations.


Assuntos
Evolução Molecular , RNA Ribossômico , DNA Ribossômico/genética , RNA Ribossômico/genética
11.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175423

RESUMO

Guanine and cytosine (GC) content is a fundamental component of genetic diversity and essential for phylogenetic analyses. However, the GC content of the ribosomal internal transcribed spacer 2 (ITS2) remains unknown, despite the fact that ITS2 is a widely used phylogenetic marker. Here, the ITS2 was high-throughput sequenced from 29 Corydalis species, and their GC contents were comparatively investigated in the context of ITS2's characteristic secondary structure and concerted evolution. Our results showed that the GC contents of ITS2 were 131% higher than those of their adjacent 5.8S regions, suggesting that ITS2 underwent GC-biased evolution. These GCs were distributed in a heterogeneous manner in the ITS2 secondary structure, with the paired regions being 130% larger than the unpaired regions, indicating that GC is chosen for thermodynamic stability. In addition, species with homogeneous ITS2 sequences were always GC-rich, supporting GC-biased gene conversion (gBGC), which occurred with ITS2's concerted evolution. The RNA substitution model inferred also showed a GC preference among base pair transformations, which again supports gBGC. Overall, structurally based GC investigation reveals that ITS2 evolves under structural stability and gBGC selection, significantly increasing its GC content.


Assuntos
Corydalis , DNA Espaçador Ribossômico/genética , Filogenia , Evolução Molecular , Pareamento de Bases
12.
Cytogenet Genome Res ; 162(6): 323-333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36535261

RESUMO

The greater long-tailed hamster (Tscherskia triton, Cricetinae) has a unique karyotype (2n = 28), containing 11 pairs of acrocentric chromosomes with large C-band-positive centromeric heterochromatin blocks. To understand the origin and evolutionary process of heterochromatin in this species, we isolated novel families of chromosome site-specific highly repetitive DNA sequences from TaqI-digested genomic DNA and then characterized them by chromosome in situ and filter hybridization. The TaqI-families of repetitive sequences were classified into 2 types by their genome organization and chromosomal distribution: the 110-bp repeated sequence organized in large tandem arrays (as satellite DNA), localized to centromeric C-positive heterochromatin of acrocentric autosomes (chromosomes 1-11) and submetacentric X chromosome, and the 405-bp repeated sequence that was composed of 30-32-bp internal repeats, distributed in the pericentromeric region on the short arms of X and Y chromosomes. The repetitive sequences did not cross-hybridize with genomic DNA of any genera of Cricetinae (Mesocricetus, Cricetulus, and Phodopus). These results suggest that the 110-bp and 405-bp repeats rapidly diverged in the lineage of T. triton, evolving in a concerted manner among autosomes and X chromosome and within X and Y chromosomes, respectively. The 110-bp centromeric repeat contained a 17-bp motif in which 9 bases are essential for binding with the centromere-associated protein CENP-B, suggesting the possibility that the 110-bp major satellite DNA carrying the 17-bp motif may have a role in the formation of specified structure and/or function of centromeres in T. triton.


Assuntos
DNA Satélite , Heterocromatina , Cricetinae , Animais , Sequência de Bases , Heterocromatina/genética , DNA Satélite/genética , Hibridização in Situ Fluorescente , Sequências Repetitivas de Ácido Nucleico/genética , Centrômero/genética , DNA , Cariotipagem
13.
BMC Biol ; 19(1): 97, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971877

RESUMO

BACKGROUND: Vertebrate brain structure is characterised not only by relative consistency in scaling between components, but also by many examples of divergence from these general trends.. Alternative hypotheses explain these patterns by emphasising either 'external' processes, such as coordinated or divergent selection, or 'internal' processes, like developmental coupling among brain regions. Although these hypotheses are not mutually exclusive, there is little agreement over their relative importance across time or how that importance may vary across evolutionary contexts. RESULTS: We introduce an agent-based model to simulate brain evolution in a 'bare-bones' system and examine dependencies between variables shaping brain evolution. We show that 'concerted' patterns of brain evolution do not, in themselves, provide evidence for developmental coupling, despite these terms often being treated as synonymous in the literature. Instead, concerted evolution can reflect either functional or developmental integration. Our model further allows us to clarify conditions under which such developmental coupling, or uncoupling, is potentially adaptive, revealing support for the maintenance of both mechanisms in neural evolution. Critically, we illustrate how the probability of deviation from concerted evolution depends on the cost/benefit ratio of neural tissue, which increases when overall brain size is itself under constraint. CONCLUSIONS: We conclude that both developmentally coupled and uncoupled brain architectures can provide adaptive mechanisms, depending on the distribution of selection across brain structures, life history and costs of neural tissue. However, when constraints also act on overall brain size, heterogeneity in selection across brain structures will favour region specific, or mosaic, evolution. Regardless, the respective advantages of developmentally coupled and uncoupled brain architectures mean that both may persist in fluctuating environments. This implies that developmental coupling is unlikely to be a persistent constraint, but could evolve as an adaptive outcome to selection to maintain functional integration.


Assuntos
Evolução Biológica , Encéfalo
14.
Mol Biol Evol ; 37(2): 455-468, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589316

RESUMO

Ribosomal protein (RP) genes encode structural components of ribosomes, the cellular machinery for protein synthesis. A single functional copy has been maintained in most of 78-80 RP families in animals due to evolutionary constraints imposed by gene dosage balance. Some fungal species have maintained duplicate copies in most RP families. The mechanisms by which the RP genes were duplicated and maintained and their functional significance are poorly understood. To address these questions, we identified all RP genes from 295 fungi and inferred the timing and nature of gene duplication events for all RP families. We found that massive duplications of RP genes have independently occurred by different mechanisms in three distantly related lineages: budding yeasts, fission yeasts, and Mucoromycota. The RP gene duplicates in budding yeasts and Mucoromycota were mainly created by whole genome duplication events. However, duplicate RP genes in fission yeasts were likely generated by retroposition, which is unexpected considering their dosage sensitivity. The sequences of most RP paralogs have been homogenized by repeated gene conversion in each species, demonstrating parallel concerted evolution, which might have facilitated the retention of their duplicates. Transcriptomic data suggest that the duplication and retention of RP genes increased their transcript abundance. Physiological data indicate that increased ribosome biogenesis allowed these organisms to rapidly consume sugars through fermentation while maintaining high growth rates, providing selective advantages to these species in sugar-rich environments.


Assuntos
Fungos/metabolismo , Duplicação Gênica , Proteínas Ribossômicas/genética , Evolução Molecular , Proteínas Fúngicas/genética , Fungos/classificação , Fungos/genética , Conversão Gênica , Dosagem de Genes , Filogenia , Especificidade da Espécie
15.
Biochem Biophys Res Commun ; 534: 233-239, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276952

RESUMO

Many early studies of ribosomal RNA gene (rDNA) suggested that rDNA tandem repeats within species are homogeneous. However, increasing number of reports have found intra-individual rDNA polymorphism across a range of taxa. Here, we reported a high level of intra-individual polymorphism of 18S-ITS1-5.8S rDNA in the genome of Cynoglossus melampetalus (Pleuronectiformes: Cynoglossidae), indicating a non-concerted evolution manner. Sequence alignments found two distinct types of 18S and 5.8S (Type A and B) and five types of ITS1 sequence (Type A - E) coexisted in the genome differing in length, GC content, secondary structure stability and minimum free energy. Based on the unique features of pseudogene and comparison of the conserved 18S rDNA sequence and 5.8S secondary structure of 22 flatfishes revealed that Type B sequences of 18S, 5.8S and their linked ITS1 were putative pseudogenes. So far, detection of rRNA pseudogenes from the multiple rDNA copies has been an intricate puzzle. Our results, as a result, provide a new ideal for rRNA pseudogene identification.


Assuntos
DNA Espaçador Ribossômico/química , DNA Ribossômico/química , Linguados/genética , Pseudogenes , RNA Ribossômico 18S/genética , RNA Ribossômico 5,8S/genética , Animais , Conformação de Ácido Nucleico , Polimorfismo Genético , Alinhamento de Sequência , Análise de Sequência de DNA
16.
Ann Bot ; 127(1): 63-73, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32939535

RESUMO

BACKGROUND AND AIMS: The ribosomal DNA (rDNA) gene family, encoding ribosomal RNA (rRNA), has long been regarded as an archetypal example illustrating the model of concerted evolution. However, controversy is arising, as rDNA in many eukaryotic species has been proved to be polymorphic. Here, a metagenomic strategy was applied to detect the intragenomic polymorphism as well as the evolutionary patterns of 26S rDNA across the genus Camellia. METHODS: Degenerate primer pairs were designed to amplify the 26S rDNA fragments from different Camellia species. The amplicons were then paired-end sequenced on the Illumina MiSeq platform. KEY RESULTS: An extremely high level of rDNA polymorphism existed universally in Camellia. However, functional rDNA was still the major component of the family, and was relatively conserved among different Camellia species. Sequence variations mainly came from rRNA pseudogenes and favoured regions that are rich in GC. Specifically, some rRNA pseudogenes have existed in the genome for a long time, and have even experienced several expansion events, which has greatly enriched the abundance of rDNA polymorphism. CONCLUSIONS: Camellia represents a group in which rDNA is subjected to a mixture of concerted and birth-and-death evolution. Some rRNA pseudogenes may still have potential functions. Conversely, when released from selection constraint, they can evolve in the direction of decreasing GC content and structural stability through a methylation-induced process, and finally be eliminated from the genome.


Assuntos
Camellia , Evolução Molecular , DNA Ribossômico , Filogenia , Pseudogenes , RNA Ribossômico
17.
Mol Biol Evol ; 36(9): 2001-2012, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31134275

RESUMO

The cnidarian Nematostella vectensis has become an established lab model, providing unique opportunities for venom evolution research. The Nematostella venom system is multimodal: involving both nematocytes and ectodermal gland cells, which produce a toxin mixture whose composition changes throughout the life cycle. Additionally, their modes of interaction with predators and prey vary between eggs, larvae, and adults, which is likely shaped by the dynamics of the venom system. Nv1 is a major component of adult venom, with activity against arthropods (through specific inhibition of sodium channel inactivation) and fish. Nv1 is encoded by a cluster of at least 12 nearly identical genes that were proposed to be undergoing concerted evolution. Surprisingly, we found that Nematostella venom includes several Nv1 paralogs escaping a pattern of general concerted evolution, despite belonging to the Nv1-like family. Here, we show two of these new toxins, Nv4 and Nv5, are lethal for zebrafish larvae but harmless to arthropods, unlike Nv1. Furthermore, unlike Nv1, the newly identified toxins are expressed in early life stages. Using transgenesis and immunostaining, we demonstrate that Nv4 and Nv5 are localized to ectodermal gland cells in larvae. The evolution of Nv4 and Nv5 can be described either as neofunctionalization or as subfunctionalization. Additionally, the Nv1-like family includes several pseudogenes being an example of nonfunctionalization and venom evolution through birth-and-death mechanism. Our findings reveal the evolutionary history for a toxin radiation and point toward the ecological function of the novel toxins constituting a complex cnidarian venom.


Assuntos
Venenos de Cnidários/genética , Evolução Molecular , Anêmonas-do-Mar/genética , Sequência de Aminoácidos , Animais , Artrópodes , Larva , Nematocisto , Peixe-Zebra
18.
Mol Phylogenet Evol ; 148: 106804, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32247883

RESUMO

Concerted evolution of the ribosomal DNA array has been studied in numerous eukaryotic taxa, yet is still poorly understood. rDNA genes are repeated dozens to hundreds of times in the eukaryotic genome (Eickbush and Eickbush, 2007) and it is believed that these arrays are homogenized through concerted evolution (Zimmer et al., 1980; Dover, 1993) preventing the accumulation of intragenomic, and intraspecific, variation. However, numerous studies have reported rampant intragenomic and intraspecific variation in the rDNA array (Ganley and Kobayashi, 2011; Naidoo et al., 2013; Hughes and Petersen, 2001; Lindner and Banik, 2011; Li et al., 2013; Lindner et al., 2013; Hughes et al., 2018), contradicting our current understanding of concerted evolution. The internal transcribed spacers (ITS) of the rDNA cistron are the most commonly used DNA barcoding region in Fungi (Schoch et al., 2012), and rely on concerted evolution to homogenize the rDNA array leading to a "barcode gap" (Puillandre et al., 2012). Here we show that in Boletus edulis Bull., ITS intragenomic variation persists at low allele frequencies throughout the rDNA array, this variation does not correlate with genomic relatedness between populations, and rDNA genes may not evolve in a strictly concerted fashion despite the presence of unequal recombination and gene conversion. Under normal assumptions, heterozygous positions found in ITS sequences represent hybridization between populations, yet through allelic mapping of the rDNA array we found numerous heterozygous alleles to be stochastically introgressed throughout, presenting a dishonest signal of gene flow. Moreover, despite the signal of gene flow in ITS, our organisms were highly inbred, indicating a disconnect between true gene flow and barcoding signals. In addition, we show that while the mechanisms of concerted evolution are ongoing in pseudo-heterozygous individuals, they are not fully homogenizing the ITS array. Concerted evolution of the rDNA array may insufficiently homogenize the ITS gene, allowing for misleading signals of gene flow to persist, vastly complicating the use of the ITS locus for DNA barcoding in Fungi.


Assuntos
Agaricales/genética , DNA Ribossômico/genética , Evolução Molecular , Genômica , Análise de Sequência de DNA , DNA Espaçador Ribossômico/genética , Frequência do Gene/genética , Loci Gênicos , Variação Genética , Genética Populacional , Genoma Fúngico , Haplótipos/genética , Funções Verossimilhança , Metagenômica , Sequenciamento por Nanoporos , Filogenia
19.
Chromosome Res ; 27(3): 237-252, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30771198

RESUMO

A common feature of eukaryotic centromeres is the presence of large tracts of tandemly arranged repeats, known as satellite DNA. However, these centromeric repeats appear to experience rapid evolution under forces such as molecular drive and centromere drive, seemingly without consequence to the integrity of the centromere. Moreover, blocks of heterochromatin within the karyotype, including the centromere, are hotspots for chromosome rearrangements that may drive speciation events by contributing to reproductive isolation. However, the relationship between the evolution of heterochromatic sequences and the karyotypic dynamics of these regions remains largely unknown. Here, we show that a single conserved satellite DNA sequence in the order Rodentia of the genus Peromyscus localizes to recurrent sites of chromosome rearrangements and heterochromatic amplifications. Peromyscine species display several unique features of chromosome evolution compared to other Rodentia, including stable maintenance of a strict chromosome number of 48 among all known species in the absence of any detectable interchromosomal rearrangements. Rather, the diverse karyotypes of Peromyscine species are due to intrachromosomal variation in blocks of repeated DNA content. Despite wide variation in the copy number and location of repeat blocks among different species, we find that a single satellite monomer maintains a conserved sequence and homogenized tandem repeat structure, defying predictions of molecular drive. The conservation of this satellite monomer results in common, abundant, and large blocks of chromatin that are homologous among chromosomes within one species and among diverged species. Thus, such a conserved repeat may have facilitated the retention of polymorphic chromosome variants within individuals and intrachromosomal rearrangements between species-both factors that have previously been hypothesized to contribute towards the extremely wide range of ecological adaptations that this genus exhibits.


Assuntos
Centrômero , DNA Satélite/genética , Cariótipo , Peromyscus/genética , Animais , Sequência Conservada , Evolução Molecular , Variação Genética , Heterocromatina , Especificidade da Espécie
20.
Chromosome Res ; 27(4): 321-332, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31418128

RESUMO

African great apes have large constitutive heterochromatin (C-band) blocks in subtelomeric regions of the majority of their chromosomes, but humans lack these. Additionally, the chimpanzee meiotic cell division process demonstrates unique partial terminal associations in the first meiotic prophase (pachytene). These are likely formed as a result of interaction among subtelomeric C-band blocks. We thus conducted an extensive study to define the features in the subtelomeric heterochromatic regions of chimpanzee chromosomes undergoing mitotic metaphase and meiotic cell division. Molecular cytogenetic analyses with probes of both subterminal satellite DNA (a main component of C-band) and rDNA demonstrated principles of interaction among DNA arrays. The results suggest that homologous and ectopic recombination through persistent subtelomeric associations (post-bouquet association observed in 32% of spermatocytes in the pachytene stage) appears to create variability in heterochromatin patterns and simultaneously restrain subtelomeric genome polymorphisms. That is, the meeting of non-homologous chromosome termini sets the stage for ectopic pairing which, in turn, is the mechanism for generating variability and genomic dispersion of subtelomeric C-band blocks through a system of concerted evolution. Comparison between the present study and previous reports indicated that the chromosomal distribution rate of sutelomeric regions seems to have antagonistic correlation with arm numbers holding subterminal satellite blocks in humans, chimpanzees, and gorillas. That is, the increase of subterminal satellite blocks probably reduces genomic diversity in the subtelomeric regions. The acquisition vs. loss of the subtelomeric C-band blocks is postulated as the underlying engine of this chromosomal differentiation yielded by meiotic chromosomal interaction.


Assuntos
Cromossomos de Mamíferos , DNA Ribossômico , DNA Satélite , Variação Estrutural do Genoma , Pan troglodytes/genética , Recombinação Genética , Animais , Estruturas Cromossômicas , Análise Citogenética , Evolução Molecular , Feminino , Variação Genética , Heterocromatina , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA