Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Small ; 20(14): e2306295, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37992255

RESUMO

Dual-atom catalysts exhibit higher reactivity and selectivity than the single-atom catalysts. The pyrolysis of bimetal salt precursors is the most typical method for synthesizing dual-atomic catalysts; however, the finiteness of bimetal salts limits the variety of dual-atomic catalysts. In this study, a confined synthesis strategy for synthesizing dual-atomic catalysts is developed. Owing to the in situ synthesis of zeolitic imidazolate frameworks in the pores of covalent organic frameworks (COFs), the migration and aggregation of metal atoms are suppressed adequately during the pyrolysis process. The resultant catalyst contains abundant Zn─Co dual atomic sites with 2.8 wt.% Zn and 0.5 wt.% Co. The catalyst exhibits high reactivity toward oxygen reduction reaction with a half-wave potential of 0.86 V, which is superior to that of the commercial Pt/C catalyst. Theoretical calculations reveal that the Zn atoms in the Zn─Co dual atomic sites promote the formation of intermediate OOH*, and thus contribute to high catalytic performance. This study provides new insights into the design of dual-atom catalysts using COFs.

2.
Environ Sci Technol ; 58(40): 18009-18019, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39329389

RESUMO

Advanced reduction processes (ARPs) are promising for pollutant removal in drinking water treatment. In this study, we demonstrated highly efficient reduction of bromate, a harmful disinfection byproduct, by coupling ARPs with an iron nanoparticles-intercalated graphene oxide (GO@FeNPs) catalytic membrane. In the presence of 1.0 mM sulfite (S(IV)), the GO@FeNPs membrane/S(IV) system achieved nearly complete removal of 80 µg/L bromate in 3 min. The first-order reaction rate constant for bromate removal in this system was 420 ± 42 min-1, up to 5 orders of magnitude faster than previously reported ARPs. The GO@FeNPs catalytic membrane may offer potential advantages of nanoconfinement and facilitated electron shuttling in addition to the high surface area of the fine FeNPs, leading to the remarkable ARP performance. The GO@FeNPs membrane showed excellent stability, maintaining >97.0% bromate removal over 20 cycles of repeated runs. The membrane can also be applied for fast catalytic reduction of other oxyanions, showing >98.0% removal of nitrate and chlorate. This work may present a viable option for utilizing high-performance reductive catalytic membranes for water decontamination.


Assuntos
Bromatos , Grafite , Sulfitos , Purificação da Água , Bromatos/química , Grafite/química , Sulfitos/química , Purificação da Água/métodos , Ferro/química , Poluentes Químicos da Água/química , Nanopartículas Metálicas/química , Catálise , Membranas Artificiais , Oxirredução
3.
Environ Sci Technol ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319840

RESUMO

The design of efficient catalysts for catalytic ethylene (C2H4) oxidation is of crucial importance for extending the shelf life of fruits and vegetables. Herein, a carbon modified SBA-15 supported Pt catalyst (Pt/CSBA-15) was prepared in situ by a facile solid phase grinding-infiltration-inert atmosphere calcination method. Characterization results reveal that in the Pt/CSBA-15 catalysts thin carbon layers are successfully formed in the hexagonal pores of SBA-15. Additionally, Pt particles are well dispersed in the channels of SBA-15, and Pt/CSBA-15 has a smaller Pt particle size than the catalyst without carbon modification (i.e., Pt/SBA-15). O2 is more feasibly adsorbed and activated on small-sized Pt particles, and in situ formed carbon species enhance the hydrophobicity of catalysts. As a result, both 3Pt/CSBA-15 and 5Pt/CSBA-15 are able to maintain 100% conversion of 50 ppm of C2H4 for more than 7 h at 0 °C. 3Pt/CSBA-15 even achieves 81.5% C2H4 conversion and 71.6% CO2 yield after 20 h, exhibiting much more prominent catalytic performances than 3Pt/SBA-15. DFT calculations and in situ FTIR measurements confirm that small-sized Pt particles possess strong O2 affinity to promote O2 adsorption, and in situ formed hydrophobic carbon layers efficiently suppress competitive H2O adsorption. Such a unique one-step catalyst preparation method for regulating the size of metal particles and the hydrophobicity of catalysts can be perfectly utilized to develop simple and efficient hydrophobic catalysts applied in low-temperature oxidation of C2H4.

4.
Macromol Rapid Commun ; 45(15): e2400121, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38636079

RESUMO

The utilization of polymer conformations to construct a variety of superlattices is a common method within the field. However, this technique often results in only long-range ordering rather than the formation of distinct superlattices. In this study, a well-organized array of discrete pancake-shaped superlattices (DPSs) is successfully obtained through the utilization of air-liquid interface self-assembly, facilitated by the confined environment created by a block copolymer. It is crucial to note that both the self-assembly behavior and resulting morphologies of the DPSs can be precisely tuned by adjusting several experimental parameters, most notably the concentration and molecular architecture of the block copolymers. Furthermore, this work provides valuable insights into the formation processes and mechanisms underpinning the DPSs. The approach described here is both straightforward and efficacious, establishing a strong foundation for subsequent research and the development of non-close-packed superlattice structures.


Assuntos
Nanopartículas , Polímeros , Nanopartículas/química , Polímeros/química , Tamanho da Partícula , Propriedades de Superfície
5.
Nano Lett ; 23(2): 389-397, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36602909

RESUMO

Recent measurements of fluids under extreme confinement, including water within narrow carbon nanotubes, exhibit marked deviations from continuum theoretical descriptions. In this work, we generate precise carbon nanotube replicates that are filled with water, closed from external mass transfer, and studied over a wide temperature range by Raman spectroscopy. We study segments that are empty, partially filled, and completely filled with condensed water from -80 to 120 °C. Partially filled, nanodroplet states contain submicron vapor-like and liquid-like domains and are analyzed using a Clausius-Clapeyron-type model, yielding heats of condensation of water inside closed 1.32 nm diameter carbon nanotubes (3.32 ± 0.10 kJ/mol and 3.72 ± 0.11 kJ/mol) and 1.45 nm diameter carbon nanotubes (3.50 ± 0.07 kJ/mol) that are lower than the bulk enthalpy of vaporization and closer to the bulk enthalpy of fusion. Favored partial filling fractions are calculated, highlighting the effect of subnanometer changes in confining diameter on fluid properties and suggesting the promise of molecular engineering of nanoconfined liquid/vapor interfaces for water treatment or membrane distillation.

6.
Angew Chem Int Ed Engl ; : e202417357, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365280

RESUMO

With the development of mechanophores, polymer mechanochemistry has emerged as a powerful tool for creating force-responsive materials with a variety of desired functions, ranging from color change to molecular release. However, it remains challenging to improve the efficiency of mechanochemical activation, especially for mechanophores embedded within polymer networks, which has profound implications for translating mechanochemical responses into materials-centered applications. The physical and chemical conditions under spatial confinement differ significantly from those in the surrounding bulk environment, offering opportunities to facilitate mechanochemical activation. In this Minireview, we discuss and summarize recent progress in polymer mechanochemistry within confined spaces including surfaces/interfaces, polymer assemblies, and other nanostructures, specifically focusing on the effects of spatial confinement on the enhancement of mechanophore activation. We envision that combining confinement effects with advances in molecular and materials engineering will further improve the activation efficiency, capitalizing more fully on the potential of mechanophores toward practical applications.

7.
Angew Chem Int Ed Engl ; 63(6): e202315280, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38088497

RESUMO

We report the first experimental evidence for rapid formation of hydrogen clathrates under mild pressure and temperature conditions within the cavities of a zirconium-metalloporphyrin framework, specifically PCN-222. PCN-222 has been selected for its 1D mesoporous channels, high water-stability, and proper hydrophilic behavior. Firstly, we optimize a microwave (MW)-assisted method for the synthesis of nanosized PCN-222 particles with precise structure control (exceptional homogeneity in morphology and crystalline phase purity), taking advantage of MW in terms of rapid/homogeneous heating, time and energy savings, as well as potential scalability of the synthetic method. Second, we explore the relevance of the large mesoporous 1D open channels within the PCN-222 to promote the nucleation and growth of confined hydrogen clathrates. Experimental results show that PCN-222 drives the nucleation process at a lower pressure than the bulk system (1.35 kbar vs 2 kbar), with fast kinetics (minutes), using pure water, and with a nearly complete water-to-hydrate conversion. Unfortunately, PCN-222 cannot withstand these high pressures, which lead to a significant alteration of the mesoporous structure while the microporous network remains mainly unchanged.

8.
Proc Natl Acad Sci U S A ; 117(48): 30191-30200, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184175

RESUMO

Escalating global water scarcity necessitates high-performance desalination membranes, for which fundamental understanding of structure-property-performance relationships is required. In this study, we comprehensively assess the ionization behavior of nanoporous polyamide selective layers in state-of-the-art nanofiltration (NF) membranes. In these films, residual carboxylic acids and amines influence permeability and selectivity by imparting hydrophilicity and ionizable moieties that can exclude coions. We utilize layered interfacial polymerization to prepare physically and chemically similar selective layers of controlled thickness. We then demonstrate location-dependent ionization of carboxyl groups in NF polyamide films. Specifically, only surface carboxyl groups ionize under neutral pH, whereas interior carboxyl ionization requires pH >9. Conversely, amine ionization behaves invariably across the film. First-principles simulations reveal that the low permittivity of nanoconfined water drives the anomalous carboxyl ionization behavior. Furthermore, we report that interior carboxyl ionization could improve the water-salt permselectivity of NF membranes over fourfold, suggesting that interior charge density could be an important tool to enhance the selectivity of polyamide membranes. Our findings highlight the influence of nanoconfinement on membrane transport properties and provide enhanced fundamental understanding of ionization that could enable novel membrane design.

9.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835639

RESUMO

Decarbonization has become an urgent affair to restrain global warming. CO2 hydrogenation coupled with H2 derived from water electrolysis is considered a promising route to mitigate the negative impact of carbon emission and also promote the application of hydrogen. It is of great significance to develop catalysts with excellent performance and large-scale implementation. In the past decades, metal-organic frameworks (MOFs) have been widely involved in the rational design of catalysts for CO2 hydrogenation due to their high surface areas, tunable porosities, well-ordered pore structures, and diversities in metals and functional groups. Confinement effects in MOFs or MOF-derived materials have been reported to promote the stability of CO2 hydrogenation catalysts, such as molecular complexes of immobilization effect, active sites in size effect, stabilization in the encapsulation effect, and electron transfer and interfacial catalysis in the synergistic effect. This review attempts to summarize the progress of MOF-based CO2 hydrogenation catalysts up to now, and demonstrate the synthetic strategies, unique features, and enhancement mechanisms compared with traditionally supported catalysts. Great emphasis will be placed on various confinement effects in CO2 hydrogenation. The challenges and opportunities in precise design, synthesis, and applications of MOF-confined catalysis for CO2 hydrogenation are also summarized.


Assuntos
Dióxido de Carbono , Estruturas Metalorgânicas , Hidrogenação , Hidrogênio , Carbono
10.
Nano Lett ; 21(13): 5555-5563, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34105972

RESUMO

We demonstrate Ge0.95Sn0.05 p-channel gate-all-around field-effect transistors (p-GAAFETs) with sub-3 nm nanowire width (WNW) on a GeSn-on-insulator (GeSnOI) substrate using a top-down fabrication process. Thanks to the excellent gate control by employing an aggressively scaled nanowire structure, Ge0.95Sn0.05 p-GAAFETs exhibit a small subthreshold swing (SS) of 66 mV/decade, a decent on-current/off-current (ION/IOFF) ratio of ∼1.2 × 106, and a high-field effective hole mobility (µeff) of ∼115 cm2/(V s). In addition, we also investigate quantum confinement effects in extremely scaled GeSn nanowires, including threshold voltage (VTH) shift and IOFF reduction with continuous scaling of WNW under 10 nm. The phenomena observed from experimental results are substantiated by the calculation of GeSn bandgap and TCAD simulation of electrical characteristics of devices with sub-10 nm WNW. This study suggests Ge-based nanowire p-FETs with extremely scaled dimension hold promise to deliver good performance to enable further scaling for future technology nodes.

11.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080210

RESUMO

Iron (II) tris(2,2'-bipyridine) complexes, [Fe(bpy)3]2+, have been synthesized and immobilized in organosulfonate-functionalized nanostructured silica thin films taking advantage of the stabilization of [Fe(H2O)6]2+ species by hydrogen bonds to the anionic sulfonate moieties grafted to the silica nanopores. In a first step, thiol-based silica films have been electrochemically generated on indium tin oxide (ITO) substrates by co-condensation of 3-mercaptopropyltrimethoxysilane (MPTMS) and tetraethoxysilane (TEOS). Secondly, the thiol function has been modified to sulfonate by chemical oxidation using hydrogen peroxide in acidic medium as an oxidizing agent. The immobilization of [Fe(bpy)3]2+ complexes has been performed in situ in two consecutive steps: (i) impregnation of the sulfonate functionalized silica films in an aqueous solution of iron (II) sulfate heptahydrate; (ii) dipping of the iron-containing mesostructures in a solution of bipyridine ligands in acetonitrile. The in situ formation of the [Fe(bpy)3]2+ complex is evidenced by its characteristic optical absorption spectrum, and elemental composition analysis using X-ray photoelectron spectroscopy. The measured optical and electrochemical properties of immobilized [Fe(bpy)3]2+ complexes are not altered by confinement in the nanostructured silica thin film.


Assuntos
Complexos de Coordenação , Cátions , Complexos de Coordenação/química , Ferro/química , Ligantes , Dióxido de Silício , Compostos de Sulfidrila
12.
Chemistry ; 27(38): 9814-9819, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-33834537

RESUMO

Based on the DFT-level-calculated molecular volume (Vmol ) of pyrrole and its liquid density, pyrrole manifests the highest liquid density coefficient LDc (defined as [Vmol ×density ×0.6023]/FW) value of 0.7. Normal liquids have LDc <0.63. This very high LDc is due to the strong N-H⋅⋅⋅π interactions in solution, and hence pyrrole can be considered to be a pseudo-crystalline liquid. When trapped inside the confined space of a crystalline sponge, a reorientation of the N-H⋅⋅⋅π interaction is observed leading to specific cyclic N-H⋅⋅⋅π tetramers and N-H⋅⋅⋅π dimers, as verified by single-crystal X-ray crystallographic and computational methods. These tetramers are of the same size as four pyrrole molecules in the solid-state of pyrrole, yet the cyclic N-H⋅⋅⋅π intermolecular interactions are circularly oriented instead of being in the linear zigzag structure found in the X-ray structure of a solid pyrrole. The confinement thus acts as an external driving force for tetramer formation.


Assuntos
Pirróis , Cristalografia por Raios X , Modelos Moleculares
13.
Angew Chem Int Ed Engl ; 59(42): 18374-18379, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-32588534

RESUMO

Nanoreactors with hollow structures have attracted great interest in catalysis research due to their void-confinement effects. However, the challenge in unambiguously unraveling these confinement effects is to decouple them from other factors affecting catalysis. Here, we synthesize a pair of hollow carbon sphere (HCS) nanoreactors with presynthesized PdCu nanoparticles encapsulated inside of HCS (PdCu@HCS) and supported outside of HCS (PdCu/HCS), respectively, while keeping other structural features the same. Based on the two comparative nanoreactors, void-confinement effects in liquid-phase hydrogenation are investigated in a two-chamber reactor. It is found that hydrogenations over PdCu@HCS are shape-selective catalysis, can be accelerated (accumulation of reactants), decelerated (mass transfer limitation), and even inhibited (molecular-sieving effect); conversion of the intermediate in the void space can be further promoted. Using this principle, a specific imine is selectively produced. This work provides a proof of concept for fundamental catalytic action of the hollow nanoreactors.

14.
Small ; 15(41): e1902710, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31448574

RESUMO

Functionalized ordered mesoporous silica materials are commonly investigated for applications such as drug release, sensing, and separation processes. Although, various homopolymer functionalized responsive mesopores are reported, little focus has been put on copolymers in mesopores. Mesoporous silica films are functionalized with responsive and orthogonally charged block-co-oligomers. Responsive 2-dimethylamino)ethyl methacrylate)-block-2-(methacryloyloxy)ethyl phosphate (DMAEMA-b-MEP) block-co-oligomers are introduced into mesoporous films using controlled photoiniferter initiated polymerization. This approach allows a very flexible charge composition design. The obtained block-co-oligomer functionalized mesopores show a complex gating behavior indicating a strong interplay between the different blocks emphasizing the strong influence of charge distribution inside mesopores on ionic pore accessibility. For example, in contrast to mesopores functionalized with zwitterionic polymers, DMAEMA-b-MEP block-co-oligomer functionalized mesopores, containing two oppositely charged blocks, do not show bipolar ion exclusion, demonstrating the influence of the chain architecture on mesopore accessibility. Furthermore, ligand binding-based selective gating is strongly influenced by this chain architecture as demonstrated by an expansion of pore accessibility states for block-co-oligomer functionalized mesopores as compared to the individual polyelectrolyte functionalization for calcium induced gating.


Assuntos
Metacrilatos/química , Nanoporos , Polieletrólitos/química , Eletroquímica , Eletrodos , Concentração de Íons de Hidrogênio , Íons , Metacrilatos/síntese química , Porosidade , Dióxido de Silício/química , Compostos de Estanho/química
15.
Molecules ; 23(4)2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-29642558

RESUMO

Nanoscale confinement is known to impact properties of molecules and we observed changes in the reactivity of an iron coordination complex, pentacyano(pyrazine)ferrate(II). The confinement of two coordination complexes in a sodium AOT/isooctane reverse micellar (RM) water droplet was found to dramatically increase the hydrolysis rate of [Fe(CN)5pyz]3- and change the monomer-dimer equilibria between [Fe(CN)5pyz]3- and [Fe2(CN)10pyz]6-. Combined UV-Vis and ¹H-NMR spectra of these complexes in RMs were analyzed and the position of the monomer-dimer equilibrium and the relative reaction times were determined at three different RM sizes. The data show that the hydrolysis rates (loss of pyrazine) are dramatically enhanced in RMs over bulk water and increase as the size of the RM decreases. Likewise, the monomer-dimer equilibrium changes to favor the formation of dimer as the RM size decreases. We conclude that the effects of the [Fe(CN)5pyz]3- stability is related to its solvation within the RM.


Assuntos
Complexos de Coordenação/química , Cianetos/química , Ferro/química , Nanopartículas/química , Pirazinas/química , Água/química , Difusão Dinâmica da Luz , Hidrólise , Cinética , Micelas , Estrutura Molecular , Octanos/química , Tamanho da Partícula , Propriedades de Superfície
16.
Angew Chem Int Ed Engl ; 57(34): 10899-10904, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29962066

RESUMO

Large-sized carbon spheres with controllable interior architecture are highly desired, but there is no method to synthesize these materials. Here, we develop a novel method to synthesize interior-structured mesoporous carbon microspheres (MCMs), based on the surfactant assembly within water droplet-confined spaces. Our approach is shown to access a library of unprecedented MCMs such as hollow MCMs, multi-chambered MCMs, bijel-structured MCMs, multi-cored MCMs, "solid" MCMs, and honeycombed MCMs. These novel structures, unattainable for the conventional bulk synthesis even at the same conditions, suggest an intriguing effect arising from the droplet-confined spaces. This synthesis method and the hitherto unfound impact of the droplet-confined spaces on the microstructural evolution open up new horizons in exploring novel materials for innovative applications.

17.
Macromol Rapid Commun ; 38(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27775196

RESUMO

Microfluidic devices, which can continuously fabricate single emulsion with monodispersed droplets having a pore diameter of more than 100 µm in large numbers, can be applied to manufacture ordered macroporous films. 3D ordered macroporous films with a diameter of more than 100 µm can be fabricated using ordered arrays of the monodispersed droplets as templates of the macropores, which are self-assembled in the space between two parallel flat glass plates. As the gap between the glass plates increases, the number of the layer increases. Furthermore, in the case with two or more layers, the lattice structure of the macroporous films also changes due to the confinement effects.


Assuntos
Dispositivos Lab-On-A-Chip , Óleos/química , Emulsões/química , Estrutura Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Água/química
18.
Angew Chem Int Ed Engl ; 56(40): 12348-12351, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28715619

RESUMO

The properties of materials confined in porous media are important in scientific and technological aspects. Topology, size, and surface polarity of the pores play a critical role in the confinement effects, however, knowledge regarding the guest-pore interface structure is still lacking. Herein, we show that the molecular mobility of water confined in periodic mesoporous organosilicas (PMOs) is influenced by the polarity of the organic moiety. Multidimensional solid-state NMR spectroscopy directly probes the spatial arrangement of water inside the pores, showing that water interacts either with only the silicate layer or with both silicate and organic layers depending on the alternating surface polarity. A modulated and a uniform pore filling mode are proposed for different types of PMOs.

19.
J Comput Chem ; 37(20): 1935-46, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27189810

RESUMO

Microscopic characteristics of an aqueous excess proton in a wide range of thermodynamic states, from low density amorphous ices (down to 100 K) to high temperature liquids under the critical point (up to 600 K), placed inside hydrophobic graphene slabs at the nanometric scale (with interplate distances between 3.1 and 0.7 nm wide) have been analyzed by means of molecular dynamics simulations. Water-proton and carbon-proton forces were modeled with a multistate empirical valence bond method. Densities between 0.07 and 0.02 Å(-3) have been considered. As a general trend, we observed a competition between effects of confinement and temperature on structure and dynamical properties of the lone proton. Confinement has strong influence on the local structure of the proton, whereas the main effect of temperature on proton properties is observed on its dynamics, with significant variation of proton transfer rates, proton diffusion coefficients, and characteristic frequencies of vibrational motions. Proton transfer is an activated process with energy barriers between 1 and 10 kJ/mol for both proton transfer and diffusion, depending of the temperature range considered and also on the interplate distance. Arrhenius-like behavior of the transfer rates and of proton diffusion are clearly observed for states above 100 K. Spectral densities of proton species indicated that in all states Zundel-like and Eigen-like complexes survive at some extent. © 2016 Wiley Periodicals, Inc.

20.
Chemistry ; 22(29): 10028-35, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27273454

RESUMO

The molecular exchange of CH4 for CO2 in gas hydrates grown in confined nanospace has been evaluated for the first time using activated carbons as a host structure. The nano-confinement effects taking place inside the carbon cavities and the exceptional physicochemical properties of the carbon structure allows us to accelerate the formation and decomposition process of the gas hydrates from the conventional timescale of hours/days in artificial bulk systems to minutes in confined nanospace. The CH4 /CO2 exchange process is fully reversible with high efficiency at practical temperature and pressure conditions. Furthermore, these activated carbons can be envisaged as promising materials for long-distance natural gas and CO2 transportation because of the combination of a high storage capacity, a high reversibility, and most important, with extremely fast kinetics for gas hydrate formation and release.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA