Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
J Neurosci ; 43(9): 1509-1529, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669885

RESUMO

Astrocytes have complex structural, molecular, and physiological properties and form specialized microenvironments that support circuit-specific functions in the CNS. To better understand how astrocytes acquire their unique features, we transplanted immature mouse cortical astrocytes into the developing cortex of male and female mice and assessed their integration, maturation, and survival. Within days, transplanted astrocytes developed morphologies and acquired territories and tiling behavior typical of cortical astrocytes. At 35-47 d post-transplantation, astrocytes appeared morphologically mature and expressed levels of EAAT2/GLT1 similar to nontransplanted astrocytes. Transplanted astrocytes also supported excitatory/inhibitory (E/I) presynaptic terminals within their territories, and displayed normal Ca2+ events. Transplanted astrocytes showed initially reduced expression of aquaporin 4 (AQP4) at endfeet and elevated expression of EAAT1/GLAST, with both proteins showing normalized expression by 110 d and one year post-transplantation, respectively. To understand how specific brain regions support astrocytic integration and maturation, we transplanted cortical astrocytes into the developing cerebellum. Cortical astrocytes interlaced with Bergmann glia (BG) in the cerebellar molecular layer to establish discrete territories. However, transplanted astrocytes retained many cortical astrocytic features including higher levels of EAAT2/GLT1, lower levels of EAAT1/GLAST, and the absence of expression of the AMPAR subunit GluA1. Collectively, our findings demonstrate that immature cortical astrocytes integrate, mature, and survive (more than one year) following transplantation and retain cortical astrocytic properties. Astrocytic transplantation can be useful for investigating cell-autonomous (intrinsic) and non-cell-autonomous (environmental) mechanisms contributing to astrocytic development/diversity, and for determining the optimal timing for transplanting astrocytes for cellular delivery or replacement in regenerative medicine.SIGNIFICANCE STATEMENT The mechanisms that enable astrocytes to acquire diverse molecular and structural properties remain to be better understood. In this study, we systematically analyzed the properties of cortical astrocytes following their transplantation to the early postnatal brain. We found that immature cortical astrocytes transplanted into cerebral cortex during early postnatal mouse development integrate and establish normal astrocytic properties, and show long-term survival in vivo (more than one year). In contrast, transplanted cortical astrocytes display reduced or altered ability to integrate into the more mature cerebral cortex or developing cerebellum, respectively. This study demonstrates the developmental potential of transplanted cortical astrocytes and provides an approach to tease apart cell-autonomous (intrinsic) and non-cell-autonomous (environmental) mechanisms that determine the structural, molecular, and physiological phenotype of astrocytes.


Assuntos
Astrócitos , Neuroglia , Camundongos , Masculino , Feminino , Animais , Astrócitos/metabolismo , Córtex Cerebral
2.
J Cell Sci ; 135(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35929456

RESUMO

Chromosomal instability (CIN), the process of increased chromosomal alterations, compromises genomic integrity and has profound consequences on human health. Yet, our understanding of the molecular and mechanistic basis of CIN initiation remains limited. We developed a high-throughput, single-cell, image-based pipeline employing deep-learning and spot-counting models to detect CIN by automatically counting chromosomes and micronuclei. To identify CIN-initiating conditions, we used CRISPR activation in human diploid cells to upregulate, at physiologically relevant levels, 14 genes that are functionally important in cancer. We found that upregulation of CCND1, FOXA1 and NEK2 resulted in pronounced changes in chromosome counts, and KIF11 upregulation resulted in micronuclei formation. We identified KIF11-dependent fragilities within the mitotic spindle; increased levels of KIF11 caused centrosome fragmentation, higher microtubule stability, lagging chromosomes or mitotic catastrophe. Our findings demonstrate that even modest changes in the average expression of single genes in a karyotypically stable background are sufficient for initiating CIN by exposing fragilities of the mitotic spindle, which can lead to a genomically diverse cell population.


Assuntos
Instabilidade Cromossômica , Cinesinas , Fuso Acromático , Aneuploidia , Centrossomo/metabolismo , Instabilidade Cromossômica/genética , Aberrações Cromossômicas , Humanos , Cinesinas/genética , Microtúbulos/genética , Mitose/genética , Quinases Relacionadas a NIMA/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo
3.
Transpl Int ; 37: 12380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463463

RESUMO

Donor organ biomarkers with sufficient predictive value in liver transplantation (LT) are lacking. We herein evaluate liver viability and mitochondrial bioenergetics for their predictive capacity towards the outcome in LT. We enrolled 43 consecutive patients undergoing LT. Liver biopsy samples taken upon arrival after static cold storage were assessed by histology, real-time confocal imaging analysis (RTCA), and high-resolution respirometry (HRR) for mitochondrial respiration of tissue homogenates. Early allograft dysfunction (EAD) served as primary endpoint. HRR data were analysed with a focus on the efficacy of ATP production or P-L control efficiency, calculated as 1-L/P from the capacity of oxidative phosphorylation P and non-phosphorylating respiration L. Twenty-two recipients experienced EAD. Pre-transplant histology was not predictive of EAD. The mean RTCA score was significantly lower in the EAD cohort (-0.75 ± 2.27) compared to the IF cohort (0.70 ± 2.08; p = 0.01), indicating decreased cell viability. P-L control efficiency was predictive of EAD (0.76 ± 0.06 in IF vs. 0.70 ± 0.08 in EAD-livers; p = 0.02) and correlated with the RTCA score. Both RTCA and P-L control efficiency in biopsy samples taken during cold storage have predictive capacity towards the outcome in LT. Therefore, RTCA and HRR should be considered for risk stratification, viability assessment, and bioenergetic testing in liver transplantation.


Assuntos
Transplante de Fígado , Disfunção Primária do Enxerto , Humanos , Transplante de Fígado/efeitos adversos , Sobrevivência de Enxerto , Fatores de Risco , Fígado/patologia , Metabolismo Energético , Aloenxertos/patologia , Disfunção Primária do Enxerto/etiologia
4.
Dev Biol ; 490: 86-99, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35841952

RESUMO

In recent years, the zebrafish has become a well-established laboratory model. We describe here the ZeBraInspector (ZBI) platform for high-content 3D imaging (HCI) of 5 days post-fertilization zebrafish eleuthero-embryos (EEs). This platform includes a mounting method based on 3D-printed stamps to create a grid of wells in an agarose cast, facilitating batch acquisitions with a fast-confocal laser scanning microscope. We describe reference labeling in cleared fish with a fluorescent lipophilic dye. Based on this labeling, the ZBI software registers. EE 3D images, making it possible to visualize numerous identically oriented EEs on a single screen, and to compare their morphologies and any fluorescent patterns at a glance. High-resolution 2D snapshots can be extracted. ZBI software is therefore useful for diverse high-content analyses (HCAs). Following automated segmentation of the lipophilic dye signal, the ZBI software performs volumetric analyses on whole EEs and their nervous system white matter. Through two examples, we illustrate the power of these analyses for obtaining statistically significant results from a small number of samples: the characterization of a phenotype associated with a neurodevelopmental mutation, and of the defects caused by treatments with a toxic anti-cancer compound.


Assuntos
Imageamento Tridimensional , Peixe-Zebra , Animais , Encéfalo/diagnóstico por imagem , Fertilização , Microscopia Confocal/métodos , Peixe-Zebra/genética
5.
J Biol Chem ; 298(7): 102018, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526563

RESUMO

Hyperekplexia is a rare neurological disorder characterized by exaggerated startle responses affecting newborns with the hallmark characteristics of hypertonia, apnea, and noise or touch-induced nonepileptic seizures. The genetic causes of the disease can vary, and several associated genes and mutations have been reported to affect glycine receptors (GlyRs); however, the mechanistic links between GlyRs and hyperekplexia are not yet understood. Here, we describe a patient with hyperekplexia from a consanguineous family. Extensive genetic screening using exome sequencing coupled with autozygome analysis and iterative filtering supplemented by in silico prediction identified that the patient carries the homozygous missense mutation A455P in GLRB, which encodes the GlyR ß-subunit. To unravel the physiological and molecular effects of A455P on GlyRs, we used electrophysiology in a heterologous system as well as immunocytochemistry, confocal microscopy, and cellular biochemistry. We found a reduction in glycine-evoked currents in N2A cells expressing the mutation compared to WT cells. Western blot analysis also revealed a reduced amount of GlyR ß protein both in cell lysates and isolated membrane fractions. In line with the above observations, coimmunoprecipitation assays suggested that the GlyR α1-subunit retained coassembly with ßA455P to form membrane-bound heteromeric receptors. Finally, structural modeling showed that the A455P mutation affected the interaction between the GlyR ß-subunit transmembrane domain 4 and the other helices of the subunit. Taken together, our study identifies and validates a novel loss-of-function mutation in GlyRs whose pathogenicity is likely to cause hyperekplexia in the affected individual.


Assuntos
Hiperecplexia , Receptores de Glicina , Humanos , Hiperecplexia/genética , Recém-Nascido , Rigidez Muscular , Mutação , Mutação de Sentido Incorreto , Receptores de Glicina/genética
6.
J Neurochem ; 164(4): 481-498, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36504018

RESUMO

Metabolic glycoengineering (MGE) has been developed to visualize carbohydrates on live cells. The method allows the fluorescent labeling of sialic acid (Sia) sugar residues on neuronal plasma membranes. For instance, the efficiency of glycosylation along neurite membranes has been characterized as cell health measure in neurotoxicology. Using human dopaminergic neurons as model system, we asked here, whether it was possible to separately label diverse classes of biomolecules and to visualize them selectively on cells. Several approaches suggest that a large proportion of Sia rather incorporated in non-protein components of cell membranes than into glycoproteins. We made use here of deoxymannojirimycin (dMM), a non-toxic inhibitor of protein glycosylation, and of N-butyl-deoxynojirimycin (NBdNM) a well-tolerated inhibitor of lipid glycosylation, to develop a method of differential labeling of sialylated membrane lipids (lipid-Sia) or sialylated N-glycosylated proteins (protein-Sia) on live neurons. The time resolution at which Sia modification of lipids/proteins was observable was in the range of few hours. The approach was then extended to several other cell types. Using this technique of target-specific MGE, we found that in dopaminergic or sensory neurons >60% of Sia is lipid bound, and thus polysialic acid-neural cell adhesion molecule (PSA-NCAM) cannot be considered the major sialylated membrane component. Different from neurons, most Sia was bound to protein in HepG2 hepatoma cells or in neural crest cells. Thus, our method allows visualization of cell-specific sialylation processes for separate classes of membrane constituents.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Siálicos , Humanos , Ácidos Siálicos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Glicoproteínas/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Glicosilação , Lipídeos
7.
Cytometry A ; 103(3): 198-207, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35880846

RESUMO

The emergence and fast advance of digital pathology allows the acquisition, digital storage, interactive recall and analysis of morphology at the tissue level. When applying immunohistochemistry, it also affords the correlation of morphology with the expression of one or two specific molecule of interest. The rise of fluorescence pathology scanners expands the number of detected molecules based on multiplex labeling. The Pannoramic Confocal (created by 3DHistech, Hungary) is a first-of-the-kind digital pathology scanner that affords not only multiplexed fluorescent detection on top of conventional transmission imaging, but also confocality. We have benchmarked this scanner in terms of stability, precision, light efficiency, linearity and sensitivity. X-Y stability and relocalisation precision were well below resolution limit (≤50 nm). Light throughput in confocal mode was 4-5 times higher than that of a point scanning confocal microscope, yielding similar calculated confocal intensities but with the potential for improving signal to noise ratio or scan speed. Response was linear with R2 ≥ 0.9996. Calibrated measurements showed that using indirect labeling ≥2000 molecules per cell could be well detected and imaged on the cell surface. Both standard-based and statistical post-acquisition flatfield corrections are implemented. We have also measured the point spread function (PSF) of the instrument. The dimensions of the PSF are somewhat larger and less symmetric than of the theoretical PSF of a conventional CLSM, however, the spatial homogeneity of these parameters allows for obtaining a specific system PSF for each optical path and using it for optional on-the-fly deconvolution. In conclusion, the Pannoramic Confocal provides sensitive, quantitative widefield and confocal detection of multiplexed fluorescence signals, with optical sectioning and 3D reconstruction, in addition to brightfield transmission imaging. High speed scanning of large samples, analysis of tissue heterogeneity, and detection of rare events open up new ways for quantitatively analyzing tissue sections, organoid cultures or large numbers of adherent cells.


Assuntos
Microscopia , Patologia Molecular , Microscopia/métodos , Corantes
8.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142837

RESUMO

Conformational changes are fundamental events in the transport mechanism. The serotonin transporter (SERT) catalyzes reuptake of the neurotransmitter serotonin after its release by serotonergic neurons and is the molecular target for antidepressant drugs and psychostimulants. Despite significant progress in characterizing the structure-function relationship of SERT, its conformational mechanism has not been fully understood. We present here a cell-based method for determining conformational changes in SERT with its fluorescent substrates by fluorescence imaging analysis. This method fluorometrically measures accessibility of strategically positioned cysteine residues in the substrate permeation pathway to calculate the rate constants of reactivity with MTS reagents in live or permeabilized cells. We validated this method by investigating ligand and ion-induced conformational changes in both the extracellular and cytoplasmic pathways of SERT. Furthermore, we applied this method for examining the influence of Cl- binding and vilazodone inhibition on SERT conformation. Our results showed that Cl- ion, in the presence of Na+, facilitates the conformational conversion from outward to inward open states, and that vilazodone binding stabilizes SERT in an outward open and inward-closed conformation. The present work provided insights into the conformational mechanism of SERT and also indicated that the cell-based fluorometric method is robust, straightforward to perform, and potentially applicable to any monoamine transporters in exploring the transport mechanism and mechanism of action of therapeutic agents for the treatment of several psychiatric disorders.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina , Serotonina , Cisteína , Humanos , Ligantes , Neurotransmissores , Conformação Proteica , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Cloridrato de Vilazodona
9.
Molecules ; 27(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36144559

RESUMO

This study develops an innovative cell-based carrier to simultaneously encapsulate multiple phytochemicals from a complex plant source. Muscadine grapes (MG) juice prepared from fresh fruit was used as a model juice. After incubation with inactivated bacterial cells, 66.97% of the total anthocyanins, and 72.67% of the total antioxidant compounds were encapsulated in the cells from MG juice. Confocal images illustrated a uniform localization of the encapsulated material in the cells. The spectral emission scans indicated the presence of a diverse class of phenolic compounds, which was characterized using high-performance liquid chromatography (HPLC). Using HPLC, diverse phytochemical compound classes were analyzed, including flavanols, phenolic acid, hydroxycinnamic acid, flavonols, and polymeric polyphenols. The analysis validated that the cell carrier could encapsulate a complex profile of bioactive compounds from fruit juice, and the encapsulated content and efficiencies varied by the chemical class and compound. In addition, after the heat treatment at 90 °C for 60 min, >87% total antioxidant capacity and 90% anthocyanin content were recovered from the encapsulated MG. In summary, these results highlight the significant potential of a selected bacterial strain for simultaneous encapsulation of diverse phenolic compounds from fruit juice and improving their process stability.


Assuntos
Lactobacillales , Vitis , Antocianinas/análise , Antioxidantes/química , Cromatografia Líquida de Alta Pressão/métodos , Ácidos Cumáricos/análise , Flavonóis/análise , Frutas/química , Fenóis/análise , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Polifenóis/química , Vitis/química
10.
Dev Biol ; 466(1-2): 73-76, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763233

RESUMO

For an extensive period of time apical meristem (SAM) has been considered as a mysterious organ, due to its small, hidden and dynamic structure. Confocal imaging, combined with fluorescent reporters, enables researchers to unveil the mechanisms underlying cellular activities, such as gene expression, cell division, growth patterns and cell-cell communications. Recently, a series of protocols were developed for confocal imaging of inflorescence meristem (IM) and floral meristem (FM). However, the requirement of high configuration, such as the need of a water-dipping lens without coverslip and the specialized turrets associated with fixed-stage microscopes, impedes the wide adoption of these methods. We exploited an improved object slide and matching method aiming to decrease the configuration requirement. Following this protocol, various dry microscope lenses can be selected with flexibility for building 3D images of IM and FM.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/crescimento & desenvolvimento , Arabidopsis/citologia , Flores/citologia , Meristema/citologia , Microscopia Confocal
11.
J Neurosci Res ; 99(12): 3121-3147, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34716617

RESUMO

Astrocytes are abundant cells of the central nervous system (CNS) and are involved in processes including synapse formation/function, ion homeostasis, neurotransmitter uptake, and neurovascular coupling. Recent evidence indicates that astrocytes show diverse molecular, structural, and physiological properties within the CNS. This heterogeneity is reflected in differences in astrocyte structure, gene expression, functional properties, and responsiveness to injury/pathological conditions. Deeper investigation of astrocytic heterogeneity is needed to understand how astrocytes are configured to enable diverse roles in the CNS. While much has been learned about astrocytic heterogeneity in rodents, much less is known about astrocytic heterogeneity in the primate brain where astrocytes have greater size and complexity. The common marmoset (Callithrix jacchus) is a promising non-human primate model because of similarities between marmosets and humans with respect to genetics, brain anatomy, and cognition/behavior. Here, we investigated the molecular and structural heterogeneity of marmoset astrocytes using an array of astrocytic markers, multi-label confocal microscopy, and quantitative analysis. We used male and female marmosets and found that marmoset astrocytes show differences in expression of astrocytic markers in cortex, hippocampus, and cerebellum. These differences were accompanied by intra-regional variation in expression of markers for glutamate/GABA transporters, and potassium and water channels. Differences in astrocyte structure were also found, along with complex interactions with blood vessels, microglia, and neurons. This study contributes to our knowledge of the cellular and molecular features of marmoset astrocytes and is useful for understanding the complex properties of astrocytes in the primate CNS.


Assuntos
Astrócitos , Callithrix , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central , Feminino , Masculino , Neurônios/metabolismo
12.
J Microsc ; 281(3): 231-242, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33034376

RESUMO

Correlative light and electron microscopy (CLEM) is a method used to investigate the exact same region in both light and electron microscopy (EM) in order to add ultrastructural information to a light microscopic (usually fluorescent) signal. Workflows combining optical or fluorescent data with electron microscopic images are complex, hence there is a need to communicate detailed protocols and share tips & tricks for successful application of these methods. With the development of volume-EM techniques such as serial blockface scanning electron microscopy (SBF-SEM) and Focussed Ion Beam-SEM, correlation in three dimensions has become more efficient. Volume electron microscopy allows automated acquisition of serial section imaging data that can be reconstructed in three dimensions (3D) to provide a detailed, geometrically accurate view of cellular ultrastructure. In addition, combining volume-EM with high-resolution light microscopy (LM) techniques decreases the resolution gap between LM and EM, making retracing of a region of interest and eventual overlays more straightforward. Here, we present a workflow for 3D CLEM on mouse liver, combining high-resolution confocal microscopy with SBF-SEM. In this workflow, we have made use of two types of landmarks: (1) near infrared laser branding marks to find back the region imaged in LM in the electron microscope and (2) landmarks present in the tissue but independent of the cell or structure of interest to make overlay images of LM and EM data. Using this approach, we were able to make accurate 3D-CLEM overlays of liver tissue and correlate the fluorescent signal to the ultrastructural detail provided by the electron microscope. This workflow can be adapted for other dense cellular tissues and thus act as a guide for other three-dimensional correlative studies. LAY DESCRIPTION: As cells and tissues exist in three dimensions, microscopy techniques have been developed to image samples, in 3D, at the highest possible detail. In light microscopy, fluorescent probes are used to identify specific proteins or structures either in live samples, (providing dynamic information), or in fixed slices of tissue. A disadvantage of fluorescence microscopy is that only the labeled proteins/structures are visible, while their cellular context remains hidden. Electron microscopy is able to image biological samples at high resolution and has the advantage that all structures in the tissue are visible at nanometer (10-9 m) resolution. Disadvantages of this technique are that it is more difficult to label a single structure and that the samples must be imaged under high vacuum, so biological samples need to be fixed and embedded in a plastic resin to stay as close to their natural state as possible inside the microscope. Correlative Light and Electron Microscopy aims to combine the advantages of both light and electron microscopy on the same sample. This results in datasets where fluorescent labels can be combined with the high-resolution contextual information provided by the electron microscope. In this study we present a workflow to guide a tissue sample from the light microscope to the electron microscope and image the ultra-structure of a specific cell type in the liver. In particular we focus on the incorporation of fiducial markers during the sample preparation to help navigate through the tissue in 3D in both microscopes. One sample is followed throughout the workflow to visualize the important steps in the process, showing the final result; a dataset combining fluorescent labels with ultra-structural detail.


Assuntos
Elétrons , Imageamento Tridimensional , Animais , Fígado/ultraestrutura , Camundongos , Microscopia Eletrônica de Varredura , Fluxo de Trabalho
13.
Parasitol Res ; 120(3): 1121-1124, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33409641

RESUMO

Acanthamoeba keratitis is a serious infection of the eye that can result in permanent visual impairment or blindness, caused by free-living amoebae of the genus Acanthamoeba. Early diagnosis is necessary for effective treatment of Acanthamoeba keratitis. Acanthamoeba is abundant in nature and can be found in water, soil, and air. Acanthamoeba keratitis is usually diagnosed by culture from a scraping of the eye or by confocal microscopy. In this paper, two complicated Acanthamoeba keratitis cases are reported.


Assuntos
Ceratite por Acanthamoeba/diagnóstico , Ceratite por Acanthamoeba/terapia , Acanthamoeba/isolamento & purificação , Adulto , Feminino , Humanos , Ceratoplastia Penetrante , Microscopia Confocal , Estudos Retrospectivos , Resultado do Tratamento , Voriconazol/administração & dosagem
14.
Biotechnol Bioeng ; 117(5): 1483-1501, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32017023

RESUMO

Packaging during the passaging of viruses in cell cultures yields various phenotypes and is regulated by viral protein expression in infected cells. Although such a packaging mechanism has a profound effect in controlling the virus yield, little is known about the underlying statistical models followed by virus packaging and protein expression among cells infected with the virus. A predictive framework combining identification of the probability density function (PDF) based on log-likelihood and using the PDF for Monte-Carlo simulations is developed. The Birnbaum-Saunders distribution was found to be consistent with all three-virus packaging levels, including nucleocapsids/occlusion-derived virus (ODV), ODVs/polyhedra, and polyhedra/cell for both wild-type and genetically modified AcMNPV. Next, it was demonstrated that PDF fitting could be used to compare two viruses having distinctly different genetic configurations. Finally, the identified PDF can be incorporated in RNA synthesis parameters for baculovirus infection to predict the cell-to-cell variability in protein expression using Monte-Carlo simulations. The proposed tool can be used for the estimation of uncertainty in the kinetic parameter and prediction of cell-to-cell variability for other biological systems.


Assuntos
Técnicas de Cultura de Células/métodos , Simulação por Computador , Método de Monte Carlo , Cultura de Vírus/métodos , Animais , Cinética , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Modelos Estatísticos , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Proteínas Virais/análise , Proteínas Virais/genética , Proteínas Virais/metabolismo
15.
Mol Pharm ; 17(2): 507-516, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31841002

RESUMO

Targeted strategies to deliver and retain drugs to kidneys are needed to improve drug accumulation and efficacy in a myriad of kidney diseases. These drug delivery systems show potential for improving the therapeutic windows of drugs acting in the kidney. Biodistribution of antibody-based therapeutics in vivo is governed by several factors including binding affinity, size, and valency. Investigations of how the biophysical and biochemical properties of biologics enable them to overcome biological barriers and reach kidneys are therefore of interest. Although renal accumulation of antibody fragments in cancer diagnostics and treatment has been observed, reports on effective delivery of antibody fragments to the kidneys remain scarce. Previously, we demonstrated that targeting plasmalemma vesicle-associated protein (PV1), a caveolae-associated protein, can promote accumulation of antibodies in both the lungs and the kidneys. Here, by fine-tuning the binding affinity of an antibody toward PV1, we observe that the anti-PV1 antibody with reduced binding affinity lost the capability for kidney targeting while retaining the lung targeting activity, suggesting that binding affinity is a critical factor for kidney targeting of the anti-PV1 antibody. We next use the antibody fragment F(ab')2 targeting PV1 to assess the dual effects of rapid kidney filtration and PV1 targeting on kidney-selective targeting. Ex vivo fluorescence imaging results demonstrated that after rapidly accumulating in kidneys at 4 h, PV1-targeted F(ab')2 was continually retained in the kidney at 24 h, whereas the isotype control F(ab')2 underwent urinary elimination with significantly reduced signaling in the kidney. Confocal imaging studies confirmed the localization of PV1-targeted F(ab')2 in the kidney. In addition, the monovalent antibody fragment (Fab-C4) lost the capability for kidney homing, indicating that the binding avidity of anti-PV1 F(ab')2 is important for kidney targeting. Our findings suggest that PV1-targeted F(ab')2 might be useful as a drug carrier for renal targeting and highlight the importance of affinity optimization for tissue targeting antibodies.


Assuntos
Anticorpos Monoclonais/imunologia , Cavéolas/metabolismo , Portadores de Fármacos/farmacocinética , Fragmentos Fab das Imunoglobulinas/imunologia , Rim/efeitos dos fármacos , Proteínas de Membrana/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Afinidade de Anticorpos , Portadores de Fármacos/administração & dosagem , Feminino , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/administração & dosagem , Rim/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Tecidual
16.
Arch Toxicol ; 94(2): 449-467, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31828357

RESUMO

While there are many methods to quantify the synthesis, localization, and pool sizes of proteins and DNA during physiological responses and toxicological stress, only few approaches allow following the fate of carbohydrates. One of them is metabolic glycoengineering (MGE), which makes use of chemically modified sugars (CMS) that enter the cellular biosynthesis pathways leading to glycoproteins and glycolipids. The CMS can subsequently be coupled (via bio-orthogonal chemical reactions) to tags that are quantifiable by microscopic imaging. We asked here, whether MGE can be used in a quantitative and time-resolved way to study neuronal glycoprotein synthesis and its impairment. We focused on the detection of sialic acid (Sia), by feeding human neurons the biosynthetic precursor N-acetyl-mannosamine, modified by an azide tag. Using this system, we identified non-toxic conditions that allowed live cell labeling with high spatial and temporal resolution, as well as the quantification of cell surface Sia. Using combinations of immunostaining, chromatography, and western blotting, we quantified the percentage of cellular label incorporation and effects on glycoproteins such as polysialylated neural cell adhesion molecule. A specific imaging algorithm was used to quantify Sia incorporation into neuronal projections, as potential measure of complex cell function in toxicological studies. When various toxicants were studied, we identified a subgroup (mitochondrial respiration inhibitors) that affected neurite glycan levels several hours before any other viability parameter was affected. The MGE-based neurotoxicity assay, thus allowed the identification of subtle impairments of neurochemical function with very high sensitivity.


Assuntos
Membrana Celular/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Biologia Molecular/métodos , Ácido N-Acetilneuramínico/metabolismo , Síndromes Neurotóxicas/patologia , Bortezomib/farmacologia , Linhagem Celular , Glicoconjugados/química , Glicoconjugados/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hexosaminas/química , Hexosaminas/metabolismo , Hexosaminas/farmacologia , Humanos , Neuritos/química , Neuritos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/metabolismo , Tunicamicina/farmacologia
17.
Skin Res Technol ; 26(4): 529-536, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31900995

RESUMO

BACKGROUND/AIMS: Fibre-optic confocal imaging (FOCI) allows non-invasive visualization of live skin in vivo. A contrast agent, a fluorophore, is injected into the dermis. FOCI images are horizontal optical sections with cellular resolution. The aim was to study in vivo epidermal changes and the cellular structure of keratinocytes in moderate to severe atopic eczema (AE). METHODS: Eight patients with AE with active lesions on the forearms were studied and compared to a control group of six healthy individuals, and two cases of AE without activity. Fluorescein sodium was used as fluorophore. A hand-held fibre-optic laser scanner (Stratum® ) was used. The study included morphometric analyses. RESULTS: The confocal in vivo images identified characteristic features of epidermis and keratinocytes in active AE vs healthy skin controls. FOCI could non-invasively image acanthosis, spongiosis, and parakeratosis in AE. Epidermal oedema and micro-vesicles were visualized. Morphometry based on FOCI demonstrated 14% increased width of keratinocytes of atopic skin vs healthy controls. The epidermal structures and organization in distinctive cell layers were deviant as a result of the disease. CONCLUSIONS: Fibre-optic confocal imaging can visualize essential epidermal structures of atopic eczema directly in vivo, in real-time, and with cellular resolution thus without disturbing the natural state of the skin. FOCI is primarily a research tool, but with a potential to become used in the clinic for non-invasive microscopic diagnosis of AE and monitoring of effect of therapies.


Assuntos
Dermatite Atópica , Eczema , Dermatite Atópica/diagnóstico por imagem , Dermatite Atópica/patologia , Eczema/diagnóstico por imagem , Eczema/patologia , Células Epidérmicas , Epiderme/diagnóstico por imagem , Epiderme/patologia , Humanos , Queratinócitos , Microscopia Confocal , Pele/diagnóstico por imagem , Pele/patologia
18.
J Cell Physiol ; 234(8): 13370-13386, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30613975

RESUMO

Role of ß3 -AR dysregulation, as either cardio-conserving or cardio-disrupting mediator, remains unknown yet. Therefore, we examined the molecular mechanism of ß3 -AR activation in depressed myocardial contractility using a specific agonist CL316243 or using ß3 -AR overexpressed cardiomyocytes. Since it has been previously shown a possible correlation between increased cellular free Zn2+ ([Zn2+ ]i ) and depressed cardiac contractility, we first demonstrated a relation between ß3 -AR activation and increased [Zn2+ ]i , parallel to the significant depolarization in mitochondrial membrane potential in rat ventricular cardiomyocytes. Furthermore, the increased [Zn2+ ]i induced a significant increase in messenger RNA (mRNA) level of ß3 -AR in cardiomyocytes. Either ß3 -AR activation or its overexpression could increase cellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels, in line with significant changes in nitric oxide (NO)-pathway, including increases in the ratios of pNOS3/NOS3 and pGSK-3ß/GSK-3ß, and PKG expression level in cardiomyocytes. Although ß3 -AR activation induced depression in both Na+ - and Ca2+ -currents, the prolonged action potential (AP) seems to be associated with a marked depression in K+ -currents. The ß3 -AR activation caused a negative inotropic effect on the mechanical activity of the heart, through affecting the cellular Ca2+ -handling, including its effect on Ca2+ -leakage from sarcoplasmic reticulum (SR). Our cellular level data with ß3 -AR agonism were supported with the data on high [Zn2+ ]i and ß3 -AR protein-level in metabolic syndrome (MetS)-rat heart. Overall, our present data can emphasize the important deleterious effect of ß3 -AR activation in cardiac remodeling under pathological condition, at least, through a cross-link between ß3 -AR activation, NO-signaling, and [Zn2+ ]i pathways. Moreover, it is interesting to note that the recovery in ER-stress markers with ß3 -AR agonism in hyperglycemic cardiomyocytes is favored. Therefore, how long and to which level the ß3 -AR agonism would be friend or become foe remains to be mystery, yet.


Assuntos
Contração Miocárdica/fisiologia , Espécies Reativas de Nitrogênio/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Zinco/metabolismo , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Animais , Sinalização do Cálcio , Linhagem Celular , Dioxóis/farmacologia , Masculino , Potencial da Membrana Mitocondrial , Síndrome Metabólica/metabolismo , Modelos Cardiovasculares , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptores Adrenérgicos beta 3/genética
19.
J Neurochem ; 150(1): 74-87, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31077378

RESUMO

Soluble oligomers of the 42-amino acid amyloid beta (Aß42) peptide are highly toxic and suspected as the causative agent of synaptic dysfunction and neuronal loss in Alzheimer's disease (AD). Previously, we have shown that a small, D-amino acid Aß42-oligomer interacting peptide (D-AIP) can neutralize human Aß42-mediated toxicity using in vitro and cell-based assays. In the present longitudinal study using a transgenic Drosophila melanogaster model, advanced live confocal imaging and mass spectrometry imaging (MALDI-MSI) showed that the eight amino acid D-AIP can attenuate Aß42-induced toxicity in vivo. By separating male and female flies into distinct groups, the resultant distribution of ingested D-AIP was different between the sexes. The Aß42-induced 'rough eye' phenotype could be rescued in the female transgenics, likely because of the co-localization of D-AIP with human Aß42 in the female fly heads. Interestingly, the phenotype could not be rescued in the male transgenics, likely because of the co-localization of D-AIP with a confounding male-specific sex peptide (Acp70A candidate in MSI spectra) in the gut of the male flies. As a novel, more cost-effective strategy to prevent toxic amyloid formation during the early stages of AD (i.e. neutralization of toxic low-order Aß42 oligomers without creating larger aggregates in the process), our longitudinal study establishes that D-AIP is a stable and highly effective neutralizer of toxic Aß42 peptides in vivo. Cover Image for this issue: doi: 10.1111/jnc.14512.


Assuntos
Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/toxicidade , Encéfalo/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Feminino , Humanos , Estudos Longitudinais , Masculino
20.
Development ; 143(24): 4749-4754, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27836961

RESUMO

Although much is known about the embryo during implantation, the architecture of the uterine environment in which the early embryo develops is not well understood. We employed confocal imaging in combination with 3D analysis to identify and quantify dynamic changes to the luminal structure of murine uterus in preparation for implantation. When applied to mouse mutants with known implantation defects, this method detected striking peri-implantation abnormalities in uterine morphology that cannot be visualized by histology. We revealed 3D organization of uterine glands and found that they undergo a stereotypical reorientation concurrent with implantation. Furthermore, we extended this technique to generate a 3D rendering of the cycling human endometrium. Analyzing the uterine and embryo structure in 3D for different genetic mutants and pathological conditions will help uncover novel molecular pathways and global structural changes that contribute to successful implantation of an embryo.


Assuntos
Blastocisto/ultraestrutura , Implantação do Embrião/fisiologia , Embrião de Mamíferos/ultraestrutura , Endométrio/ultraestrutura , Útero/ultraestrutura , Animais , Embrião de Mamíferos/diagnóstico por imagem , Endométrio/diagnóstico por imagem , Endométrio/fisiologia , Feminino , Humanos , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos C57BL , Útero/diagnóstico por imagem , Útero/fisiologia , Proteína Wnt-5a/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA