Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Biomech Eng ; 142(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31596920

RESUMO

We propose a novel structure-based two-dimensional (2D) mathematical model of hypertension-induced arterial remodeling. The model is built in the framework of the constrained mixture theory and global growth approach, utilizing a recently proposed structure-based constitutive model of arterial tissue that accounts for the individual natural configurations of and stress interaction between elastin and collagen. The basic novel predictive result is that provided remodeling causes a change in the elastin/collagen mass fraction ratio, it leads to a structural reorganization of collagen that manifests as an altered fiber undulation and a change in direction of the helically oriented fibers in the tissue natural state. Results obtained from the illustrative simulations for a porcine renal artery show that when remodeling is complete the collagen reorganization might have significant effects on the initial arterial geometry and mechanical properties of the arterial tissue. The proposed model has potential to describe and advance mechanistic understanding of adaptive arterial remodeling, promote the continual refinement of mathematical models of arterial remodeling, and provide motivation for new avenues of experimental investigation.


Assuntos
Modelos Cardiovasculares , Animais , Colágeno , Elasticidade , Elastina , Estresse Mecânico , Suínos
2.
Artigo em Inglês | MEDLINE | ID: mdl-32655195

RESUMO

Constrained mixture models of soft tissue growth and remodeling can simulate many evolving conditions in health as well as in disease and its treatment, but they can be computationally expensive. In this paper, we derive a new fast, robust finite element implementation based on a concept of mechanobiological equilibrium that yields fully resolved solutions and allows computation of quasi-equilibrated evolutions when imposed perturbations are slow relative to the adaptive process. We demonstrate quadratic convergence and verify the model via comparisons with semi-analytical solutions for arterial mechanics. We further examine the enlargement of aortic aneurysms for which we identify new mechanobiological insights into factors that affect the nearby non-aneurysmal segment as it responds to the changing mechanics within the diseased segment. Because this new 3D approach can be implemented within many existing finite element solvers, constrained mixture models of growth and remodeling can now be used more widely.

3.
Int J Eng Sci ; 141: 35-46, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32831391

RESUMO

Uncontrolled hypertension is a major risk factor for myriad cardiovascular diseases. Among its many effects, hypertension increases central artery stiffness which in turn is both an initiator and indicator of disease. Despite extensive clinical, animal, and basic science studies, the biochemomechanical mechanisms by which hypertension drives aortic stiffening remain unclear. In this paper, we show that a new computational model of aortic growth and remodeling can capture differential effects of induced hypertension on the thoracic and abdominal aorta in a common mouse model of disease. Because the simulations treat the aortic wall as a constrained mixture of different constituents having different material properties and rates of turnover, one can gain increased insight into underlying constituent-level mechanisms of aortic remodeling. Model results suggest that the aorta can mechano-adapt locally to blood pressure elevation in the absence of marked inflammation, but large increases in inflammation drive a persistent maladaptive phenotype characterized primarily by adventitial fibrosis. Moreover, this fibrosis appears to occur via a marked increase in the rate of deposition of collagen having different material properties in the absence of a compensatory increase in the rate of matrix degradation. Controlling inflammation thus appears to be key to reducing fibrosis, but therapeutic strategies should not compromise the proteolytic activity of the wall that is essential to mechanical homeostasis.

4.
Biomech Model Mechanobiol ; 23(4): 1137-1148, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38548952

RESUMO

Traditional medical imaging and biomechanical studies have challenges in analyzing the long-term evolution process of abdominal aortic aneurysm (AAA). The homogenized constrained mixture theory (HCMT) allows for quantitative analysis of the changes in the multidimensional morphology and composition of AAA. However, the accuracy of HCMT still requires further clinical verification. This study aims to establish a patient-specific AAA growth model based on HCMT, simulate the long-term growth and remodeling (G&R) process of AAA, and validate the feasibility and accuracy of the method using two additional AAA cases with five follow-up datasets. The media and adventitia layers of AAA were modeled as mixtures composed of elastin, collagen fibers, and smooth muscle cells (SMCs). The strain energy function was used to describe the continuous deposition and degradation effect of the mixture during the AAA evolution. Multiple sets of growth parameters were applied to finite element simulations, and the simulation results were compared with the follow-up data for gradually selecting the optimal growth parameters. Two additional AAA patients with different growth rates were used for validating this method, the optimal growth parameters were obtained using the first two follow-up imaging data, and the growth model was applied to simulate the subsequent four time points. The differences between the simulated diameters and the follow-up diameters of AAA were compared to validate the accuracy of the mechanistic model. The growth parameters, especially the stress-mediated substance deposition gain factor, are highly related to the AAA G&R process. When setting the optimal growth parameters to simulate AAA growth, the proportion of simulation results within the distance of less than 0.5 mm from the baseline models is above 80%. For the validating cases, the mean difference rates between the simulated diameter and the real-world diameter are within 2.5%, which basically meets the clinical demand for quantitatively predicting the AAA growth in maximum diameters. This study simulated the growth process of AAA, and validated the accuracy of this mechanistic model. This method was proved to be used to predict the G&R process of AAA caused by dynamic changes in the mixtures of the AAA vessel wall during long-term, assisting accurately and quantitatively predicting the multidimensional morphological development and mixtures evolution process of AAA in the clinic.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/fisiopatologia , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Humanos , Análise de Elementos Finitos , Modelos Cardiovasculares , Estresse Mecânico , Reprodutibilidade dos Testes , Simulação por Computador , Masculino , Fenômenos Biomecânicos
5.
J Mech Behav Biomed Mater ; 140: 105733, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36821910

RESUMO

Biological soft tissues are constantly adapting to their mechanical environment and remodel to restore certain mechanobiological homeostatic conditions. These effects can be modeled using the constrained mixture theory, that assumes degradation of material over time and the gradual replacement of extant material by newly deposited material. While this theory presents an elegant way to grasp phenomena of growth and remodeling in soft biological tissues, implementation difficulties may arise. Therefore, we give a detailed overview of the mathematical description of the constrained mixture theory and its homogenized equivalent, and present practical suggestions to numerically implement the theories. These implementations are thoroughly tested with multiple example growth and remodeling models. Results show a good correspondence between both theories, with the homogenized theory favored in terms of time efficiency. Results of a step time convergence study show the importance of choosing a small enough time step, especially when using the classical theory.


Assuntos
Algoritmos , Modelos Biológicos , Estresse Mecânico
6.
Int J Numer Method Biomed Eng ; 39(4): e3608, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35490334

RESUMO

Collagen fibers and their orientation greatly influence an artery's mechanical characteristics, determining its transversely isotropic behavior. It is generally assumed that these fibers are deposited along a preferred direction to maximize the load bearing capacity of the vessel wall. This implies a large spatial variation in collagen orientation which can be reconstructed in numerical models using so-called reorientation algorithms. Until now, these algorithms have used the classical continuum mechanics modeling framework which requires knowledge of tissue-level parameters and the artery's stress-free reference state, which is inaccessible in a clinical context. We present an algorithm to compute the preferred fiber distribution compatible with the constrained mixture theory, which orients two collagen fiber families according to the loading experienced by the isotropic non-collagenous extracellular matrix, without requiring prior knowledge of the stress-free state. Because consensus is lacking whether stress or stretch is the determining factor behind the preferred fiber distribution, we implemented both approaches and compared the results with experimental microstructural data of an abdominal aorta. The stress-based algorithm was able to describe several experimentally observed transitions of the fiber distribution across the intima, media and adventitia.


Assuntos
Artérias , Colágeno , Humanos , Colágeno/química , Matriz Extracelular , Aorta Abdominal , Estresse Mecânico , Fenômenos Biomecânicos
7.
Biomech Model Mechanobiol ; 22(6): 2063-2082, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37505299

RESUMO

The production, removal, and remodeling of fibrillar collagen is fundamental to mechanical homeostasis in arteries, including dynamic morphological and microstructural changes that occur in response to sustained changes in blood flow and pressure under physiological conditions. These dynamic processes involve complex, coupled biological, chemical, and mechanical mechanisms that are not completely understood. Nevertheless, recent simulations using constrained mixture models with phenomenologically motivated constitutive relations have proven able to predict salient features of the progression of certain vascular adaptations as well as disease processes. Collagen turnover is modeled, in part, via stress-dependent changes in collagen half-life, typically within the range of 10-70 days. By contrast, in this work we introduce a biochemomechanical approach to model the cellular synthesis of procollagen as well as its transition from an intermediate state of assembled microfibrils to mature cross-linked fibers, with mechano-regulated removal. The resulting model can simulate temporal changes in geometry, composition, and stress during early vascular adaptation (weeks to months) for modest changes in blood flow or pressure. It is shown that these simulations capture salient features from data presented in the literature from different animal models.


Assuntos
Artérias , Modelos Cardiovasculares , Animais , Artérias/fisiologia , Colágeno/fisiologia , Hemodinâmica , Colágenos Fibrilares , Estresse Mecânico
8.
Biomech Model Mechanobiol ; 22(5): 1555-1568, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36764979

RESUMO

The pulmonary autograft in the Ross procedure, where the aortic valve is replaced by the patient's own pulmonary valve, is prone to failure due to dilatation. This is likely caused by tissue degradation and maladaptation, triggered by the higher experienced mechanical loads in aortic position. In order to further grasp the causes of dilatation, this study presents a model for tissue growth and remodeling of the pulmonary autograft, using the homogenized constrained mixture theory and equations for immuno- and mechano-mediated mass turnover. The model outcomes, compared to experimental data from an animal model of the pulmonary autograft in aortic position, show that inflammation likely plays an important role in the mass turnover of the tissue constituents and therefore in the autograft dilatation over time. We show a better match and prediction of long-term outcomes assuming immuno-mediated mass turnover, and show that there is no linear correlation between the stress-state of the material and mass production. Therefore, not only mechanobiological homeostatic adaption should be taken into account in the development of growth and remodeling models for arterial tissue in similar applications, but also inflammatory processes.


Assuntos
Valva Aórtica , Artéria Pulmonar , Animais , Humanos , Transplante Autólogo , Autoenxertos , Dilatação , Valva Aórtica/cirurgia , Simulação por Computador , Inflamação
9.
Biomech Model Mechanobiol ; 22(5): 1569-1588, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37024602

RESUMO

Blood vessels grow and remodel in response to mechanical stimuli. Many computational models capture this process phenomenologically, by assuming stress homeostasis, but this approach cannot unravel the underlying cellular mechanisms. Mechano-sensitive Notch signaling is well-known to be key in vascular development and homeostasis. Here, we present a multiscale framework coupling a constrained mixture model, capturing the mechanics and turnover of arterial constituents, to a cell-cell signaling model, describing Notch signaling dynamics among vascular smooth muscle cells (SMCs) as influenced by mechanical stimuli. Tissue turnover was regulated by both Notch activity, informed by in vitro data, and a phenomenological contribution, accounting for mechanisms other than Notch. This novel framework predicted changes in wall thickness and arterial composition in response to hypertension similar to previous in vivo data. The simulations suggested that Notch contributes to arterial growth in hypertension mainly by promoting SMC proliferation, while other mechanisms are needed to fully capture remodeling. The results also indicated that interventions to Notch, such as external Jagged ligands, can alter both the geometry and composition of hypertensive vessels, especially in the short term. Overall, our model enables a deeper analysis of the role of Notch and Notch interventions in arterial growth and remodeling and could be adopted to investigate therapeutic strategies and optimize vascular regeneration protocols.


Assuntos
Hipertensão , Músculo Liso Vascular , Humanos , Artérias , Transdução de Sinais , Simulação por Computador , Miócitos de Músculo Liso
10.
Biomech Model Mechanobiol ; 22(6): 1983-2002, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37482576

RESUMO

Cardiac growth and remodeling (G&R) patterns change ventricular size, shape, and function both globally and locally. Biomechanical, neurohormonal, and genetic stimuli drive these patterns through changes in myocyte dimension and fibrosis. We propose a novel microstructure-motivated model that predicts organ-scale G&R in the heart based on the homogenized constrained mixture theory. Previous models, based on the kinematic growth theory, reproduced consequences of G&R in bulk myocardial tissue by prescribing the direction and extent of growth but neglected underlying cellular mechanisms. In our model, the direction and extent of G&R emerge naturally from intra- and extracellular turnover processes in myocardial tissue constituents and their preferred homeostatic stretch state. We additionally propose a method to obtain a mechanobiologically equilibrated reference configuration. We test our model on an idealized 3D left ventricular geometry and demonstrate that our model aims to maintain tensional homeostasis in hypertension conditions. In a stability map, we identify regions of stable and unstable G&R from an identical parameter set with varying systolic pressures and growth factors. Furthermore, we show the extent of G&R reversal after returning the systolic pressure to baseline following stage 1 and 2 hypertension. A realistic model of organ-scale cardiac G&R has the potential to identify patients at risk of heart failure, enable personalized cardiac therapies, and facilitate the optimal design of medical devices.


Assuntos
Insuficiência Cardíaca , Hipertensão , Humanos , Coração , Miocárdio , Organogênese , Remodelação Ventricular
11.
Front Bioeng Biotechnol ; 11: 1301988, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053847

RESUMO

The Constrained Mixture Model (CMM) is a novel approach to describe arterial wall mechanics, whose formulation is based on a referential physiological state. The CMM considers the arterial wall as a mixture of load-bearing constituents, each of them with characteristic mass fraction, material properties, and deposition stretch levels from its stress-free state to the in-vivo configuration. Although some reports of this model successfully assess its capabilities, they barely explore experimental approaches to model patient-specific scenarios. In this sense, we propose an iterative fitting procedure of numerical-experimental nature to determine material parameters and deposition stretch values. To this end, the model has been implemented in a finite element framework, and it is calibrated using reported experimental data of descending thoracic aorta. The main results obtained from the proposed procedure consist of a set of material parameters for each constituent. Moreover, a relationship between deposition stretches and residual strain measurements (opening angle and axial stretch) has been numerically proved, establishing a strong consistency between the model and experimental data.

12.
Acta Biomater ; 166: 375-399, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37201740

RESUMO

Progressive left ventricular (LV) growth and remodelling (G&R) is often induced by volume and pressure overload, characterized by structural and functional adaptation through myocyte hypertrophy and extracellular matrix remodelling, which are dynamically regulated by biomechanical factors, inflammation, neurohormonal pathways, etc. When prolonged, it can eventually lead to irreversible heart failure. In this study, we have developed a new framework for modelling pathological cardiac G&R based on constrained mixture theory using an updated reference configuration, which is triggered by altered biomechanical factors to restore biomechanical homeostasis. Eccentric and concentric growth, and their combination have been explored in a patient-specific human LV model under volume and pressure overload. Eccentric growth is triggered by overstretching of myofibres due to volume overload, i.e. mitral regurgitation, whilst concentric growth is driven by excessive contractile stress due to pressure overload, i.e. aortic stenosis. Different biological constituent's adaptations under pathological conditions are integrated together, which are the ground matrix, myofibres and collagen network. We have shown that this constrained mixture-motivated G&R model can capture different phenotypes of maladaptive LV G&R, such as chamber dilation and wall thinning under volume overload, wall thickening under pressure overload, and more complex patterns under both pressure and volume overload. We have further demonstrated how collagen G&R would affect LV structural and functional adaption by providing mechanistic insight on anti-fibrotic interventions. This updated Lagrangian constrained mixture based myocardial G&R model has the potential to understand the turnover processes of myocytes and collagen due to altered local mechanical stimuli in heart diseases, and in providing mechanistic links between biomechanical factors and biological adaption at both the organ and cellular levels. Once calibrated with patient data, it can be used for assessing heart failure risk and designing optimal treatment therapies. STATEMENT OF SIGNIFICANCE: Computational modelling of cardiac G&R has shown high promise to provide insight into heart disease management when mechanistic understandings are quantified between biomechanical factors and underlying cellular adaptation processes. The kinematic growth theory has been dominantly used to phenomenologically describe the biological G&R process but neglecting underlying cellular mechanisms. We have developed a constrained mixture based G&R model with updated reference by taking into account different mechanobiological processes in the ground matrix, myocytes and collagen fibres. This G&R model can serve as a basis for developing more advanced myocardial G&R models further informed by patient data to assess heart failure risk, predict disease progression, select the optimal treatment by hypothesis testing, and eventually towards a truly precision cardiology using in-silico models.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/patologia , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Remodelação Ventricular
13.
J Food Sci ; 87(7): 3026-3035, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35638338

RESUMO

The reducing flavor of whole grain bread has been constantly affecting the consumption desire of a significant proportion of consumers. The study presents the use of lychee pulp pomace (LPP) powder to replace certain proportion of wheat flour and produce wheat bread with better quality, while having minimal effects on the volume and improving the nutritional quality. Distinct particle sizes (60-400 µm) of LPP powder were obtained by superfine or ordinary grinding. Effect of different additive proportions (7-19%) of LPP powder on bread dough quality were studied by constrained mixture designs. The volume of fermented doughs subsequently decreased after adding LPP powder. However, LPP powders with smaller particle sizes were able to minimize this effect due to its higher water-holding capacity. The analyses of gluten network showed that smaller particle sizes of LPP powder resulted in a decrease in surface hydrophobicity and increase in the elasticity and stability of gluten network. Finally, optimum mixture formula was composed of 16% LPP powder with 60 µm particle size and 15% water. The study illustrated the potential to make high-quality bread with small particle size of LPP powder. PRACTICAL APPLICATION: The addition of dietary fiber to wheat flour can adversely affect the dough volume and reduce the dough quality. By reducing the particle size of lychee pulp pomace powder, this adverse effect could be minimized while increasing the content of dietary fiber and bound phenolics in the dough. This provides data for the production of high-quality lychee dough bread.


Assuntos
Pão , Litchi , Fibras na Dieta , Farinha , Glutens , Tamanho da Partícula , Pós , Triticum , Água
14.
Int J Numer Method Biomed Eng ; 38(1): e3545, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724357

RESUMO

Computational investigations of how soft tissues grow and remodel are gaining more and more interest and several growth and remodeling theories have been developed. Roughly, two main groups of theories for soft tissues can be distinguished: kinematic-based growth theory and theories based on constrained mixture theory. Our goal was to apply these two theories on the same experimental data. Within the experiment, a pulmonary artery was exposed to systemic conditions. The change in diameter was followed-up over time. A mechanical and microstructural analysis of native pulmonary artery and pulmonary autograft was conducted. Whereas the kinematic-based growth theory is able to accurately capture the growth of the tissue, it does not account for the mechanobiological processes causing this growth. The constrained mixture theory takes into account the mechanobiological processes including removal, deposition and adaptation of all structural constituents, allowing us to simulate a changing microstructure and mechanical behavior.


Assuntos
Artéria Pulmonar , Autoenxertos , Fenômenos Biomecânicos , Transplante Autólogo
15.
Front Bioeng Biotechnol ; 10: 937326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304893

RESUMO

The simulation of the cardiovascular system and in silico clinical trials have garnered attention in the biomedical engineering field. Physics-based modeling is essential to associate with physical and clinical features. In physics-based constitutive modeling, the identification of the parameters and estimation of their ranges based on appropriate experiments are required. Uniaxial tests are commonly used in the field of vascular mechanics, but they have limitations in fully characterizing the regional mechanical behavior of the aorta. Therefore, this study is aimed at identifying a method to integrate constitutive models with experimental data to elucidate regional aortic behavior. To create a virtual two-dimensional dataset, a pair of uniaxial experimental datasets in the longitudinal and circumferential directions was combined using a one-to-many correspondence method such as bootstrap aggregation. The proposed approach is subsequently applied to three constitutive models, i.e., the Fung model, Holzapfel model, and constrained mixture model, to estimate the material parameters based on the four test regions of the porcine thoracic aorta. Finally, the regional difference in the mechanical behavior of the aorta, the correlation between the experimental characteristics and model parameters, and the inter-correlation of the material parameters are confirmed. This integrative approach will enhance the prediction capability of the model with respect to the regions of the aorta.

16.
Biomech Model Mechanobiol ; 21(2): 455-469, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35067825

RESUMO

Evolution of mechanical and structural properties in the Ascending Thoracic Aorta (ATA) is the results of complex mechanobiological processes. In this work, we address some numerical challenges in order to elaborate computational models of these processes. For that, we extend the state of the art of homogenized constrained mixture (hCM) models. In these models, prestretches are assigned to the mixed constituents in order to ensure local mechanical equilibrium macroscopically, and to maintain a homeostatic level of tension in collagen fibers microscopically. Although the initial prestretches were assumed as homogeneous in idealized straight tubes, more elaborate prestretch distributions need to be considered for curved geometrical models such as patient-specific ATA. Therefore, we introduce prestretches having a three-dimensional gradient across the ATA geometry in the homeostatic reference state. We test different schemes with the objective to ensure stable growth and remodeling (G&R) simulations on patient-specific curved vessels. In these simulations, aneurysm progression is triggered by tissue changes in the constituents such as mass degradation of intramural elastin. The results show that the initial prestretches are not only critical for the stability of numerical simulations, but they also affect the G&R response. Eventually, we submit that initial conditions required for G&R simulations need to be identified regionally for ensuring realistic patient-specific predictions of aneurysm progression.


Assuntos
Aneurisma , Aorta , Biofísica , Humanos , Estresse Mecânico
17.
Int J Numer Method Biomed Eng ; 38(2): e3547, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34719114

RESUMO

Aneurysm shrinkage is clinically observed after successful endovascular aortic aneurysm repair (EVAR). However, global understanding of post-operative aneurysm evolutions remains weak. In this work, we propose to study these effects using numerical simulation. We set up a 3D finite-element model of post-EVAR vascular adaptation within an open-source finite-element code, which was initially developed for growth and remodeling (G&R). We modeled the endograft with a set of uniaxial prestrained springs that apply radial forces on the inner surface of the artery. Constitutive equations, momentum balance equations, and equations related to the mechanobiology of the artery were formulated based on the homogenized constrained mixture theory. We performed a sensitivity analysis by varying different selected parameters, namely oversizing and compliance of the stent-graft, gain parameters related to collagen G&R, and the residual pressure in the aneurysm sac. This permitted us to evaluate how each factor influences post-EVAR vascular adaptation. It was found that oversizing, compliance or gain parameters have a limited influence compared to that of the residual pressure in the aneurysm sac, which was found to play a critical role in the stability of aneurysm after stent-graft implantation. An excessive residual pressure larger than 50 mmHg can induce a continuous expansion of the aneurysm while a moderate residual pressure below this critical threshold yields continuous shrinkage of the aneurysm. Moreover, it was found that elderly patients, with relatively lower amounts of remnant elastin in the arterial wall, are more sensitive to the effect of residual pressure. Therefore, these results show that elderly patients may present a higher potential risk of aortic sac expansion due to intra-aneurysm sac pressure after EVAR than younger patients.


Assuntos
Aneurisma da Aorta Abdominal , Implante de Prótese Vascular , Procedimentos Endovasculares , Idoso , Aneurisma da Aorta Abdominal/etiologia , Aneurisma da Aorta Abdominal/cirurgia , Prótese Vascular/efeitos adversos , Humanos , Stents/efeitos adversos , Resultado do Tratamento
18.
J Mech Behav Biomed Mater ; 114: 104161, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33229142

RESUMO

Computational modeling of cardiovascular biomechanics should generally start from a homeostatic state. This is particularly relevant for image-based modeling, where the reference configuration is the loaded in vivo state obtained from imaging. This state includes residual stress of the vascular constituents, as well as anisotropy from the spatially varying orientation of collagen and smooth muscle fibers. Estimation of the residual stress and fiber orientation fields is a formidable challenge in realistic applications. To help address this challenge, we herein develop a growth based Algorithm to recover a residual stress distribution in vascular domains such that the stress state in the loaded configuration is equal to a prescribed homeostatic stress distribution at physiologic pressure. A stress-driven fiber deposition process is included in the framework, which defines the distribution of the fiber alignments in the vascular homeostatic state based on a minimization procedure. Numerical simulations are conducted to test this two-stage homeostasis generation algorithm in both idealized and non-idealized geometries, yielding results that agree favorably with prior numerical and experimental data.


Assuntos
Sistema Cardiovascular , Colágeno , Anisotropia , Fenômenos Biomecânicos , Simulação por Computador , Homeostase , Estresse Mecânico
19.
Comput Methods Programs Biomed ; 205: 106107, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33933713

RESUMO

BACKGROUND AND OBJECTIVE: The prevention of ascending thoracic aortic aneurysms (ATAAs), which affect thousands of persons every year worldwide, remains a major issue. ATAAs may be caused by anything that weakens the aortic wall. Altered hemodynamics, which concerns a majority of patients with bicuspid aortic valves, has been shown to be related to such weakening and to contribute to ATAA development and progression. However the underlying mechanisms remain unclear and computational modeling in this field could help significantly to elucidate how hemodynamics and mechanobiology interact in ATAAs. METHODS: Accordingly, we propose a numerical framework combining computational fluid dynamics and 4D flow magnetic resonance imaging (MRI) coupled with finite element (FE) analyses to simulate growth and remodeling (G&R) occurring in patient-specific aortas in relation with altered hemodynamics. The geometries and the blood velocities obtained from 4D flow MRI are used as boundary conditions for CFD simulations. CFD simulations provide an estimation of the wall shear stress (WSS) and relative residence time (RRT) distribution across the luminal surface of the wall. An initial insult is then applied to the FE model of the aortic wall, assuming that the magnitude of the insult correlates spatially with the normalized RRT distribution obtained from CFD simulations. G&R simulations are then performed. The material behavior of each Gauss point in these FE models is evolved continuously to compensate for the deviation of the actual wall stress distribution from the homeostatic state after the initial insult. The whole approach is illustrated on two healthy and two diseased subjects. The G&R parameters are calibrated against previously established statistical models of ATAA growth rates. RESULTS: Among the variety of results provided by G&R simulations, the analysis focused especially on the evolution of the wall stiffness, which was shown to be a major risk factor for ATAAs. It was shown that the G&R parameters, such as for instance the rate of collagen production or cell mechanosensitivity, play a critical role in ATAA progression and remodeling. CONCLUSIONS: These preliminary findings show that patient-specific computational modeling coupling hemodynamics with mechanobiology is a promising approach to explore aneurysm progression.


Assuntos
Aneurisma da Aorta Torácica , Aneurisma da Aorta Torácica/diagnóstico por imagem , Valva Aórtica , Biofísica , Hemodinâmica , Humanos , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Estresse Mecânico
20.
J R Soc Interface ; 18(178): 20210068, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33947223

RESUMO

Restenosis is one of the main adverse effects of the treatment of atherosclerosis through balloon angioplasty or stenting. During the intervention, the arterial wall is overstretched, causing a cascade of cellular events and subsequent neointima formation. This mechanical stimulus and its mechanobiological effects can be reproduced in biomechanical simulations. The aim of these models is to predict the long-term outcome of these procedures, to help increase the understanding of restenosis formation and to allow for in silico optimization of the treatment. We propose a predictive finite-element model of restenosis, using the homogenized constrained mixture modelling framework designed to model growth and remodelling in soft tissues. We compare the results with clinical observations in human coronary arteries and experimental findings in non-human primate models. We also explore the model's clinical relevance by testing its response to different balloon loads and to the use of drug-eluting balloons. The comparison of the results with experimental data shows the relevance of the model. We show its ability to predict both inward and outward remodelling as observed in vivo and we show the importance of an improved understanding of restenosis formation from a biomechanical point of view.


Assuntos
Angioplastia Coronária com Balão , Angioplastia com Balão , Reestenose Coronária , Constrição Patológica , Reestenose Coronária/terapia , Humanos , Stents , Resultado do Tratamento , Remodelação Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA