Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 484
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(8): 1874-1888.e14, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38518773

RESUMO

Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Pulmão , Polissacarídeos Bacterianos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Feminino , Masculino , Camundongos , Biofilmes , Escherichia coli/fisiologia , Hipotermia/metabolismo , Hipotermia/patologia , Inflamação/metabolismo , Inflamação/patologia , Pulmão/microbiologia , Pulmão/patologia , Pneumonia/microbiologia , Pneumonia/patologia , Pseudomonas aeruginosa/fisiologia , Células Receptoras Sensoriais , Polissacarídeos Bacterianos/metabolismo , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Nociceptores/metabolismo
2.
Cell ; 186(19): 4152-4171.e31, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37669667

RESUMO

Social preference, the decision to interact with one member of the same species over another, is critical to optimize social interactions. Thus, adult rodents favor interacting with novel conspecifics over familiar ones, but whether this social preference stems from neural circuits facilitating interactions with novel individuals or suppressing interactions with familiar ones remains unknown. Here, we identify neurons in the infra-limbic area (ILA) of the mouse prefrontal cortex that express the neuropeptide corticotropin-releasing hormone (CRH) and project to the dorsal region of the rostral lateral septum (rLS). We show how release of CRH during familiar encounters disinhibits rLS neurons, thereby suppressing social interactions with familiar mice and contributing to social novelty preference. We further demonstrate how the maturation of CRH expression in ILA during the first 2 post-natal weeks enables the developmental shift from a preference for littermates in juveniles to a preference for novel mice in adults.


Assuntos
Hormônio Liberador da Corticotropina , Córtex Pré-Frontal , Animais , Camundongos , Neurônios , Transdução de Sinais , Percepção
3.
Cell ; 167(1): 73-86.e12, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27662084

RESUMO

Urine release (micturition) serves an essential physiological function as well as a critical role in social communication in many animals. Here, we show a combined effect of olfaction and social hierarchy on micturition patterns in adult male mice, confirming the existence of a micturition control center that integrates pro- and anti-micturition cues. Furthermore, we demonstrate that a cluster of neurons expressing corticotropin-releasing hormone (Crh) in the pontine micturition center (PMC) is electrophysiologically distinct from their Crh-negative neighbors and sends glutamatergic projections to the spinal cord. The activity of PMC Crh-expressing neurons correlates with and is sufficient to drive bladder contraction, and when silenced impairs micturition behavior. These neurons receive convergent input from widespread higher brain areas that are capable of carrying diverse pro- and anti-micturition signals, and whose activity modulates hierarchy-dependent micturition. Taken together, our results indicate that PMC Crh-expressing neurons are likely the integration center for context-dependent micturition behavior.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Contração Muscular/fisiologia , Neurônios/fisiologia , Ponte/fisiologia , Bexiga Urinária/fisiologia , Micção/fisiologia , Animais , Feminino , Ácido Glutâmico/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Ponte/citologia , Olfato , Medula Espinal/citologia , Medula Espinal/fisiologia , Bexiga Urinária/inervação
4.
J Neurosci ; 44(27)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38789262

RESUMO

We previously showed that orexin neurons are activated by hypoxia and facilitate the peripheral chemoreflex (PCR)-mediated hypoxic ventilatory response (HVR), mostly by promoting the respiratory frequency response. Orexin neurons project to the nucleus of the solitary tract (nTS) and the paraventricular nucleus of the hypothalamus (PVN). The PVN contributes significantly to the PCR and contains nTS-projecting corticotropin-releasing hormone (CRH) neurons. We hypothesized that in male rats, orexin neurons contribute to the PCR by activating nTS-projecting CRH neurons. We used neuronal tract tracing and immunohistochemistry (IHC) to quantify the degree that hypoxia activates PVN-projecting orexin neurons. We coupled this with orexin receptor (OxR) blockade with suvorexant (Suvo, 20 mg/kg, i.p.) to assess the degree that orexin facilitates the hypoxia-induced activation of CRH neurons in the PVN, including those projecting to the nTS. In separate groups of rats, we measured the PCR following systemic orexin 1 receptor (Ox1R) blockade (SB-334867; 1 mg/kg) and specific Ox1R knockdown in PVN. OxR blockade with Suvo reduced the number of nTS and PVN neurons activated by hypoxia, including those CRH neurons projecting to nTS. Hypoxia increased the number of activated PVN-projecting orexin neurons but had no effect on the number of activated nTS-projecting orexin neurons. Global Ox1R blockade and partial Ox1R knockdown in the PVN significantly reduced the PCR. Ox1R knockdown also reduced the number of activated PVN neurons and the number of activated tyrosine hydroxylase neurons in the nTS. Our findings suggest orexin facilitates the PCR via nTS-projecting CRH neurons expressing Ox1R.


Assuntos
Hormônio Liberador da Corticotropina , Neurônios , Antagonistas dos Receptores de Orexina , Receptores de Orexina , Orexinas , Ratos Sprague-Dawley , Núcleo Solitário , Animais , Masculino , Hormônio Liberador da Corticotropina/metabolismo , Orexinas/metabolismo , Ratos , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/efeitos dos fármacos , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiologia , Núcleo Solitário/efeitos dos fármacos , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina/metabolismo , Hipóxia/metabolismo , Triazóis/farmacologia , Azepinas/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiologia
5.
Proc Natl Acad Sci U S A ; 119(49): e2211454119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442105

RESUMO

Neuromodulatory substances can be released from distal afferents for communication between brain structures or produced locally to modulate neighboring circuit elements. Corticotropin-releasing hormone (CRH) from long-range neurons in the hypothalamus projecting to the medial prefrontal cortex (mPFC) has been shown to induce anxiety-like behaviors. However, the role of CRH produced in the mPFC has not been investigated. Here we demonstrate that a specific class of mPFC interneurons that express CRH (CrhINs) releases CRH upon high-frequency stimulation to enhance excitability of layer 2/3 pyramidal cells (L2/3 PCs) expressing the CRH receptors. When stimulated at low frequency, CrhINs release GABA resulting in the inhibition of oxytocin receptor-expressing interneurons (OxtrINs) and L2/3 PCs. Conditional deletion of CRH in mPFC CrhINs and chemogenetic activation of CrhINs have opposite effects on novelty exploration in male but not in female mice, and do not affect anxiety-related behaviors in either males or females. Our data reveal that CRH produced by local interneurons in the mPFC is required for sex-specific novelty exploration and suggest that our understanding of complex behaviors may require knowledge of local and remote neuromodulatory action.


Assuntos
Hormônio Liberador da Corticotropina , Córtex Pré-Frontal , Feminino , Masculino , Animais , Camundongos , Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina , Células Piramidais , Interneurônios
6.
J Neurosci ; 43(24): 4513-4524, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37160364

RESUMO

Corticotropin-releasing hormone (CRH) is a neuropeptide regulating neuroendocrine and autonomic function. CRH mRNA and protein levels in the hypothalamic paraventricular nucleus (PVN) are increased in primary hypertension. However, the role of CRH in elevated sympathetic outflow in primary hypertension remains unclear. CRHR1 proteins were distributed in retrogradely labeled PVN presympathetic neurons with an increased level in the PVN tissue in adult spontaneously hypertensive rats (SHRs) compared with age-matched male Wistar-Kyoto (WKY) rats. CRH induced a more significant increase in the firing rate of PVN-rostral ventrolateral medulla (RVLM) neurons and sympathoexcitatory response in SHRs than in WKY rats, an effect that was blocked by preapplication of NMDA receptors (NMDARs) antagonist AP5 and PSD-95 inhibitor, Tat-N-dimer. Blocking CRHRs with astressin or CRHR1 with NBI35965 significantly decreased the firing rate of PVN-RVLM output neurons and reduced arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) in SHRs but not in WKY, whereas blocking CRHR2 with antisauvagine-30 did not. Furthermore, Immunocytochemistry staining revealed that CRHR1 colocalized with NMDARs in PVN presympathetic neurons. Blocking CRHRs significantly decreased the NMDA currents in labeled PVN neurons. PSD-95-bound CRHR1 and PSD-95-bound GluN2A in the PVN were increased in SHRs. These data suggested that the upregulation of CRHR1 in the PVN is critically involved in the hyperactivity of PVN presympathetic neurons and elevated sympathetic outflow in primary hypertension.SIGNIFICANCE STATEMENT Our study found that corticotropin-releasing hormone receptor (CRHR)1 protein levels were increased in the paraventricular nucleus (PVN), and CRHR1 interacts with NMDA receptors (NMDARs) through postsynaptic density protein (PSD)-95 in the PVN neurons in primary hypertension. The increased CRHR1 and CRHR1-NMDAR-PSD-95 complex in the PVN contribute to the hyperactivity of the PVN presympathetic neurons and elevated sympathetic vasomotor tone in hypertension in SHRs. Thus, the antagonism of CRHR1 decreases sympathetic outflow and blood pressure in hypertension. These findings determine a novel role of CRHR1 in elevated sympathetic vasomotor tone in hypertension, which is useful for developing novel therapeutics targeting CRHR1 to treat elevated sympathetic outflow in primary hypertension. The CRHR1 receptor antagonists, which are used to treat health consequences resulting from chronic stress, are candidates to treat primary hypertension.


Assuntos
Hipertensão Essencial , Hipertensão , Receptores de N-Metil-D-Aspartato , Animais , Masculino , Ratos , Hormônio Adrenocorticotrópico , Hormônio Liberador da Corticotropina/metabolismo , Hipertensão Essencial/metabolismo , Hipertensão/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/farmacologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema Nervoso Simpático/fisiologia
7.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G622-G630, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38375576

RESUMO

Biopsychosocial factors are associated with disorders of gut-brain interaction (DGBI) and exacerbate gastrointestinal symptoms. The mechanisms underlying pathophysiological alterations of stress remain unclear. Corticotropin-releasing hormone (CRH) is a central regulator of the hormonal stress response and has diverse impact on different organ systems. The aim of the present study was to investigate the effects of peripheral CRH infusion on meal-related gastrointestinal symptoms, gastric electrical activity, and gastric sensorimotor function in healthy volunteers (HVs). In a randomized, double-blinded, placebo-controlled, crossover study, we evaluated the effects of CRH on gastric motility and sensitivity. HVs were randomized to receive either peripheral-administered CRH (100 µg bolus + 1 µg/kg/h) or placebo (saline), followed by at least a 7-day washout period and assignment to the opposite treatment. Tests encompassed saliva samples, gastric-emptying (GE) testing, body surface gastric mapping (BSGM, Gastric Alimetry; Alimetry) to assess gastric myoelectrical activity with real-time symptom profiling, and a gastric barostat study to assess gastric sensitivity to distention and accommodation. Twenty HVs [13 women, mean age 29.2 ± 5.3 yr, body mass index (BMI) 23.3 ± 3.8 kg/m2] completed GE tests, of which 18 also underwent BSGM measurements during the GE tests. The GE half-time decreased significantly after CRH exposure (65.2 ± 17.4 vs. 78.8 ± 24.5 min, P = 0.02) with significantly increased gastric amplitude [49.7 (34.7-55.6) vs. 31.7 (25.7-51.0) µV, P < 0.01], saliva cortisol levels, and postprandial symptom severity. Eleven HVs also underwent gastric barostat studies on a separate day. However, the thresholds for discomfort during isobaric distensions, gastric compliance, and accommodation did not differ between CRH and placebo.NEW & NOTEWORTHY In healthy volunteers, peripheral corticotropin-releasing hormone (CRH) infusion accelerates gastric-emptying rate and increases postprandial gastric response, accompanied by a rise in symptoms, but does not alter gastric sensitivity or meal-induced accommodation. These findings underscore a significant link between stress and dyspeptic symptoms, with CRH playing a pivotal role in mediating these effects.


Assuntos
Hormônio Liberador da Corticotropina , Estudos Cross-Over , Esvaziamento Gástrico , Voluntários Saudáveis , Estômago , Humanos , Feminino , Masculino , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/administração & dosagem , Hormônio Liberador da Corticotropina/farmacologia , Adulto , Método Duplo-Cego , Estômago/efeitos dos fármacos , Estômago/fisiologia , Esvaziamento Gástrico/efeitos dos fármacos , Adulto Jovem , Saliva/metabolismo
8.
Biochem Biophys Res Commun ; 699: 149564, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38277725

RESUMO

Psychosocial stress is increasing, causing a growing number of people to suffer from hair loss. Stress-related corticotropin-releasing hormone (CRH) is associated with hair loss, but the mechanism by which hair follicles respond to stress and CRH remain poorly understood. The aim of the study is to elucidate the association between CRH and stress-related hair regenerative disorders, and reveal the potential pathological mechanisms. A chronic unpredictable stress mouse model and a chronic social defeat stress mouse model were used to examine the role of CRH and stress-related hair regrowth. Chronic unpredictable stress and chronic social defeat stress increased the expression of CRH and CRH receptors (CRHRs), and contributed to the onset of hair-cycle abnormalities. Psychoemotional stress and stress-related CRH blocked hair follicle regrowth, which could be restored by astressin, a CRHR antagonist. Long-term exposure to either chronic unpredictable stress or CRH induced a decrease in autophagy, which could be partially rescued by astressin. Activating CRHR, by stress or CRH administration, decreased autophagy via the mTOR-ULK1 signaling pathway to mediate hair regenerative disorders, which could be partially reversed through enhancing autophagy by administration of brefeldin A. These findings indicate that CRH-mediated autophagy inhibition play an important role in stress-induced hair regenerative disorders. CRH regulates the local hypothalamic-pituitary-adrenal axis of hair follicles, but also plays an independent pathogenic role in stress-related hair regenerative disorders through CRH-mediated autophagy inhibition. This work contributes to the present understanding of hair loss and suggests that enhancing autophagy may have a therapeutic effect on stress-induced hair loss.


Assuntos
Hormônio Liberador da Corticotropina , Sistema Hipotálamo-Hipofisário , Camundongos , Animais , Humanos , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Folículo Piloso/metabolismo , Alopecia/metabolismo
9.
J Anat ; 244(3): 527-536, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38009263

RESUMO

Corticotropin-releasing hormone (CRH) neurons are densely distributed in the medial prefrontal cortex (mPFC), which plays a crucial role in integrating and processing emotional and cognitive inputs from other brain regions. Therefore, it is important to know the neural afferent patterns of mPFCCRH neurons, which are still unclear. Here, we utilized a rabies virus-based monosynaptic retrograde tracing system to map the presynaptic afferents of the mPFCCRH neurons throughout the entire brain. The results show that the mPFCCRH neurons receive inputs from three main groups of brain regions: (1) the cortex, primarily the orbital cortex, somatomotor areas, and anterior cingulate cortex; (2) the thalamus, primarily the anteromedial nucleus, mediodorsal thalamic nucleus, and central medial thalamic nucleus; and (3) other brain regions, primarily the basolateral amygdala, hippocampus, and dorsal raphe nucleus. Taken together, our results are valuable for further investigations into the roles of the mPFCCRH neurons in normal and neurological disease states. These investigations can shed light on various aspects such as cognitive processing, emotional modulation, motivation, sociability, and pain.


Assuntos
Encéfalo , Hormônio Liberador da Corticotropina , Camundongos , Animais , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Mapeamento Encefálico , Vias Neurais/fisiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-39121461

RESUMO

BACKGROUND AND AIM: Exosome-like nanoparticles (ELNs) have emerged as crucial mediators of intercellular communication, evaluated as potential bioactive nutraceutical biomolecules. We hypothesized that oral ELNs have some therapeutic effect on irritable bowel syndrome (IBS). METHODS: In our study, ELNs from tea (Camellia sinensis) leaves were extracted by differential centrifugation. We investigated the role of ELNs by assessing visceral hypersensitivity, body weight, bowel habits, tight junctions, and corticotropin-releasing hormone (CRH) in rats subjected to water avoidance stress (WAS) to mimic IBS with and without ELNs (1 mg/kg per day) for 10 days. RESULTS: The average diameter of ELNs from LCC, FD and MZ tea tree were 165 ± 107, 168 ± 94, and 168 ± 108 nm, the concentration of ELNs were 1.2 × 1013, 1 × 1013, and 1.5 × 1013 particles/mL, respectively. ELNs can be taken up by intestinal epithelial cells. In WAS rats, ELNs significantly restored weight, recovered tight junctions, decreased CRH, and CRH receptor 1 expression levels and inhibited abdominal hypersensitivity in comparison to positive control. CONCLUSIONS: Oral tea-derived ELN improves symptoms of IBS by potentially modulating the CRH pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA