Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 273: 116157, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430578

RESUMO

Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting bacteria enhance plant tolerance to abiotic stress and promote plant growth in contaminated soil. However, the interaction mechanism between rhizosphere microbial communities under chromium (Cr) stress remains unclear. This study conducted a greenhouse pot experiment and metagenomics analysis to reveal the comprehensive effects of the interaction between AMF (Rhizophagus intraradices) and nitrogen-N metabolizing plant growth promoters on the growth of Iris tectorum. The results showed that AMF significantly increased the biomass and nutrient levels of I. tectorum in contaminated soil and decreased the content of Cr in the soil. Metagenomics analysis revealed that the structure and composition of the rhizosphere microbial community involved in nitrogen metabolism changed significantly after inoculation with AMF under Cr stress. Functional genes related to soil nitrogen mineralization (gltB, gltD, gdhA, ureC, and glnA), nitrate reduction to ammonium (nirB, nrfA, and nasA), and soil nitrogen assimilation (NRT, nrtA, and nrtC) were up-regulated in the N-metabolizing microbial community. In contrast, the abundance of functional genes involved in denitrification (nirK and narI) was down-regulated. In addition, the inoculation of AMF regulates the synergies between the N-metabolic rhizosphere microbial communities and enhances the complexity and stability of the rhizosphere ecological network. This study provides a basis for improving plant tolerance to heavy metal stress by regulating the functional abundance of N-metabolizing plant growth-promoting bacteria through AMF inoculation. It helps to understand the potential mechanism of wetland plant remediation of Cr-contaminated soil.


Assuntos
Gênero Iris , Micorrizas , Micorrizas/metabolismo , Cromo/metabolismo , Gênero Iris/genética , Plantas , Bactérias , Solo/química , Nitrogênio/metabolismo , Raízes de Plantas , Fungos
2.
Artigo em Inglês | MEDLINE | ID: mdl-39107637

RESUMO

Peanut is an economically important crop, but it is susceptible to Cr contamination. In this study, we used peanut as experimental material to investigate the effects of exogenous P, Se interacting with Cr on the nutrient growth and antioxidant system of peanut seedlings by simulating Cr (0 µM, 50 µM, and 100 µM) stress environment. The results showed that exogenous P, Se supply could mitigate irreversible damage to peanut seedlings by altering the distribution of Cr in roots and aboveground, changing root conformation, and repairing damaged cells to promote growth. When the Cr concentration is 100 µM, it exhibits the highest toxicity. Compared to the control group P and Se (0 MM), the treatment with simultaneous addition of P + Se (0.5 + 6.0) resulted in a significant increase in root length and root tip number by 248.7% and 127.4%, respectively. Additionally, there was a 46.9% increase in chlorophyll content, a 190.2% increase in total surface area of the seedlings, and a respective increase of 149.1% and 180.3% in soluble protein content in the shoot and roots. In addition, by restricting the absorption of Cr and reducing the synthesis of superoxide dismutase SOD (Superoxide dismutase), CAT (Catalase), POD (Peroxidase), and MDA (Malonaldehyde), it effectively alleviates the oxidative stress on the antioxidant system. Therefore, the exogenous addition of P (0.5 MM) and Se (6.0 MM) prevented the optimal concentration of chromium toxicity to peanuts. Our research provides strong evidence that the exogenous combination of P and Se reduces the risk of peanut poisoning by Cr, while also exploring the optimal concentration of exogenous P and Se under laboratory conditions, providing a basis for further field experiments.

3.
Plant Physiol Biochem ; 208: 108509, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461751

RESUMO

Melatonin (MT) and reduced glutathione (GSH) roles in mitigating chromium (Cr) toxicity in sweetpotato were explored. Plants, pre-treated with varying MT and GSH doses, were exposed to Cr (40 µM). Cr severely hampered growth by disrupting leaf photosynthesis, root system, and oxidative processes and increased Cr absorption. However, the exogenous application of 1 µM of MT and 2 mM of GSH substantially improved growth parameters by enhancing chlorophyll content, gas exchange (Pn, Tr, Gs, and Ci), and chlorophyll fluorescence (Fv/Fm, ETR, qP, and Y(II)). Furthermore, malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide ion (O2•-), electrolyte leakage (EL), and Cr uptake by roots (21.6 and 27.3%) and its translocation to shoots were markedly reduced by MT and GSH application, protecting the cell membrane from oxidative damage of Cr-toxicity. Microscopic analysis demonstrated that MT and GSH maintained chloroplast structure and integrity of mesophyll cells; they also enhanced stomatal length, width, and density, strengthening the photosynthetic system and plant growth and biomass. MT and GSH improved osmo-protectants (proline and soluble sugars), gene expression, and enzymatic and non-enzymatic antioxidant activities, mitigating osmotic stress and strengthening plant defenses under Cr stress. Importantly, the efficiency of GSH pre-treatment in reducing Cr-toxicity surpassed that of MT. The findings indicate that MT and GSH alleviate Cr detrimental effects by enhancing photosynthetic organ stability, component accumulation, and resistance to oxidative stress. This study is a valuable resource for plants confronting Cr stress in contaminated soils, but further field validation and detailed molecular exploration are necessary.


Assuntos
Melatonina , Melatonina/farmacologia , Cromo/toxicidade , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Fotossíntese , Clorofila/metabolismo
4.
Toxics ; 12(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276717

RESUMO

Chromium (Cr) toxicity exerts a detrimental effect on various physiological, biochemical, and molecular attributes of plants including the structure and functions of cell walls. On the other hand, the exogenous application of proline (Pro) is a beneficial strategy to overcome Cr toxicity. Therefore, it is a novel strategy to find the key genes associated with cell wall composition in rice under trivalent Cr with/without Pro application. A total of 203 genes were activated in the four cell wall biosynthesis pathways under chromium stress, namely cellulose (60), hemicellulose (57), lignin (35), and pectin (51). Based on the expression abundance of microarrays, the number of differentially expressed genes, and the expression level of genes, the lignin pathway was a crucial pathway in response to Cr treatments, followed by the cellulose pathway. Through the estimation of gene expression variation factors between 'Cr' and 'Cr+Pro' treatments, OsUGP1, OsBGLU24, OsBGLU29, OsBGLU33, OsBMY1, and OsBMY2 in the cellulose pathway; OsXTH9, OsXTH10, OsXTH16, OsGAUT3, OsGAUT19, OsGAUT28, OsXTH1, OsGAUT12, and OsGAUT21 in the hemicellulose pathway; OsPAL3, OsPAL3, OsPOX1, and OsPRX77 in the lignin pathway; and OsPME25, OsPGL27, OsPME26, OsPGL9, and OsPLL12 in the pectin pathway are the key genes involved in cell wall modification during Cr exposure with exogenous Pro application. The Pro-mediated activation of these genes could be crucial players in modifying the cell wall structure and composition of rice plants under Cr stress, which needs to be further clarified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA