Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39013607

RESUMO

AIMS: This study aimed to assess the use of cross-assembled phage (crAssphage) as an endogenous control employing a multivariate normalization analysis and its application as a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) data normalizer. METHODS AND RESULTS: A total of 188 twelve-hour composite raw sewage samples were obtained from eight wastewater treatment plants (WWTP) during a 1-year monitoring period. Employing the N1 and N2 target regions, SARS-CoV-2 RNA was detected in 94% (177) and 90% (170) of the samples, respectively, with a global median of 5 log10 genomic copies per liter (GC l-1). CrAssphage was detected in 100% of the samples, ranging from 8.29 to 10.43 log10 GC l-1, with a median of 9.46 ± 0.40 log10 GC l-1, presenting both spatial and temporal variabilities. CONCLUSIONS: Although SARS-CoV-2 data normalization employing crAssphage revealed a correlation with clinical cases occurring during the study period, crAssphage normalization by the flow per capita per day of each WWTP increased this correlation, corroborating the importance of normalizing wastewater surveillance data in disease trend monitoring.


Assuntos
COVID-19 , SARS-CoV-2 , Esgotos , Águas Residuárias , SARS-CoV-2/genética , Águas Residuárias/virologia , Humanos , Esgotos/virologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , RNA Viral/genética , RNA Viral/análise , Vigilância Epidemiológica Baseada em Águas Residuárias
2.
J Environ Manage ; 366: 121596, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991335

RESUMO

We developed a biomarker-based approach to quantify in-sewer dilution by measuring wastewater quality parameters (ammoniacal-N, orthophosphate, crAssphage). This approach can enhance the environmental management of wastewater treatment works (WWTW) by optimising their operation and providing cost-effective information on the health and behaviour of populations and their interactions with the environment through wastewater-based epidemiology (WBE). Our method relies on site specific baselines calculated for each biomarker. These baselines reflect the sewer conditions without the influence of rainfall-derived inflow and infiltration (RDII). Ammoniacal-N was the best candidate to use as proxy for dilution. We demonstrated that the dilution calculated using biomarkers correlates well with the dilution indicated by measured flow. In some instances, the biomarkers showed much higher dilution than measured flows. These differences were attributed to the loss of flow volume at wastewater treatment works due to the activation of combined sewer overflows (CSOs) and/or storm tanks. Using flow measured directly at the WWTW could therefore result in underestimation of target analyte loads.


Assuntos
Biomarcadores , Águas Residuárias , Águas Residuárias/análise , Águas Residuárias/química , Biomarcadores/análise , Eliminação de Resíduos Líquidos/métodos , Esgotos , Monitoramento Ambiental/métodos
3.
Environ Sci Technol ; 57(49): 20802-20812, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38015885

RESUMO

Populations contribute information about their health status to wastewater. Characterizing how that information degrades in transit to wastewater sampling locations (e.g., wastewater treatment plants and pumping stations) is critical to interpret wastewater responses. In this work, we statistically estimate the loss of information about fecal contributions to wastewater from spatially distributed populations at the census block group resolution. This was accomplished with a hydrologically and hydraulically influenced spatial statistical approach applied to crAssphage (Carjivirus communis) load measured from the influent of four wastewater treatment plants in Hamilton County, Ohio. We find that we would expect to observe a 90% loss of information about fecal contributions from a given census block group over a travel time of 10.3 h. This work demonstrates that a challenge to interpreting wastewater responses (e.g., during wastewater surveillance) is distinguishing between a distal but large cluster of contributions and a near but small contribution. This work demonstrates new modeling approaches to improve measurement interpretation depending on sewer network and wastewater characteristics (e.g., geospatial layout, temperature variability, population distribution, and mobility). This modeling can be integrated into standard wastewater surveillance methods and help to optimize sewer sampling locations to ensure that different populations (e.g., vulnerable and susceptible) are appropriately represented.


Assuntos
Esgotos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Temperatura , Ohio
4.
Environ Res ; 216(Pt 3): 114566, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36273597

RESUMO

Antibiotic resistance has become a comprehensive and complicated environmental problem. It is of great importance to effectively determine the abundance of various antibiotic resistance genes (ARGs) in the environment. Here, we attempted to find a practical method for monitoring environmental antibiotic resistance. The results of culture-based analysis of antibiotic resistance and metagenomic sequencing indicate that egrets inhabiting along the urban river (Jinjiang River) can be used as the sentinel of environmental antibiotic resistance. The antibiotic resistance in the environment fluctuated with time, while that in the wild bird was relatively stable. The network analysis based on metagenomic sequencing data gave the co-occurrence pattern of ARGs. The overall situation of the antibiotic resistance in the river was determined by quantifying several module hub genes of the co-occurrence network in river sediments. The temporal and spatial distribution of ARGs in Jinjiang River is highly correlated with that of human gut-specific bacteriophage (crAssphage), which indicates that one main source of the antibiotic resistance in the river is likely to be municipal sewage. The mobility potential of ARGs varying among different niches suggests the transmission direction of antibiotic resistance in the environment.


Assuntos
Aves , Resistência Microbiana a Medicamentos , Metagenômica , Rios , Animais , Antibacterianos/farmacologia , Aves/microbiologia , China , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Monitoramento Ambiental
5.
Environ Res ; 212(Pt E): 113580, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35671797

RESUMO

Wastewater-based epidemiology is an effective tool for monitoring infectious disease spread or illicit drug use within communities. At the Ohio State University, we conducted a SARS-CoV-2 wastewater surveillance program in the 2020-2021 academic year and compared results with the university-required weekly COVID-19 saliva testing to monitor COVID-19 infection prevalence in the on-campus residential communities. The objectives of the study were to rapidly track trends in the wastewater SARS-CoV-2 gene concentrations, analyze the relationship between case numbers and wastewater signals when adjusted using human fecal viral indicator concentrations (PMMoV, crAssphage) in wastewater, and investigate the relationship of the SARS-CoV-2 gene concentrations with wastewater parameters. SARS-CoV-2 nucleocapsid and envelope (N1, N2, and E) gene concentrations, determined with reverse transcription droplet digital PCR, were used to track SARS-CoV-2 viral loads in dormitory wastewater once a week at 6 sampling sites across the campus during the fall semester in 2020. During the following spring semester, research was focused on SARS-CoV2 N2 gene concentrations at 5 sites sampled twice a week. Spearman correlations both with and without adjusting using human fecal viral indicators showed a significant correlation (p < 0.05) between human COVID-19 positive case counts and wastewater SARS-CoV-2 gene concentrations. Spearman correlations showed significant relationships between N1 gene concentrations and both TSS and turbidity, and between E gene concentrations and both pH and turbidity. These results suggest that wastewater signal increases with the census of infected individuals, in which the majority are asymptomatic, with a statistically significant (p-value <0.05) temporal correlation. The study design can be utilized as a platform for rapid trend tracking of SARS-CoV-2 variants and other diseases circulating in various communities.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , RNA Viral/genética , SARS-CoV-2/genética , Universidades , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
6.
BMC Biol ; 19(1): 163, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34407825

RESUMO

BACKGROUND: The crAss-like phages are ubiquitous and highly abundant members of the human gut virome that infect commensal bacteria of the order Bacteroidales. Although incapable of lysogeny, these viruses demonstrate long-term persistence in the human gut microbiome, dominating the virome in some individuals. RESULTS: Here we show that rapid phase variation of alternate capsular polysaccharides in Bacteroides intestinalis cultures plays an important role in a dynamic equilibrium between phage sensitivity and resistance, allowing phage and bacteria to multiply in parallel. The data also suggests the role of a concomitant phage persistence mechanism associated with delayed lysis of infected cells, similar to carrier state infection. From an ecological and evolutionary standpoint, this type of phage-host interaction is consistent with the Piggyback-the-Winner model, which suggests a preference towards lysogenic or other "benign" forms of phage infection when the host is stably present at high abundance. CONCLUSION: Long-term persistence of bacteriophage and host could result from mutually beneficial mechanisms driving bacterial strain-level diversity and phage survival in complex environments.


Assuntos
Bacteriófagos , Bacteroides , Bactérias , Bacteroides/virologia , Humanos , Variação de Fase , Filogenia
7.
Environ Monit Assess ; 194(5): 367, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35426058

RESUMO

CrAssphage is a novel and by far the most abundant bacteriophage in the human gut and has been proposed as a human-specific microbial source tracking (MST) marker. However, its global use as a human-specific MST marker requires validation in more extensive regions. The purpose of this study was to evaluate the specificity and abundance of the human-specific MST marker crAssphage with PCR and RT-PCR assays in human and animal feces in Korea. The prevalence of crAssphage was confirmed in 94 human feces samples (subjects: 19 to 45 years old) and 56 animal feces samples (from birds, raccoons, squirrels, weasels, deer, wild boars, hares, cats, and dogs). CrAssphage showed sensitivity of 0.39 and specificity of 1.00 in Korea, with a sequencing analysis showing that genotype II was dominant at 71.9%. The quantitative analysis showed that crAssphage is sufficiently abundant in human feces given the high concentration range of 4.26 to 8.25 log gene copies (GC)/ng in human feces. In conclusion, this study confirmed the crAssphage as a specific and abundant MST marker with which to identify human fecal contamination in Korea.


Assuntos
Bacteriófagos , Cervos , Animais , Bacteriófagos/genética , Biomarcadores , Cães , Monitoramento Ambiental , Fezes/química , Humanos , Esgotos/análise , Microbiologia da Água , Poluição da Água/análise
8.
Emerg Infect Dis ; 26(8): 1731-1739, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32511090

RESUMO

CrAssphage is a recently discovered human gut-associated bacteriophage. To validate the potential use of crAssphage for detecting human fecal contamination on environmental surfaces and hands, we tested stool samples (n = 60), hand samples (n = 30), and environmental swab samples (n = 201) from 17 norovirus outbreaks for crAssphage by real-time PCR. In addition, we tested stool samples from healthy persons (n = 173), respiratory samples (n = 113), and animal fecal specimens (n = 68) and further sequenced positive samples. Overall, we detected crAssphage in 71.4% of outbreak stool samples, 48%-68.5% of stool samples from healthy persons, 56.2% of environmental swabs, and 60% of hand rinse samples, but not in human respiratory samples or animal fecal samples. CrAssphage sequences could be grouped into 2 major genetic clusters. Our data suggest that crAssphage could be used to detect human fecal contamination on environmental surfaces and hands.


Assuntos
Bacteriófagos , Infecções por Caliciviridae , Norovirus , Animais , Infecções por Caliciviridae/epidemiologia , Surtos de Doenças , Fezes , Humanos , Reação em Cadeia da Polimerase em Tempo Real
9.
J Med Virol ; 90(3): 464-468, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29044635

RESUMO

crAssphage is a novel and by far the most abundant bacteriophage in human gut. This bacteriophage might modulate gut microbiota balance so as to be involved in some diseases like obesity, diabetes, metabolic disorders, hypertension, and cancer. Therefore, a rapid and reliable detection and quantification method for crAssphage is essential for studying its molecular epidemiology and pathogenicity in human diseases. The primers-probes set for the quantitative real-time PCR assay was designed based on the DNA polymerase gene (ORF00018) of crAssphage. The sensitivity and specificity, as well as comparison testing with the conventional PCR and sequencing were evaluated. The assay could specifically detect crAssphage, and no cross-reactions with other gut microbes were observed. The detection limit was 15.6 copies/µL of clinical samples (46.8 copies/reaction). When using clinical samples, the assay showed higher ability to detect samples with low viral DNA copies and had an agreement of 93.33% when compared with the conventional PCR amplification and sequencing. The established real-time PCR assay is a sensitive, specific, and repeatable method for quantitatively detecting crAssphage, and thus is a very useful tool for investigating the molecular epidemiology, dynamics, and pathogenicity of crAssphage in human diseases.


Assuntos
Bacteriófagos/isolamento & purificação , Trato Gastrointestinal/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Adolescente , Adulto , Idoso , Bacteriófagos/genética , Criança , Primers do DNA/genética , DNA Viral , Diarreia/virologia , Fezes/virologia , Feminino , Trato Gastrointestinal/microbiologia , Genótipo , Humanos , Lactente , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade
10.
Pediatr Diabetes ; 18(7): 588-598, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27860030

RESUMO

BACKGROUND: We set out to explore associations between the stool bacteriome profiles and early-onset islet autoimmunity, taking into account the interactions with the virus component of the microbiome. METHODS: Serial stool samples were longitudinally collected from 18 infants and toddlers with early-onset islet autoimmunity (median age 17.4 months) followed by type 1 diabetes, and 18 tightly matched controls from the Finnish Diabetes Prediction and Prevention (DIPP) cohort. Three stool samples were analyzed, taken 3, 6, and 9 months before the first detection of serum autoantibodies in the case child. The risk of islet autoimmunity was evaluated in relation to the composition of the bacteriome 16S rDNA profiles assessed by mass sequencing, and to the composition of DNA and RNA viromes. RESULTS: Four operational taxonomic units were significantly less abundant in children who later on developed islet autoimmunity as compared to controls-most markedly the species of Bacteroides vulgatus and Bifidobacterium bifidum. The alpha or beta diversity, or the taxonomic levels of bacterial phyla, classes or genera, showed no differences between cases and controls. A correlation analysis suggested a possible relation between CrAssphage signals and quantities of Bacteroides dorei. No apparent associations were seen between development of islet autoimmunity and sequences of yet unknown origin. CONCLUSIONS: The results confirm previous findings that an imbalance within the prevalent Bacteroides genus is associated with islet autoimmunity. The detected quantitative relation of the novel "orphan" bacteriophage CrAssphage with a prevalent species of the Bacteroides genus may exemplify possible modifiers of the bacteriome.


Assuntos
Doenças Autoimunes/etiologia , Autoimunidade , Bacteriófagos/imunologia , Bacteroides/imunologia , Diabetes Mellitus Tipo 1/etiologia , Disbiose/fisiopatologia , Microbioma Gastrointestinal/imunologia , Doenças Autoimunes/sangue , Doenças Autoimunes/epidemiologia , Doenças Autoimunes/imunologia , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Bacteroides/classificação , Bacteroides/isolamento & purificação , Bacteroides/virologia , Estudos de Casos e Controles , Criança , Estudos de Coortes , Biologia Computacional , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/imunologia , Disbiose/imunologia , Disbiose/microbiologia , Disbiose/virologia , Fezes/microbiologia , Fezes/virologia , Feminino , Finlândia/epidemiologia , Hospitais Universitários , Humanos , Ilhotas Pancreáticas/imunologia , Estudos Longitudinais , Masculino , Tipagem Molecular , Filogenia , Estudos Prospectivos , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Risco
11.
Epidemiol Infect ; 144(16): 3549-3553, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30489235

RESUMO

crAssphage is a newly discovered gut bacteriophage. However, its pathogenicity and molecular epidemiology in humans are as yet unclear. In this study, we investigated the association between crAssphage and diarrhoea, as well as the molecular epidemiology of crAssphage in Chinese patients from our hospital. Our results indicated that there were no significant differences in the crAssphage-positive ratio and viral loads in faecal supernatants between adults with diarrhoea and healthy adults. Of infants and children with diarrhoea, 2·8% were found to be crAssphage-positive, including two infants aged <1 month. Markedly, of all confirmed crAssphage-positive strains, 100% had the ORF00039 deletion and 77·8% had low identity of ORF00018 compared to crAssphage (GenBank accession no. NC_024711, designated genotype 1). Thus, crAssphage was not associated with diarrhoea and most strains of crAssphage in Chinese patients (designated genotype 2) were characterized by the ORF00039 deletion and low identity of ORF00018.

12.
Environ Pollut ; 362: 124936, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39265768

RESUMO

Pathogens in coastal waters cause infectious diseases and endanger public sanitation safety in humans and animals worldwide. To avoid these risks, timely detection of human-associated pathogens in waters is crucial. In this study, the decay kinetics of the molecular markers for human-associated pathogens, including enteric bacteria (Escherichia coli, Enterococcus, and Bacteroides), non-enteric bacteria (Staphylococcus aureus), crAssphage, and polyomavirus, were monitored over time at different temperatures and background microbes in seawater microcosms. The results indicated that temperature and native marine microbes were the main influential factors in attenuating bacterial pathogens. Remarkably, the effect of native microorganisms was more evidentially striking. Furthermore, Enterococcus was a more reliable and suitable fecal indicator bacterium than E. coli for the marine environment. The decay of crAssphage was like that of polyomavirus, indicating that it may be a good indicator of enterovirus in seawater. More importantly, the 16S amplicon sequencing data highlighted the decay kinetics of multiple bacterial pathogens in parallel with the dynamic changes of the whole bacterial communities. This study provides valuable information for public health risk management and a new approach to understanding the fate of bacteria in the coastal environment.

13.
Environ Int ; 190: 108946, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39151267

RESUMO

Microplastics (MPs) are of increasing concern due to their role as reservoirs for antibiotic resistance genes (ARGs) and pathogens. To date, few studies have explored the influence of anthropogenic activities on ARGs and mobile genetic elements (MGEs) within various riverine MPs, in comparison to their natural counterparts. Here an in-situ incubation was conducted along heavily anthropogenically-impacted Houxi River to characterize the geographical pattern of antibiotic resistome, mobilome and pathogens inhabiting MPs- and leaf-biofilms. The metagenomics result showed a clear urbanization-driven profile in the distribution of ARGs, MGEs and pathogens, with their abundances sharply increasing 4.77 to 19.90 times from sparsely to densely populated regions. The significant correlation between human fecal marker crAssphage and ARG (R2 = 0.67, P=0.003) indicated the influence of anthropogenic activity on ARG proliferation in plastisphere and natural leaf surfaces. And mantel tests and random forest analysis revealed the impact of 17 socio-environmental factors, e.g., population density, antibiotic concentrations, and pore volume of materials, on the dissemination of ARGs. Partial least squares-path modeling further unveiled that intensifying human activities not only directly boosted ARGs abundance but also exerted a comparable indirect impact on ARGs propagation. Furthermore, the polyvinylchloride plastisphere created a pathogen-friendly habitat, harboring higher abundances of ARGs and MGEs, while polylactic acid are not likely to serve as vectors for pathogens in river, with a lower resistome risk score than that in leaf-biofilms. This study highlights the diverse ecological risks associated with the dissemination of ARGs and pathogens in varied MPs, offering insights for the policymaking of usage and control of plastics within urbanization.


Assuntos
Rios , Urbanização , Rios/microbiologia , Rios/química , Humanos , Resistência Microbiana a Medicamentos/genética , Metagenômica , Antibacterianos/farmacologia , Microplásticos
14.
Sci Total Environ ; 912: 168840, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38036144

RESUMO

CrAssphage or crAss-like phage ranks as the most abundant phage in the human gut and is present in human feces-contaminated environments. Due to its high human specificity and sensitivity, crAssphage is a potentially robust source tracking indicator that can distinguish human fecal contamination from agricultural or wildlife sources. Its suitability in the Great Lakes area, one of the world's most important water systems, has not been well tested. In this study, we tested a qPCR-based quantification method using two crAssphage marker genes (ORF18-mod and CPQ_064) at Toronto recreational beaches along with their adjacent river mouths. Our results showed a 71.4 % (CPQ_064) and 100 % (ORF18-mod) human sensitivity for CPQ_064 and ORF18-mod, and a 100 % human specificity for both marker genes. CrAssphage was present in 57.7 % or 71.2 % of environmental water samples, with concentrations ranging from 1.45 to 5.14 log10 gene copies per 100 mL water. Though concentrations of the two marker genes were strongly correlated, ORF18-mod features a higher human sensitivity and higher positive detection rates in environmental samples. Quantifiable crAssphage was mostly present in samples collected in June and July 2021 associated with higher rainfall. In addition, rivers had more frequent crAssphage presence and higher concentrations than their associated beaches, indicating more frequent and greater human fecal contamination in the rivers. However, crAssphage was more correlated with E. coli and Enterococcus at the beaches than in the rivers, suggesting human fecal sources may be more predominant in driving the increases in E. coli and Enterococcus at the beaches when impacted by river plumes.


Assuntos
Monitoramento Ambiental , Lagos , Humanos , Monitoramento Ambiental/métodos , Poluição da Água/análise , Escherichia coli/genética , Esgotos , Microbiologia da Água , Fezes , Água
15.
Food Environ Virol ; 16(2): 121-135, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38413544

RESUMO

CrAss-like phages are a diverse group of bacteriophages genetically similar to the prototypical crAssphage (p-crAssphage), which was discovered in the human gut microbiome through a metagenomics approach. It was identified as a ubiquitous and highly abundant bacteriophage group in the gut microbiome. Initial co-occurrence analysis postulated Bacteroides spp. as the prospective bacterial host. Subsequent studies have confirmed multiple host species under Phylum Bacteroidetes and some Firmicutes. Detection of crAss-like phages in sewage-contaminated environmental water and robust correlation with enteric viruses and bacteria has culminated in their adoption as a microbial source tracking (MST) marker. Polymerase chain reaction (PCR) and real-time PCR assays have been developed utilizing the conserved genes in the p-crAssphage genome to detect human fecal contamination of different water sources, with high specificity. Numerous investigations have examined the implications of crAss-like phages in diverse disease conditions, including ulcerative colitis, obesity and metabolic syndrome, autism spectrum disorders, rheumatoid arthritis, atopic eczema, and other autoimmune disorders. These studies have unveiled associations between certain diseases and diminished abundance and diversity of crAss-like phages. This review offers insights into the diverse aspects of research on crAss-like phages, including their discovery, genomic characteristics, structure, taxonomy, isolation, molecular detection, application as an MST marker, and role as a gut microbiome modulator with consequential health implications.


Assuntos
Bacteriófagos , Fezes , Microbioma Gastrointestinal , Metagenoma , Humanos , Fezes/virologia , Fezes/microbiologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/classificação , Bactérias/virologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Metagenômica
16.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562748

RESUMO

The prototypic crAssphage (Carjivirus communis) is one of the most abundant, prevalent, and persistent gut bacteriophages, yet it remains uncultured and its lifestyle uncharacterized. For the last decade, crAssphage has escaped plaque-dependent culturing efforts, leading us to investigate alternative lifestyles that might explain its widespread success. Through genomic analyses and culturing, we find that crAssphage uses a phage-plasmid lifestyle to persist extrachromosomally. Plasmid-related genes are more highly expressed than those implicated in phage maintenance. Leveraging this finding, we use a plaque-free culturing approach to measure crAssphage replication in culture with Phocaeicola vulgatus, Phocaeicola dorei, and Bacteroides stercoris, revealing a broad host range. We demonstrate that crAssphage persists with its hosts in culture without causing major cell lysis events or integrating into host chromosomes. The ability to switch between phage and plasmid lifestyles within a wide range of hosts contributes to the prolific nature of crAssphage in the human gut microbiome.

17.
Front Microbiol ; 15: 1374568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618485

RESUMO

CrAssphages are human gut bacteriophages with potential use as an indicator of human fecal contamination in water and other environmental systems. We determined the prevalence and abundance of crAssphages in water, food, and fecal samples and compared these estimates with the prevalence of norovirus. Samples were tested using two crAssphage-specific qPCR assays (CPQ056 and TN201-203) and for norovirus using TaqMan realtime RT-PCR. CrAssphage was detected in 40% of human fecal specimens, 61% of irrigation water samples, 58.5% of stream water samples, and 68.5% of fresh leafy greens samples. Interestingly, across all sample categories, crAssphage concentrations were 2-3 log10 higher than norovirus concentrations. The correlation of detection of crAssphage and norovirus was significant for the irrigation water samples (r = 0.74, p = 7.4e-06). Sequences obtained from crAssphage positive samples from human fecal and stream water samples phylogenetically clustered with genotype I crAssphages, whereas sequences derived from irrigation water samples clustered differently from other genotypes. Our data show that crAssphages were prevalent in norovirus-positive water samples and in fresh leafy green samples, there was a strong correlation between the presence of crAssphage and norovirus. CrAssphage genomic copies were consistently higher than norovirus copies in all sample types. Overall, our findings suggest that crAssphages could be used as reliable indicators to monitor fecal-borne virus contamination within the food safety chain.

18.
Environ Pollut ; 359: 124713, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39134166

RESUMO

Antibiotic resistance genes (ARGs) have been extensively observed in bacterial DNA, and more recently, in phage particles from various water sources and food items. The pivotal role played by ARG transmission in the proliferation of antibiotic resistance and emergence of new resistant strains calls for a thorough understanding of the underlying mechanisms. The aim of this study was to assess the suitability of the prototypical p-crAssphage, a proposed indicator of human fecal contamination, and the recently isolated crAssBcn phages, both belonging to the Crassvirales group, as potential indicators of ARGs. These crAss-like phages were evaluated alongside specific ARGs (blaTEM, blaCTX-M-1, blaCTX-M-9, blaVIM, blaOXA-48, qnrA, qnrS, tetW and sul1) within the total DNA and phage DNA fractions in water and food samples containing different levels of fecal pollution. In samples with high fecal load (>103 CFU/g or ml of E. coli or somatic coliphages), such as wastewater and sludge, positive correlations were found between both types of crAss-like phages and ARGs in both DNA fractions. The strongest correlation was observed between sul1 and crAssBcn phages (rho = 0.90) in sludge samples, followed by blaCTX-M-9 and p-crAssphage (rho = 0.86) in sewage samples, both in the phage DNA fraction. The use of crAssphage and crAssBcn as indicators of ARGs, considered to be emerging environmental contaminants of anthropogenic origin, is supported by their close association with the human gut. Monitoring ARGs can help to mitigate their dissemination and prevent the emergence of new resistant bacterial strains, thus safeguarding public health.


Assuntos
Bacteriófagos , Fezes , Fezes/microbiologia , Fezes/virologia , Bacteriófagos/genética , Monitoramento Ambiental/métodos , Humanos , Resistência Microbiana a Medicamentos/genética , Águas Residuárias/virologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Esgotos , Antibacterianos/farmacologia
19.
Cell Host Microbe ; 32(5): 768-778.e9, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38653241

RESUMO

Microbiomes feature complex interactions between diverse bacteria and bacteriophages. Synthetic microbiomes offer a powerful way to study these interactions; however, a major challenge is obtaining a representative bacteriophage population during the bacterial isolation process. We demonstrate that colony isolation reliably excludes virulent viruses from sample sources with low virion-to-bacteria ratios such as feces, creating "virulent virus-free" controls. When the virulent dsDNA virome is reintroduced to a 73-strain synthetic gut microbiome in a bioreactor model of the human colon, virulent viruses target susceptible strains without significantly altering community structure or metabolism. In addition, we detected signals of prophage induction that associate with virulent predation. Overall, our findings indicate that dilution-based isolation methods generate synthetic gut microbiomes that are heavily depleted, if not devoid, of virulent viruses and that such viruses, if reintroduced, have a targeted effect on community assembly, metabolism, and prophage replication.


Assuntos
Bactérias , Bacteriófagos , Fezes , Microbioma Gastrointestinal , Bacteriófagos/genética , Bacteriófagos/fisiologia , Humanos , Fezes/microbiologia , Fezes/virologia , Bactérias/virologia , Bactérias/genética , Prófagos/genética , Prófagos/fisiologia , Viroma , Reatores Biológicos/microbiologia , Reatores Biológicos/virologia , Colo/microbiologia , Colo/virologia , Microbiota , Virulência
20.
Adv Sci (Weinh) ; 11(13): e2305818, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240578

RESUMO

Current metagenome assembled human gut phage catalogs contained mostly fragmented genomes. Here, comprehensive gut virome detection procedure is developed involving virus-like particle (VLP) enrichment from ≈500 g feces and combined sequencing of short- and long-read. Applied to 135 samples, a Chinese Gut Virome Catalog (CHGV) is assembled consisting of 21,499 non-redundant viral operational taxonomic units (vOTUs) that are significantly longer than those obtained by short-read sequencing and contained ≈35% (7675) complete genomes, which is ≈nine times more than those in the Gut Virome Database (GVD, ≈4%, 1,443). Interestingly, the majority (≈60%, 13,356) of the CHGV vOTUs are obtained by either long-read or hybrid assemblies, with little overlap with those assembled from only the short-read data. With this dataset, vast diversity of the gut virome is elucidated, including the identification of 32% (6,962) novel vOTUs compare to public gut virome databases, dozens of phages that are more prevalent than the crAssphages and/or Gubaphages, and several viral clades that are more diverse than the two. Finally, the functional capacities are also characterized of the CHGV encoded proteins and constructed a viral-host interaction network to facilitate future research and applications.


Assuntos
Bacteriófagos , Humanos , Bacteriófagos/genética , Análise de Sequência , Genoma Viral/genética , Metagenoma/genética , Fezes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA