Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36616309

RESUMO

Origanum dictamnus L. is a medicinal local endemic to the Island of Crete, Greece. Its propagation through biotechnological tissue culture techniques is essential due to its augmented multi-industrial sector demand. For direct organogenesis, among different culture media variants (MS, Gamborg B5), and cytokinins [6-benzyladenine (BA), kinetin (Kin), 2-isopentenyl adenine (2-iP)], the MS + added with BA (2.2 µM) was the most effective treatment for shoots and roots formation. For indirect organogenesis, all explant types (leaves, petioles, roots) showed a 100% callusing rate after 2 months in all media variants tested; ODK1: 20 µM thidiazuron (TDZ) + 5 µM indole-3-butyric acid (IBA) or ODK2: 0.5 µM kinetin + 5 µM 2,4-dichlorophenoxy acetic acid (2,4-D). The leaves and petiole explants assured a low rate of shoot regeneration (20%) in ODK1. Afterwards, leaf-, petiole-and root-callus derived from both media were transferred to four new media plant growth regulators-free or with BA + IBA + gibberellic acid (GA3). After 10 months from callus transferring, the petiole callus gave rise to roots (20-75%) while the leaf callus exhibited 10-30% shoot or 30% root regeneration. In this study, indirect organogenesis of O. dictamnus was carried out for the first time, thus various organs can be used for plant regeneration, and the developed protocol may be applicable in the horticulture industry.

2.
Plants (Basel) ; 12(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36679010

RESUMO

In the present work Origanum dictamnus L. was studied as a suitable in vitro adventitious root culture system for the production of important bioactive molecules, such as rosmarinic acid (RA). Callus culture was initiated from leaf, petiole and root explants on solid MS medium supplemented with either 5 µM NAA + 5 µM kinetin (ODK3) or 5 µM NAA + 0.5 µM kinetin (ODK4). New roots formed from leaf, petiole and root calluses were aseptically transferred into Erlenmeyer flasks containing 100 mL liquid medium and shaken at 120 rpm in the dark. The liquid medium used was the MS supplemented either with 35 µM IBA + 2.5 µM kinetin (ODY1) or 5 µM NAA + 0.5 µM kinetin (ODY2). Biomass production parameters, RA content (%) and yield index (YI) were recorded for each treatment explant type, medium composition and incubation period. Results showed, in every case, the production of RA in vitro. Between the two liquid media (ODY1, ODY2) and the different culture periods, the ODY1 medium and the longest 200-day-culture period were more effective for RA and biomass production, regardless of the initial explant type used. The combination of ODK4-ODY1 resulted in higher RA (5.1% and 4.7%), fresh biomass production (19.0 g and 11.6 g), mean YI (93.7 mg and 51.4 mg) and YI per explant (3.75 mg and 2.06 mg) for roots derived from leaf calluses and root calluses, respectively. However, the solid ODK3 (200 days)-liquid ODY1 (40 days) transition treatment was more beneficial for roots derived from petiole calluses leading to an 18.8-fold increase in fresh biomass growth rate. RA accumulation and YIs were also significantly influenced by explant type, with the highest value produced from root petiole calluses (6.6% RA dry weight, 115.3 mg mean YI and 4.61 mg YI per explant) after 240 days.

3.
Plants (Basel) ; 12(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679049

RESUMO

Origanum dictamnus L. (Lamiaceae) is a perennial herb endemic to the Greek island of Crete, widely used for tea preparation, medicinal purposes, and food flavoring, as well as an ornamental plant. The aim of this work was to introduce the species to the green roof sector while serving urban agriculture. Thus, its growth potential was investigated, along with the content of nutrients (N, P, K, Na) and the accumulation of heavy metals (Cu, Pb, Ni, Mn, Zn, Fe) in its tissues, in two cultivation sites in Athens, Greece, i.e., an extensive green roof and at ground level next to a moderate traffic road. Cultivation took place in plastic containers with a green roof infrastructure fitted, in two substrate types (grape marc compost, perlite, and pumice 3:3:4 v/v, and grape marc compost, perlite, pumice, and soil 3:3:2:2 v/v), with 10 cm depth. Plant growth was favored by the soil substrate, but it was also satisfactory in the soilless one. Cultivation site affected heavy metal accumulation, resulting in higher concentrations both in leaves and in flowers at street level, while no differences were observed in roots. Washing the tissues reduced heavy metal concentrations only in leaves produced at the street level. Substrate type significantly affected Mn concentration in all plant tissues and Fe in roots, with the highest values measured in the soil substrate. Thus, O. dictamnus could be effectively cultivated in sustainable green roofs, better on a soilless substrate to lower construction weight. Careful selection of the cultivation site could minimize contamination with environmental pollutants if human consumption is also desired.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA