Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Intervalo de ano de publicação
1.
J Environ Manage ; 280: 111678, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33298392

RESUMO

Soil salinity restricts plant growth, affects soil water balance and nitrous oxide (N2O) fluxes and can contaminate surface and groundwater. In this study, the Denitrification Decomposition (DNDC) model was modified to couple salt and water balance equations (SALT-DNDC) to investigate the effect of salinity on water balance and N2O fluxes. The model was examined against four growing seasons (2008-11) of observed data from Lethbridge, Alberta, Canada. Then, the model was used to simulate water filled pore space (WFPS), salt concentration and the N2O flux from agricultural soils. The results show that the effects of salinity on WFPS vary in different soil layers. Within shallow soil layers (<20 cm from soil surface) the salt concentration does not affect the average WFPS when initial salt concentrations range from 5 to 20 dS/m. However, in deeper soil layers (>20 cm from soil surface), when the initial salt concentration ranges from 5 to 20 dS/m it could indirectly affect the average WFPS due to changes of osmotic potential and transpiration. When AW is greater than 40%, the average growing season N2O emissions increase to a range of 0.6-1.0 g-N/ha/d at initial salt concentrations (5-20 dS/m) from a range of 0.5-0.7 g-N/ha/d when the salt concentrations is 0 dS/m. The newly developed SALT-DNDC model provides a unique tool to help investigate interactive effects among salt, soil, water, vegetation, and weather conditions on N2O fluxes.


Assuntos
Óxido Nitroso , Solo , Agricultura , Alberta , Óxido Nitroso/análise , Água
2.
Ying Yong Sheng Tai Xue Bao ; 28(4): 1255-1264, 2017 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-29741323

RESUMO

An experiment was conducted to investigate soil evaporation (E), crop transpiration (T), evapotranspiration (ET) and the ratio of evaporation to evapotranspiration (E/ET) of drip-irrigated tomato, which was planted in a typical solar greenhouse in the North China, under different water conditions [irrigation amount was determined based on accumulated pan evaporation (Ep) of 20 cm pan evaporation, and two treatments were designed with full irrigation (0.9Ep) and deficit irrigation (0.5Ep)] at different growth stages in 2015 and 2016 at Xinxiang Comprehensive Experimental Station, Chinese Academy of Agricultural Sciences. Effects of deficit irrigation on crop coefficient (Kc) and variation of water stress coefficient (Ks) throughout the growing season were also discussed. E, T and ET of tomato were calculated with a dual crop coefficient approach, and compared with the measured data. Results indicated that E in the full irrigation was 21.5% and 20.4% higher than that in the deficit irrigation in 2015 and 2016, respectively, accounting for 24.0% and 25.0% of ET in the whole growing season. The maximum E/ET was measured in the initial stage of tomato, while the minimum obtained in the middle stage. The Kc the full irrigation was 0.45, 0.89, 1.06 and 0.93 in the initial, development, middle, and late stage of tomato, and 0.45, 0.89, 0.87 and 0.41 the deficit irrigation. The Ks the deficit irrigation was 0.98, 0.93, 0.78 and 0.39 in the initial, development, middle, and late stage, respectively. The dual crop coefficient method could accurately estimate ET of greenhouse tomato under different water conditions in 2015 and 2016 seasons with the mean absolute error (MAE) of 0.36-0.48 mm·d-1, root mean square error (RMSE) of 0.44-0.65 mm·d-1. The method also estimated E and T accurately with MAE of 0.15-0.19 and 0.26-0.56 mm·d-1, and with RMSE of 0.20-0.24 and 0.33-0.72 mm·d-1, respectively.


Assuntos
Transpiração Vegetal , Solanum lycopersicum , Irrigação Agrícola , China , Solo , Água
3.
Ciênc. rural (Online) ; 47(12): e20160998, Dec. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1044925

RESUMO

ABSTRACT: The objective of this study was to simulate the variation of the available soil water during maize crop growth, in two different sowing times (first and second growing season), using a drip irrigation system. The treatments consisted of different irrigation strategies (full to deficit). The SIMDualKc simulation model was used to determine the daily soil water balance and crop evapotranspiration using the dual crop coefficient approach. Soil, climate, crop and irrigation parameters were used as input data. Two experiments were carried out in a rainout shelter composed of two metallic structures (16x10m) in the city of Santa Maria, Rio Grande do Sul, Brazil, during 2010/11 (second crop, season 1) and 2011/12 (first crop, season 2) growing seasons, under no-tillage system. The simulations showed that all the irrigation management strategies used in season 2 resulted in soil water deficit, while only two strategies showed deficit in season 1. Results showed good agreement between observed and simulated soil water data, with an R2 ranging from 0.86 to 0.99 and the root mean square error ranging from 2.7 to 5.6% of the total available water for seasons 1 and 2, respectively. The observed results of water balance showed that maize grown in season 2 presented higher water consumption compared to season 1, due to the higher atmospheric demand of season 2. The SIMDualKc model allowed the partitioning of crop evapotranspiration into soil evaporation and crop transpiration, demonstrating that the vegetative growth subperiod presented the greatest differences between the two seasons compared to the others growth phases.


RESUMO: O objetivo deste estudo foi simular a variação da água disponível no solo durante o desenvolvimento da cultura do milho, em duas épocas de semeadura diferentes (primeira e segunda safra), utilizando sistema de irrigação por gotejamento. Os tratamentos consistiram em diferentes estratégias de irrigação (plena e deficitária). O modelo de simulação SIMDualKc foi utilizado para determinar o balanço hídrico diário do solo e a evapotranspiração da cultura usando a abordagem do coeficiente cultura dual. Os parâmetros de solo, clima, cultura e irrigação foram utilizados como dados de entrada. Dois experimentos foram realizados em uma cobertura móvel composta por duas estruturas metálicas (16x10m) na cidade de Santa Maria, Rio Grande do Sul, Brasil, nas safras 2010/11 (segunda safra, época 1) e 2011/12 (primeira safra, época 2), sob sistema de plantio direto. As simulações mostraram que todas as estratégias de manejo de irrigação usadas na época 2 resultaram em déficit hídrico, enquanto que apenas duas estratégias apresentaram déficit na época 1. Os resultados mostraram boa concordância entre os dados de água no solo observados e simulados, com um R2 variando de 0.86 a 0.99 e raiz quadrada do erro médio variando de 2,7 a 5,6% da água total disponível para as épocas 1 e 2, respectivamente. Os resultados observados do balanço hídrico mostraram que o milho cultivado na época 2 apresentou maior consumo de água em comparação com a época 1, devido à maior demanda atmosférica da época 2. O modelo SIMDualKc permitiu a partição da evapotranspiração da cultura em evaporação do solo e transpiração da cultura, demonstrando que o subperíodo de crescimento vegetativo apresentou as maiores diferenças entre as duas épocas em relação às demais fases de crescimento.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA