Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(15)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897678

RESUMO

Human milk provides neonates with various components that ensure newborns' growth, including protection from bacterial and viral infections. In neonates, the biological functions of many breast milk components can be very different compared with their functions in the body fluids of healthy adults. Catalytic antibodies-abzymes hydrolyzing peptides, proteins, DNAs, RNAs, and oligosaccharides were detected not only in the blood sera of autoimmune patients but also in human milk. Non-coding microRNAs (18-25 nucleotides) are intra- and extra-cellular molecules of different human fluids. MiRNAs possess many different biological functions, including regulating several hundred genes. Five of them: miR-148a-3p, miR-200c-3p, miR-378a-3p, miR-146b-5p and let-7f-5p were previously found in milk in increased concentrations. Here, we determined number of copies of these miRNAs in 1 mg of analyzed cells, lipid fractions, and plasmas of human milk samples. The relative amount of microRNA decreases in the following order: cells ¼ lipid fraction > plasma. IgGs and sIgAs were isolated from milk plasma, and their activity in the hydrolysis of five microRNAs was compared. In general, sIgAs demonstrated higher miRNA-hydrolyzing activity than IgGs antibodies. The hydrolysis of five microRNAs by sIgAs and IgGs was site-specific. The relative activity of each microRNA hydrolysis was very dependent on the milk preparation. The correlation coefficients between the content of five RNAs in milk plasma and the relative activity of sIgAs than IgGs in their hydrolysis strongly depended on individual microRNA and changed from -0.01 to 0.80. Thus, it was shown that milk contains specific antibodies-abzymes hydrolyzing microRNAs specific for human milk.


Assuntos
Anticorpos Catalíticos , MicroRNAs , Adulto , Anticorpos Catalíticos/química , Feminino , Humanos , Hidrólise , Imunoglobulina A Secretora/metabolismo , Imunoglobulina G/metabolismo , Recém-Nascido , Lipídeos , MicroRNAs/genética , MicroRNAs/metabolismo , Leite Humano/metabolismo , Plasmócitos/metabolismo
2.
Clin Transl Med ; 13(1): e1171, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639826

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19), which is still devastating economies and communities globally. The increasing infections of variants of concern (VOCs) in vaccinated population have raised concerns about the effectiveness of current vaccines. Patients with autoimmune diseases (PAD) under immunosuppressant treatments are facing higher risk of infection and potentially lower immune responses to SARS-CoV-2 vaccination. METHODS: Blood samples were collected from PAD or healthy controls (HC) who finished two or three doses of inactivated vaccines. Spike peptides derived from wild-type strain, delta, omicron BA.1 were utilised to evaluate T cell responses and their cross-recognition of delta and omicron in HC and PAD by flow cytometry and ex vivo IFNγ-ELISpot. RESULTS: We found that inactivated vaccine-induced spike-specific memory T cells were long-lasting in both PAD and HC. These spike-specific T cells were highly conserved and cross-recognized delta and omicron. Moreover, a third inactivated vaccine expanded spike-specific T cells that responded to delta and omicron spike peptides substantially in both PAD and HC. Importantly, the polyfunctionality of spike-specific memory T cells was preserved in terms of cytokine and cytotoxic responses. Although the extent of T cell responses was lower in PAD after two-dose, T cell responses were boosted to a greater magnitude in PAD by the third dose, bringing comparable spike-specific T cell immunity after the third dose. CONCLUSION: Inactivated vaccine-induced spike-specific T cells remain largely intact against delta and omicron variants. This study expands our understanding of inactivated vaccine-induced T cell responses in PAD and HC, which could have important indications for vaccination strategy.


Assuntos
Doenças Autoimunes , Vacinas contra COVID-19 , COVID-19 , Linfócitos T , Humanos , Doenças Autoimunes/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , SARS-CoV-2 , Linfócitos T/imunologia , Vacinas de Produtos Inativados
3.
Biomedicines ; 10(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36289924

RESUMO

Histones have a specific key role in the remodeling of chromatin and gene transcription. In the blood, free histones are damage-connected proteins. Myelin basic protein (MBP) is the major component of the myelin-proteolipid sheath of axons. Antibodies possessing enzymatic activities (abzymes, ABZs) are the specific features of several autoimmune pathologies. IgGs against five histones, MBP, and DNA were obtained from the sera of multiple sclerosis (MS) patients using several affinity chromatographies. The sites of H3 histone splitting by Abs against five individual histones, MBP, and DNA were revealed by MALDI mass spectrometry. It was shown that the number of H3 splitting sites by IgGs against five various histones is different (number of sites): H3 (11), H1 (14), H2A (11), H4 (17), MBP (22), and DNA (29). IgGs against five different histones hydrolyze H3 at different sites, and only a few them coincide. The main reason for the enzymatic cross-reactivity of Abs against H3 and four other histones, as well as MBP, might be the high level of these proteins' homology. The effective hydrolysis of the H3 histone at 29 sites with IgGs against DNA can be explained by the formation of chimeric abzymes against hybrid antigenic determinants formed by different histones and MBP at the junction of these protein sequences with DNA. The active centers of such abzymes contain structural elements of canonical DNases and proteases. Since free histones are pernicious proteins, antibodies-ABZs against five histones, MBP, and DNA could have a negative role in the pathogenesis of MS and probably other various autoimmune diseases.

4.
Biomedicines ; 10(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36009424

RESUMO

Histones have a paramount role in chromatin remodeling and gene transcription. Free histones are damage-associated molecules in the blood; administration of histones to animals drives systemic inflammatory and toxic effects. Myelin basic protein (MBP) is the most crucial component of the axon myelin-proteolipid sheath. Antibodies-abzymes with different enzymatic activities are very toxic and an essential feature of some autoimmune diseases. Electrophoretically homogeneous IgGs against H1, H2A, H2B, H3, H4, MBP, and DNA were derived from sera of multiple sclerosis (MS) patients by several affinity chromatographies. Using MALDI-TOFF mass spectrometry, it was shown that IgGs against H2A split H2A at 12 sites; the number of H2A hydrolysis sites by antibodies against other antigens is different: H1 (19), H2B (11), H3 (15), H4 (9), MBP (10), and DNA (23), and they only partly match. Thus, the complex formation polyreactivity and the enzymatic cross-activity of pernicious humans IgGs against five histones, MBP, and DNA have been shown for the first time. The data obtained indicate that the formation of such polyspecific-polyreactive abzymes, whose single active center can recognize and hydrolyze different substrates, can occur due to the formation of antibodies against hybrid antigenic determinants consisting of several histone protein sequences. IgGs with high affinity for DNA with DNase and protease activities may be antibodies against DNA-histone complex antigenic determinants, including protein and DNA sequences. Polyreactive IgGs-abzymes against MBP, five histones, and DNA with extended cytotoxicity can play a very negative role in the pathogenesis of multiple sclerosis and probably other different diseases.

5.
World Allergy Organ J ; 12(1): 100006, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30937131

RESUMO

BACKGROUND: Insects have become increasingly interesting as alternative nutrient sources for feeding humans and animals, most reasonably in processed form. Initially, some safety aspects - among them allergenicity - need to be addressed. OBJECTIVE: To reveal the cross-reactivity of shrimp-, mite- and flies-allergic patients to different edible insects, and further to assess the efficacy of food processing in reducing the recognition of insect proteins by patients' IgE and in skin prick testing of shrimp-allergic patients. METHODS: IgE from patients allergic to crustaceans, house dust mite or flies was evaluated for cross-recognition of proteins in house cricket Acheta domesticus (AD), desert locust Schistocerca gregaria (SG) and Yellow mealworm Tenebrio molitor (TM). Changes in IgE-binding and SPT-reactivity to processed insect extracts were determined for migratory locust (Locusta migratoria, LM), after different extraction methods, enzymatic hydrolysis, and thermal processing were applied. RESULTS: IgE from patients with crustacean-allergy shows cross-recognition of AD, SG and stable flies; house dust mite allergics' IgE binds to AD and SG; and the flies-allergic patient recognized cricket, desert locust and migratory locust. Cross-reactivity and allergenicity in SPT to LM can be deleted by conventional processing steps, such as hydrolysis with different enzymes or heat treatment, during the preparation of protein concentrates. CONCLUSION: The results show that crustacean-, HDM- and stable flies-allergic patients cross-recognize desert locust and house cricket proteins, and crustacean-allergic patients also flies proteins. Furthermore, this study shows that appropriate food processing methods can reduce the risk of cross-reactivity and allergenicity of edible insects.

6.
Immunooncol Technol ; 2: 1-10, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35036898

RESUMO

Adoptive transfer of T-cell-receptor (TCR)-transduced T cells has shown promising results for cancer treatment, but has also produced severe immunotoxicities caused by on-target as well as off-target TCR recognition. Off-target toxicities are related to the ability of a single T cell to cross-recognize and respond to several different peptide-major histocompatibility complex (pMHC) antigens; a property that is essential for providing broad antigenic coverage despite a confined number of unique TCRs in the human body. However, this degeneracy makes it incredibly difficult to account for the range of targets that any TCR might recognize, which represents a major challenge for the clinical development of therapeutic TCRs. The prospect of using affinity-optimized TCRs has been impeded due to observations that affinity enhancement might alter the specificity of a TCR, thereby increasing the risk that it will cross-recognize endogenous tissue. Strategies for selecting safe TCRs for the clinic have included functional assessment after individual incubations with tissue-derived primary cells or with peptides substituted with single amino acids. However, these strategies have not been able to predict cross-recognition sufficiently, leading to fatal cross-reactivity in clinical trials. Novel technologies have emerged that enable extensive characterization of the exact interaction points of a TCR with pMHC, which provides a foundation from which to make predictions of the cross-recognition potential of individual TCRs. This review describes current advances in strategies for dissecting the molecular interaction points of TCRs, focusing on their potential as tools for predicting cross-recognition of TCRs in clinical development.

7.
Oncol Lett ; 15(4): 6050-6056, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29556319

RESUMO

Cluster of differentiation (CD)147 is highly expressed in drug-resistant tumor cell lines and is involved in the formation of tumor drug resistance. Therefore, immunotherapy utilizing CD147 epitope peptides is a promising approach for the elimination of drug-resistant tumor cells. However, like most tumor-associated antigens (TAAs), CD147 belongs to the autoantigen category, and T cells that recognize high affinity, immunodominant epitopes from autoantigens are deleted though thymic negative selection. Furthermore, wild-type autoantigen peptides cannot effectively activate and expand T lymphocytes with lower affinity T cell receptors in vivo. However, mutations of TAA peptides have been demonstrated to increase the affinity of major histocompatibility complex molecules and their binding to T cell receptor molecules, leading to activation of T lymphocytes in vitro. In the present study, a high-affinity point mutation peptide, CD147126-134L2, was predicted by the human leukocyte antigen (HLA) binding prediction algorithm and its affinity was testified using a T2 binding assay. In addition, when peptide-specific cytotoxic T lymphocytes (CTLs) were stimulated with dendritic cells loaded with the CD147126-134L2 peptide under HLA-A*02:01 restriction, interferon-γ release and cytotoxicity assays showed that peptide-specific CTLs effectively cross-recognized and lysed T2 target cells loaded either with the wild-type (CD147126-134) or mutated peptide (CD147126-134L2). Moreover, the CD147126-134L2 peptide-specific CTLs exerted strong cytotoxic activity against drug-resistant MCF-7/Adr cells, which express a high level of CD147 and are HLA-A*02:01-positive, but not against normal MCF-7 cells. Thus, this suggests that the wild-type peptide (CD147126-134) is naturally presented on HLA-A*02:01 of CD147-expressing MCF-7/Adr cells and is cross-recognized by CTLs. In conclusion, an HLA-A*02:01-restricted CD147-point mutant epitope peptide was identified that induces CTLs to efficiently lyse drug-resistant MCF-7 cells that highly express CD147. Therefore, this immunotherapeutic approach should be explored as a potential treatment for drug-resistant tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA