Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 918
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37609950

RESUMO

Ion mobility coupled to mass spectrometry informs on the shape and size of protein structures in the form of a collision cross section (CCSIM). Although there are several computational methods for predicting CCSIM based on protein structures, including our previously developed projection approximation using rough circular shapes (PARCS), the process usually requires prior experience with the command-line interface. To overcome this challenge, here we present a web application on the Rosetta Online Server that Includes Everyone (ROSIE) webserver to predict CCSIM from protein structure using projection approximation with PARCS. In this web interface, the user is only required to provide one or more PDB files as input. Results from our case studies suggest that CCSIM predictions (with ROSIE-PARCS) are highly accurate with an average error of 6.12%. Furthermore, the absolute difference between CCSIM and CCSPARCS can help in distinguishing accurate from inaccurate AlphaFold2 protein structure predictions. ROSIE-PARCS is designed with a user-friendly interface, is available publicly and is free to use. The ROSIE-PARCS web interface is supported by all major web browsers and can be accessed via this link (https://rosie.graylab.jhu.edu).


Assuntos
Proteínas , Software , Proteínas/química , Navegador
2.
Nano Lett ; 24(34): 10496-10503, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38950105

RESUMO

Molybdenum disulfide (MoS2) is one of the most intriguing two-dimensional materials, and moreover, its single atomic defects can significantly alter the properties. These defects can be both imaged and engineered using spherical and chromatic aberration-corrected high-resolution transmission electron microscopy (CC/CS-corrected HRTEM). In a few-layer stack, several atoms are vertically aligned in one atomic column. Therefore, it is challenging to determine the positions of missing atoms and the damage cross-section, particularly in the not directly accessible middle layers. In this study, we introduce a technique for extracting subtle intensity differences in CC/CS-corrected HRTEM images. By exploiting the crystal structure of the material, our method discerns chalcogen vacancies even in the middle layer of trilayer MoS2. We found that in trilayer MoS2 the middle layer's damage cross-section is about ten times lower than that in the monolayer. Our findings could be essential for the application of few-layer MoS2 in nanodevices.

3.
Nano Lett ; 24(27): 8232-8239, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38781101

RESUMO

Biocompatible fluorescent agents are key contributors to the theranostic paradigm by enabling real-time in vivo imaging. This study explores the optical properties of phenylenediamine carbon dots (CDs) and demonstrates their potential for fluorescence imaging in cells and brain blood vessels. The nonlinear absorption cross-section of the CDs was measured and achieved values near 50 Goeppert-Mayer (GM) units with efficient excitation in the 775-895 nm spectral range. Mesoporous vaterite nanoparticles were loaded with CDs to examine the possibility of a biocompatible imaging platform. Efficient one- and two-photon imaging of the CD-vaterite composites uptaken by diverse cells was demonstrated. For an in vivo scenario, CD-vaterite composites were injected into the bloodstream of a mouse, and their flow was monitored within the blood vessels of the brain through a cranial window. These results show the potential of the platform for high-brightness biocompatible imaging with the potential for both sensing and simultaneous drug delivery.


Assuntos
Encéfalo , Carbono , Pontos Quânticos , Animais , Carbono/química , Camundongos , Encéfalo/diagnóstico por imagem , Pontos Quânticos/química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Carbonato de Cálcio/química , Humanos , Nanopartículas/química , Corantes Fluorescentes/química
4.
Nano Lett ; 24(33): 10290-10296, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39110648

RESUMO

We proposed two physical concepts, i.e., an intramolecular relative cross section (RCS) and an intermolecular relative scattering ability (RSA), to re-understand and re-describe surface-enhanced Raman scattering (SERS) and established a general SERS quantification theory. Interestingly, RCS and RSA are intrinsic factors and are experimentally measurable to form datasheets of molecules, namely, SERS cards, with which a standard SERS quantification procedure was established. The validity of the theory and quantification procedure was confirmed by experiments. Surprisingly, RCS and RSA are also valid for complex systems being considered as virtual molecules and are experimentally measurable. This simplifies complex systems into analyte-virtual molecule binary systems. With this consideration, trace-level mitoxantrone (a typical cancer drug metabolite) in artificial urine was accurately predicted. The theory, the SERS cards, the standard quantification procedure, and the virtual molecule concept pave a way toward quantitative and standardized SERS spectroscopy in dealing with real-world problems and complex samples.

5.
Proteomics ; 24(12-13): e2200436, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438732

RESUMO

Ion mobility spectrometry-mass spectrometry (IMS-MS or IM-MS) is a powerful analytical technique that combines the gas-phase separation capabilities of IM with the identification and quantification capabilities of MS. IM-MS can differentiate molecules with indistinguishable masses but different structures (e.g., isomers, isobars, molecular classes, and contaminant ions). The importance of this analytical technique is reflected by a staged increase in the number of applications for molecular characterization across a variety of fields, from different MS-based omics (proteomics, metabolomics, lipidomics, etc.) to the structural characterization of glycans, organic matter, proteins, and macromolecular complexes. With the increasing application of IM-MS there is a pressing need for effective and accessible computational tools. This article presents an overview of the most recent free and open-source software tools specifically tailored for the analysis and interpretation of data derived from IM-MS instrumentation. This review enumerates these tools and outlines their main algorithmic approaches, while highlighting representative applications across different fields. Finally, a discussion of current limitations and expectable improvements is presented.


Assuntos
Algoritmos , Espectrometria de Mobilidade Iônica , Espectrometria de Massas , Software , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Proteômica/métodos , Metabolômica/métodos , Humanos
6.
Biostatistics ; 24(3): 603-617, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35296878

RESUMO

Vaccine trials are generally designed to assess efficacy on clinical disease. The vaccine effect on infection, while important both as a proxy for transmission and to describe a vaccine's entire effects, requires frequent (e.g., twice a week) longitudinal sampling to capture all infections. Such sampling may not always be feasible. A logistically easy approach is to collect a sample to test for infection at a regularly scheduled visit. Such point or cross-sectional sampling does not permit estimation of classic vaccine efficacy on infection, as long duration infections are sampled with higher probability. Building on work by Rinta-Kokko and others (2009) and Lipsitch and Kahn (2021), we evaluate proxies of the vaccine effect on transmission at a point in time; the vaccine efficacy on prevalent infection and on prevalent viral load, VE$_{\rm PI}$ and VE$_{\rm PVL}$, respectively. Longer infections with higher viral loads should have more transmission potential and prevalent vaccine efficacy naturally captures this aspect. We demonstrate how these parameters obtain from an underlying proportional hazards model for infection and allow for waning efficacy on infection, duration, and viral load. We estimate these parameters based on regression models with either repeated cross-sectional sampling or frequent longitudinal sampling. We evaluate the methods by simulation and analyze a phase III vaccine trial with polymerase chain reaction (PCR) cross-sectional sampling for subclinical infection.


Assuntos
Eficácia de Vacinas , Vacinas , Humanos , Estudos Transversais , Simulação por Computador
7.
Small ; 20(30): e2311657, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38461547

RESUMO

A complex electromagnetic environment is a formidable challenge in national defense areas. Microwave-absorbing materials are considered as a strategy to tackle this challenge. In this work, lightweight, flexible, and thermal insulating Carbon/SiO2@CNTs (CSC) aerogel is successfully prepared coupled with outstanding microwave absorbing performance, through freeze-drying and high-temperature annealing techniques. The CSC aerogel shows a strong reflection loss (-55.16 dB) as well as wide effective absorbing bandwidth (8.5 GHz) in 2-18 GHz. It also retains good microwave absorption properties under tension and compression. Radar cross-sectional (RCS) simulation result demonstrates the CSC processing a strong reduction ability of RCS compared with a metal plate. Further exploration shows amazing flexibility and good thermal insulation properties of CSC. The successful preparation of this composite aerogel provides a broad prospect for the design of microwave-absorbing materials.

8.
J Anat ; 244(5): 792-802, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38200705

RESUMO

Rib fractures remain the most frequent thoracic injury in motor vehicle crashes. Computational human body models (HBMs) can be used to simulate these injuries and design mitigation strategies, but they require adequately detailed geometry to replicate such fractures. Due to a lack of rib cross-sectional shape data availability, most commercial HBMs use highly simplified rib sections extracted from a single individual during original HBM development. This study provides human rib shape data collected from chest CT scans of 240 females and males across the full adult age range. A cortical bone mapping algorithm extracted cross-sectional geometry from scans in terms of local periosteal position with respect to the central rib axis and local cortex thickness. Principal component analysis was used to reduce the dimensionality of these cross-sectional shape data. Linear regression found significant associations between principal component scores and subject demographics (sex, age, height, and weight) at all rib levels, and predicted scores were used to explore the expected rib cross-sectional shapes across a wide range of subject demographics. The resulting detailed rib cross-sectional shapes were quantified in terms of their total cross-sectional area and their cortical bone cross-sectional area. Average-sized female ribs were smaller in total cross-sectional area than average-sized male ribs by between 20% and 36% across the rib cage, with the greatest differences seen in the central portions of rib 6. This trend persisted although to smaller differences of 14%-29% when comparing females and males of equal intermediate weight and stature. Cortical bone cross-sectional areas were up to 18% smaller in females than males of equivalent height and weight but also reached parity in certain regions of the rib cage. Increased age from 25 to 80 years was associated with reductions in cortical bone cross-sectional area (up to 37% in females and 26% in males at mid-rib levels). Total cross-sectional area was also seen to reduce with age in females but to a lesser degree (of up to 17% in mid-rib regions). Similar regions saw marginal increases in total cross-sectional area for male ribs, indicating age affects rib cortex thickness moreso than overall rib cross-sectional size. Increased subject height was associated with increased rib total and cortical bone cross-sectional areas by approximately 25% and 15% increases, respectively, in mid-rib sections for a given 30 cm increase in height, although the magnitudes of these associations varied by sex and rib location. Increased weight was associated with approximately equal changes in both cortical bone and total cross-sectional areas in males. These effects were most prominent (around 25% increases for an addition of 50 kg) toward lower ribs in the rib cage and had only modest effects (less than 12% change) in ribs 2-4. Females saw greater increases with weight in total rib area compared to cortical bone area, of up to 21% at the eighth rib level. Results from this study show the expected shapes of rib cross-sections across the adult rib cage and across a broad range of demographics. This detailed geometry can be used to produce accurate rib models representing widely varying populations.


Assuntos
Costelas , Tórax , Adulto , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Costelas/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Modelos Lineares , Osso Cortical
9.
Cardiovasc Diabetol ; 23(1): 151, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702717

RESUMO

BACKGROUND: The association between the triglyceride-glucose (TyG) index and the likelihood of developing cardiovascular disease (CVD) in the general elderly population in the United States aged 60 and above is not well understood. The objective of our study was to examine the relationship between the TyG index and CVD likelihood in the general elderly population over 60 years of age in the United States. METHODS: Data for this cross-sectional study were sourced from the 2003-2018 National Health and Nutrition Examination Survey. Weighted multivariable regression analysis and subgroup analysis were conducted to estimate the independent relationship between the TyG index and the likelihood of CVD. Non-linear correlations were explored using restricted cubic splines. RESULTS: A total of 6502 participants were included, with a mean TyG index of 8.75 ± 0.01. The average prevalence of CVD was 24.31% overall. Participants in the higher TyG quartiles showed high rates of CVD (Quartile 1: 19.91%; Quartile 2: 21.65%; Quartile 3: 23.82%; Quartile 4: 32.43%). For CVD, a possible association between the TyG index and the odds of CVD was observed. Our findings suggest a nonlinear association between the TyG index and the odds of CVD. The threshold of 8.73 for the likelihood of CVD. Interaction terms were employed to assess heterogeneities among each subgroup, revealing a significant difference specifically in alcohol consumption. This suggests that the positive association between the TyG index and the likelihood of CVD is dependent on the drinking status of the participants. CONCLUSION: A higher TyG index is linked to an increased likelihood of CVD in US adults aged ≥ 60 years. TyG index is anticipated to emerge as a more effective metric for identifying populations at early likelihood of CVD.


Assuntos
Biomarcadores , Glicemia , Doenças Cardiovasculares , Inquéritos Nutricionais , Triglicerídeos , Humanos , Masculino , Feminino , Estudos Transversais , Idoso , Estados Unidos/epidemiologia , Triglicerídeos/sangue , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , Pessoa de Meia-Idade , Glicemia/metabolismo , Biomarcadores/sangue , Medição de Risco , Prevalência , Fatores Etários , Prognóstico , Idoso de 80 Anos ou mais , Fatores de Risco
10.
Rev Cardiovasc Med ; 25(5): 171, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39076470

RESUMO

Background: Secreted frizzled-related protein 2 (sFRP2) is involved in various cardiovascular diseases. However, its relevance in left ventricular (LV) remodeling in patients with hypertension (HTN) is obscure. Methods: In this study, 196 patients with HTN were included, 59 with echocardiographic LV remodeling. A total of 100 healthy subjects served as normal controls. The serum-sFRP2 level was measured by enzyme-linked immunosorbent assay (ELISA). Data were collected from medical records for baseline characteristics, biochemistry tests, and echocardiography. Receiver operating characteristic (ROC) curves were used to assess the distinguishing value of sFRP2 for LV remodeling in patients with HTN. Spearman rank correlation analysis was utilized to identify factors correlated with sFRP2. Cardiac sFRP2 was determined by Western blot and quantitative polymerase chain reaction (qPCR). Results: The level of serum-sFRP2 was higher in HTN patients with echocardiographic LV remodeling than their non-remodeling counterparts. ROC analysis showed that the area under the curve (AUC) for sFRP2 in distinguishing echocardiographic LV remodeling in HTN patients was 0.791 (95% confidence interval (CI): 0.714-0.869). The sFRP2 was negatively correlated with LV dimension and positively correlated with relative wall thickness (RWT). The expression of sFRP2 was higher in hypertrophic hearts, which could be reversed by myricetin. Conclusions: The serum level and cardiac sFRP2 increased in the setting of LV remodeling and decreased by myricetin. Serum sFRP2 may be a promising distinguishing factor for LV remodeling in HTN patients.

11.
Nanotechnology ; 35(41)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38906117

RESUMO

The electromagnetic field enhancement mechanisms leading to surface-enhanced Raman scattering (SERS) of R6G molecules near Ti3C2TxMXene flakes of different shapes and sizes are analyzed theoretically in this paper. In COMSOL simulations for the enhancement factor (EF) of SERS, the dye molecule is modeled as a small sphere with polarizability spectrum based on experimental data. It is demonstrated, for the first time, that in the wavelength range of500 nm-1000 nm, the enhancement of Raman signals is largely conditioned by quadrupole surface plasmon (QSP) oscillations that induce a strong polarization of the MXene substrate. We show that the vis-NIR spectral range quadrupole SP resonances are strengthened due to interband transitions (IBTs), which provide EF values of the order of 105-107in agreement with experimental data. The weak sensitivity of the EF to the shape and size of MXene nanoparticles (NPs) is interpreted as a consequence of the low dependence of the absorption cross-section of QSP oscillations and IBT on the geometry of the flakes. This reveals a new feature: the independence of EF on the geometry of MXene substrates, which allows to avoid the monitoring of the shape and size of flakes during their synthesis. Thus, MXene flakes can be advantageous for the easy manufacturing of universal substrates for SERS applications. The electromagnetic SERS enhancement is determined by the 'lightning rod' and 'hot-spot' effects due to the partial overlapping of the absorption spectrum of the R6G molecule with these MXene resonances.

12.
Nanotechnology ; 35(50)2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39321826

RESUMO

As an effective method to fabricate a large-area cross-sectional sample for lithium-ion battery electrodes, we perform in-plane polishing of LiNi0.8Co0.15Al0.05O2(NCA) cathode samples and obtain a large cross-sectional area with a diameter of 1.5 mm. The polished cross-sections of NCA cathode particles are sufficiently flat to perform the atomic force microscopy (AFM) measurements on each cathode particle. Following AFM-based Kelvin probe force microscopy and scanning spreading resistance microscopy measurements, an identical in-plane polished NCA sample is assembled into a coin cell for the charge and discharge processes. After 90 charge/discharge cycles, the in-plane-polished sample is successfully disassembled from the coin cell without causing critical damage. In addition, a microcrack structure, which is a typical degradation feature of the cycles of NCA particles, is observed for the identical in-plane polished NCA sample. This indicates that the in-plane polishing method is effective for investigating identical NCA electrode samples before and after the charge/discharge process. Furthermore, the in-plane polishing method can be successfully applied to the large-area polishing of a Si-based anode which is a mixture of Si carbon complexes and graphite particles. This study presents a novel methodology for analyzing the degradation of lithium-ion battery electrode materials.

13.
Environ Sci Technol ; 58(9): 4268-4280, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38393751

RESUMO

Sub-Saharan Africa is a hotspot for biomass burning (BB)-derived carbonaceous aerosols, including light-absorbing organic (brown) carbon (BrC). However, the chemically complex nature of BrC in BB aerosols from this region is not fully understood. We generated smoke in a chamber through smoldering combustion of common sub-Saharan African biomass fuels (hardwoods, cow dung, savanna grass, and leaves). We quantified aethalometer-based, real-time light-absorption properties of BrC-containing organic-rich BB aerosols, accounting for variations in wavelength, fuel type, relative humidity, and photochemical aging conditions. In filter samples collected from the chamber and Botswana in the winter, we identified 182 BrC species, classified into lignin pyrolysis products, nitroaromatics, coumarins, stilbenes, and flavonoids. Using an extensive set of standards, we determined species-specific mass and emission factors. Our analysis revealed a linear relationship between the combined BrC species contribution to chamber-measured BB aerosol mass (0.4-14%) and the mass-absorption cross-section at 370 nm (0.2-2.2 m2 g-1). Hierarchical clustering resolved key molecular-level components from the BrC matrix, with photochemically aged emissions from leaf and cow-dung burning showing BrC fingerprints similar to those found in Botswana aerosols. These quantitative findings could potentially help refine climate model predictions, aid in source apportionment, and inform effective air quality management policies for human health and the global climate.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Idoso , Carbono , Biomassa , Monitoramento Ambiental , Poluição do Ar/análise , Aerossóis/análise , Poluentes Atmosféricos/análise , Material Particulado/análise
14.
Environ Sci Technol ; 58(9): 4247-4256, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373403

RESUMO

Nitrous acid (HONO) is an important source of hydroxyl radicals (OH) in the atmosphere. Precise determination of the absolute ultraviolet (UV) absorption cross section of gaseous HONO lays the basis for the accurate measurement of its concentration by optical methods and the estimation of HONO loss rate through photolysis. In this study, we performed a series of laboratory and field intercomparison experiments for HONO measurement between striping coil-liquid waveguide capillary cell (SC-LWCC) photometry and incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). Specified HONO concentrations prepared by an ultrapure standard HONO source were utilized for laboratory intercomparisons. Results show a consistent ∼22% negative bias in measurements of the IBBCEAS compared with a SC-LWCC photometer. It is confirmed that the discrepancies occurring between these techniques are associated with the overestimation of the absolute UV absorption cross sections through careful analysis of possible uncertainties. We quantified the absorption cross section of gaseous HONO (360-390 nm) utilizing a custom-built IBBCEAS instrument, and the results were found to be 22-34% lower than the previously published absorption cross sections widely used in HONO concentration retrieval and atmospheric chemical transport models (CTMs). This suggests that the HONO concentrations retrieved by optical methods based on absolute absorption cross sections may have been underestimated by over 20%. Plus, the daytime loss rate and unidentified sources of HONO may also have evidently been overestimated in pre-existing studies. In summary, our findings underscore the significance of revisiting the absolute absorption cross section of HONO and the re-evaluation of the previously reported HONO budgets.


Assuntos
Poluentes Atmosféricos , Ácido Nitroso , Ácido Nitroso/análise , Gases/análise , Poluentes Atmosféricos/análise , Análise Espectral , Fotólise
15.
Anal Bioanal Chem ; 416(2): 559-568, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040943

RESUMO

Ion mobility spectrometry-mass spectrometry (IMS-MS) separates gas phase ions due to differences in drift time from which reproducible and analyte-specific collision cross section (CCS) values can be derived. Internally conducted in vitro and in vivo metabolism (biotransformation) studies indicated repetitive shifts in measured CCS values (CCSmeas) between parent drugs and their metabolites. Hence, the purpose of the present article was (i) to investigate if such relative shifts in CCSmeas were biotransformation-specific and (ii) to highlight their potential benefits for biotransformation studies. First, mean CCSmeas values of 165 compounds were determined (up to n = 3) using a travelling wave IMS-MS device with nitrogen as drift gas (TWCCSN2, meas). Further comparison with their predicted values (TWCCSN2, pred, Waters CCSonDemand) resulted in a mean absolute error of 5.1%. Second, a reduced data set (n = 139) was utilized to create compound pairs (n = 86) covering eight common types of phase I and II biotransformations. Constant, discriminative, and almost non-overlapping relative shifts in mean TWCCSN2, meas were obtained for demethylation (- 6.5 ± 2.1 Å2), oxygenation (hydroxylation + 3.8 ± 1.4 Å2, N-oxidation + 3.4 ± 3.3 Å2), acetylation (+ 13.5 ± 1.9 Å2), sulfation (+ 17.9 ± 4.4 Å2), glucuronidation (N-linked: + 41.7 ± 7.5 Å2, O-linked: + 38.1 ± 8.9 Å2), and glutathione conjugation (+ 49.2 ± 13.2 Å2). Consequently, we propose to consider such relative shifts in TWCCSN2, meas (rather than absolute values) as well for metabolite assignment/confirmation complementing the conventional approach to associate changes in mass-to-charge (m/z) values between a parent drug and its metabolite(s). Moreover, the comparison of relative shifts in TWCCSN2, meas significantly simplifies the mapping of metabolites into metabolic pathways as demonstrated.


Assuntos
Cisteamina , Nitrogênio , Espectrometria de Massas/métodos , Biotransformação
16.
Anal Bioanal Chem ; 416(25): 5423-5429, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38814344

RESUMO

The importance of lipids in biology continues to grow with their recent linkages to more diseases and conditions, microbiome fluctuations, and environmental exposures. These associations have motivated researchers to evaluate lipidomic changes in numerous matrices and studies. Lipidomic analyses, however, present numerous challenges as lipid species have broad chemistries that require different extraction methods and instrumental analyses to evaluate and separate their many isomers and isobars. Increasing knowledge about different lipid characteristics is therefore crucial for improving their separation and identification. Here, we present a multidimensional database for lipids analyzed on a platform combining reversed-phase liquid chromatography, drift tube ion mobility spectrometry, collision-induced dissociation, and mass spectrometry (RPLC-DTIMS-CID-MS). This platform and the different separation characteristics it provides enables more confident lipid annotations when compared to traditional tandem mass spectrometry platforms, especially when analyzing highly isomeric molecules such as lipids. This database expands on our previous publication containing only human plasma and bronchoalveolar lavage fluid lipids and provides experimental RPLC retention times, IMS collision cross section (CCS) values, and m/z information for 877 unique lipids from additional biofluids and tissues. Specifically, the database contains 1504 precursor [M + H]+, [M + NH4]+, [M + Na]+, [M-H]-, [M-2H]2-, [M + HCOO]-, and [M + CH3COO]- ion species and their associated CID fragments which are commonly targeted in clinical and environmental studies, in addition to being present in the chloroform layer of Folch extractions. Furthermore, this multidimensional RPLC-DTIMS-CID-MS database spans 5 lipid categories (fatty acids, sterols, sphingolipids, glycerolipids, and glycerophospholipids) and 24 lipid classes. We have also created a webpage (tarheels.live/bakerlab/databases/) to enhance the accessibility of this resource which will be populated regularly with new lipids as we identify additional species and integrate novel standards.


Assuntos
Bases de Dados Factuais , Espectrometria de Mobilidade Iônica , Lipidômica , Lipídeos , Espectrometria de Massas em Tandem , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas em Tandem/métodos , Lipidômica/métodos , Humanos , Lipídeos/análise , Lipídeos/química , Cromatografia Líquida/métodos , Animais
17.
Nutr Neurosci ; : 1-9, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564407

RESUMO

BACKGROUND: Epilepsy is a neurological disorder characterized by recurrent seizures. We aimed to investigate the association between the percentage of dietary carbohydrate intake (DCI) and epilepsy prevalence among American adults. METHODS: We analyzed the data from 9,584 adults aged 20-80 years who participated in the National Health and Nutrition Examination Survey from 2013 to 2018. Logistic regression was applied to explore the association between the percentage of DCI and epilepsy prevalence. RESULTS: A total of 146 (1.5%) individuals with epilepsy were enrolled in this study. The average age of the participants was 56.4 years, and 5,454 (56.9%) individuals were female. A high DCI was associated with an increased prevalence of epilepsy (odds ratio [OR], 4.56; 95% confidence interval [CI], 1.11-18.69; P = 0.035) after adjusting for age, sex, marital status, race/ethnicity, educational level, family income, body mass index, smoking status, drinking status, hypertension, diabetes, and cardiovascular disease. Stratified analyses indicated a positive correlation between DCI and epilepsy prevalence in adults with different characteristics. Compared with individuals in quartile 1 of DCI (<40.5%), those in quartile 4 (>55.4%) had an adjusted OR for epilepsy of 1.72 (95% CI, 1.09-2.73, P = 0.02, P for trend = 0.012). CONCLUSIONS: A high percentage of DCI was associated with an increased prevalence of epilepsy. The risk of epilepsy increased 3.5-fold with a 1% increase in DCI. These results suggest an important role of DCI in the dietary management of epilepsy.

18.
Radiat Environ Biophys ; 63(1): 143-164, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310599

RESUMO

The materials which compose the ICRP Voxel phantoms used in the computation of conversion coefficients involve neutron interaction cross-sections that have resonances at specific energies. Depending on the energy bin structure used in the computations, these cross-section resonances may occur at energies that fall between energies at which dose coefficients are computed, thus their effects may not be completely accounted for in the reported coefficients. In the present study, a highly refined energy grid that closely follows the resonance structure in the phantom material cross-sections was identified and used to calculate dose coefficients. Both the equivalent organ/tissue doses for male and female voxel phantoms were computed as well as their summation to obtain the effective dose coefficients. The used refined energy grid tracks very closely the cross-sections in the vicinity of the resonances. The resulting refined energy grid coefficients are compared to coefficients for the coarser energy grid used in ICRP Publication 116. Additionally, reference spectra have been folded with both the fine and coarse sets of conversion coefficients. The resulting total effective doses for these reference spectra are used to assess the adequacy of the dose coefficients calculated on the original ICRP 116 energy grid. The dose coefficients were similarly computed for the local skin dose on the trunk of the body using the ICRU Report 95 phantom. The overall impact of the resonances on the organ/tissue equivalent dose, the effective dose, and the local skin dose are presented and discussed. In general, it was found that resonances can impact neutron dose coefficients, but in most cases the wide range of neutron energies encountered minimized this effect. The impact of resonances was further limited when computing effective dose due to organ/tissue summing and sex-averaging. For the neutron fields studied here, the impact was below 5%.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Nêutrons , Masculino , Feminino , Humanos , Doses de Radiação , Imagens de Fantasmas , Radiometria/métodos , Método de Monte Carlo
19.
J Adv Nurs ; 80(4): 1473-1483, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37904573

RESUMO

AIMS: To explore the current situation, influencing factors and pathways of safety behaviour of nurses in tumour specialized hospitals, in order to provide a theoretical basis for managers to manage and train nurses, improve their safety behaviour level and ensure medical safety. DESIGN: An anonymous cross-sectional survey. METHOD: A total of 2147 nurses from Grade A cancer hospitals in 15 provinces of China were selected by a convenient sampling method. Questionnaires were collected through the Questionnaire Star platform. Nurses' safety behaviour was measured using the nurse Safety Behaviour Scale, Self-efficacy by the General Self-efficacy Scale, and nurses' occupational burnout was measured by the occupational Burnout Scale, and work engagement through the the Work Engagement Scale. Structural equation modelling was used to test the relationship among nurses' safety behaviour, general self-efficacy, occupational burnout and work engagement. SPSS25.0 software was used to test the relationship among the safety behaviour of nurses, general self-efficacy, occupational burnout and work engagement. RESULTS: The total score of safety behaviour of nurses was 55.45 ± 6.879, the total score of general self-efficacy was 31.39 ± 5.729, the total score of occupational burnout was 44.99 ± 26.587, and the total score of work engagement was 38.48 ± 13.433; the scores of the Nurse Safety Behaviour Scale, Self-Efficacy Scale, and Work Engagement Scale were positively correlated (all p < .001); the occupational burnout scale was negatively correlated with the scores of self-efficacy scale, work engagement scale and nurse safety behaviour scale (all p < .001); Structural equation model analysis shows that self-efficacy and work engagement have a direct positive impact on nurse safety behaviour(ß = .103, ß = .096, all p < .001); Occupational burnout has a direct negative impact on self-efficacy, work engagement and nurse safety behaviour(ß = -.371, ß = -.413, ß = -.328 all p < .001). Bootstrap analysis showed that occupational burnout and job involvement had a significant chain mediating effect between self-efficacy and the safety behaviour of nurses (95% CI: 0.148-0.21). The total effect of self-efficacy on the safety behaviour of nurses was 0.283 (p < .001, 95% CI: 0.225-0.301), the direct effect was 0.096 (p < .001, 95% CI: 0.042-0.15), and the indirect effect was 0.179 (p < .001, 95% CI: 0.085-0.215), The mediating effect accounted for 63.3% of the total effect size. CONCLUSION: Occupational burnout and work engagement play a partial mediating role between self-efficacy and nurse safety behaviour. It is necessary to strengthen training on nurse safety culture awareness, improve the nurse self-efficacy and work engagement, reduce nurse occupational burnout, and thereby improve the level of nurses' safety behaviour.


Assuntos
Esgotamento Profissional , Enfermeiras e Enfermeiros , Humanos , Autoeficácia , Estudos Transversais , Modelos Teóricos , Inquéritos e Questionários , Engajamento no Trabalho , Satisfação no Emprego
20.
Mikrochim Acta ; 191(10): 634, 2024 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-39347843

RESUMO

Inertial microfluidic technologies have proven effective for particle focusing and separation in many microchannels, typically the channels with the rectangular and trapezoidal shapes. To advance particle focusing in complex channels, we propose a spiral channel combining rectangular and concave cross-sections for high-resolution particle and cell focusing and separation. Numerical simulations were conducted to illustrate the effects of channel geometry on secondary flow distribution and particle focusing positions. The simulation shows the concave cross-section generates two asymmetrical Dean vortices skewing towards the inner and outer channel walls, resulting to stronger flow velocity magnitudes near the walls than the channel center. Consequently, larger particles focus near the inner wall, while smaller particles are trapped closer to the outer wall under the influence of the stronger velocity magnitude near the walls. A microfluidic chip with the proposed channel geometry, along with a traditional rectangular channel, was fabricated by 3D printing and PDMS casting. Fluorescent microbeads were used to investigate inertial focusing and separation behaviors in the microfluidic chips. Experimental results show that the concave channel facilitates particle focusing or trapping much closer to the walls than the traditional rectangular channel, achieving better separation resolution. Finally, the proposed channel was applied to separate lung cancer A549 cells from human blood, achieving a cancer cell recovery rate of ~ 84.78% (enrichment ratio over 820-fold) and a blood cell rejection rate of ~ 99.88%. This innovative channel design in inertial microfluidics offers new insights for enhanced particle focusing and holds significant promise for cell manipulation with improved separation resolution.


Assuntos
Separação Celular , Humanos , Separação Celular/instrumentação , Separação Celular/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Dispositivos Lab-On-A-Chip , Microesferas , Desenho de Equipamento , Linhagem Celular Tumoral , Tamanho da Partícula , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA