Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Toxicol Appl Pharmacol ; 487: 116969, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744347

RESUMO

Cysteine and glycine-rich protein 2 (CSRP2) is expressed differently in numerous cancers and plays a key role in carcinogenesis. However, the role of CSRP2 in glioma is unknown. This study sought to determine the expression profile and clinical significance of CSRP2 in glioma and explore its biological functions and mechanisms via lentivirus-mediated CSRP2 silencing experiments. Increased CSRP2 was frequently observed in gliomas, which was associated with clinicopathological characteristics and an unfavourable prognosis. Decreasing CSRP2 led to the suppression of malignant proliferation, metastasis and stemness in glioma cells while causing hypersensitivity to chemotherapeutic drugs. Mechanistic investigations revealed that CSRP2 plays a role in mediating the Notch signalling cascade. Silencing CSRP2 decreased the levels of Notch1, cleaved Notch1, HES1 and HEY1, suppressing the Notch signalling cascade. Reactivation of Notch markedly diminished the tumour-inhibiting effects of CSRP2 silencing on the malignant phenotypes of glioma cells. Notably, CSRP2-silencing glioma cells exhibited reduced potential in the formation of xenografts in nude mice in vivo, which was associated with an impaired Notch signalling cascade. These results showed that CSRP2 is overexpressed in glioma and has a crucial role in sustaining the malignant phenotypes of glioma, suggesting that targeting CSRP2 could be a promising strategy for glioma treatment.


Assuntos
Glioma , Camundongos Nus , Transdução de Sinais , Humanos , Glioma/patologia , Glioma/metabolismo , Glioma/genética , Animais , Linhagem Celular Tumoral , Camundongos , Masculino , Proliferação de Células , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Feminino , Fenótipo , Receptores Notch/metabolismo , Receptores Notch/genética , Receptor Notch1/metabolismo , Receptor Notch1/genética , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cell Biochem Funct ; 42(1): e3896, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081793

RESUMO

Cysteine and glycine-rich protein 2 (Csrp2) has emerged as a key factor in controlling the phenotypic modulation of smooth muscle cells. The phenotypic transition of airway smooth muscle cells (ASMCs) is a pivotal step in developing airway remodeling during the onset of asthma. However, whether Csrp2 mediates the phenotypic transition of ASMCs in airway remodeling during asthma onset is undetermined. This work aimed to address the link between Csrp2 and the phenotypic transition of ASMCs evoked by platelet-derived growth factor (PDGF)-BB in vitro. The overexpression or silencing of Csrp2 in ASMCs was achieved through adenovirus-mediated gene transfer. The expression of mRNA was measured by quantitative real-time-PCR. Protein levels were determined through Western blot analysis. Cell proliferation was detected by EdU assay and Calcein AM assays. Cell cycle distribution was assessed via fluorescence-activated cell sorting assay. Cell migration was evaluated using the scratch-wound assay. The transcriptional activity of Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) was measured using the luciferase reporter assay. A decline in Csrp2 level occurred in PDGF-BB-stimulated ASMCs. Increasing Csrp2 expression repressed the PDGF-BB-evoked proliferation and migration of ASMCs. Moreover, increasing Csrp2 expression impeded the phenotypic change of PDGF-BB-stimulated ASMCs from a contractile phenotype into a synthetic/proliferative phenotype. On the contrary, the opposite effects were observed in Csrp2-silenced ASMCs. The activity of YAP/TAZ was elevated in PDGF-BB-stimulated ASMCs, which was weakened by Csrp2 overexpression or enhanced by Csrp2 silencing. The YAP/TAZ activator could reverse Csrp2-overexpression-mediated suppression of the PDGF-BB-evoked phenotypic switching of ASMCs, while the YAP/TAZ suppressor could dimmish Csrp2-silencing-mediated enhancement on PDGF-BB-evoked phenotypic switching of ASMCs. In summary, Csrp2 serves as a determinant for the phenotypic switching of ASMCs. Increasing Csrp2 is able to impede PDGF-BB-evoked phenotypic change of ASMCs from a synthetic phenotype into a synthetic/proliferative phenotype through the effects on YAP/TAZ. This work implies that Csrp2 may be a key player in airway remodeling during the onset of asthma.


Assuntos
Asma , Cisteína , Humanos , Becaplermina/genética , Becaplermina/metabolismo , Cisteína/genética , Cisteína/metabolismo , Remodelação das Vias Aéreas , Células Cultivadas , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Asma/metabolismo , Fenótipo , Movimento Celular
3.
Toxicol Appl Pharmacol ; 457: 116319, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36414118

RESUMO

Pulmonary hypertension (PH) is a serious cardiovascular disease with a poor prognosis and high mortality. The pathogenesis of PH is complex, and the main pathological changes in PH are abnormal hypertrophy and vessel stiffness. Cysteine and glycine rich protein 2 (Csrp2), a member of the LIM-only family plays a key role in the response to vascular injury. However, its roles in vascular fibrosis and PH have not been clarified. Therefore, this study aimed to investigate whether Csrp2 can promote vascular fibrosis and to further explore the possible mechanisms. Csrp2 expression was increased in both the pulmonary vasculature of rats with PH and hypoxic pulmonary vascular smooth muscle cells (PASMCs). Hypoxia activated TGF-ß1 and its downstream effector, SP1. Additionally, hypoxia activated the ROCK pathway and inhibited KLF4 expression. Silencing SP1 and overexpressing KLF4 reversed the hypoxia-induced increase in Csrp2 expression. Csrp2 knockdown decreased the expression of extracellular matrix (ECM) proteins and inhibited the nuclear translocation and expression of YAP/TAZ in hypoxic PASMCs. These results indicate that hypoxia induces Csrp2 expression through the TGF-ß1/SP1 and ROCK/KLF4 pathways. Elevated Csrp2 promoted the nuclear translocation and expression of YAP/TAZ, leading to vascular fibrosis and the development of PH.

4.
J Biochem Mol Toxicol ; 36(9): e23122, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35695329

RESUMO

Pulmonary hypertension (PH) is mainly characterized by abnormal pulmonary vascular hyperplasia and vascular remodeling, but its mechanism is complicated and currently unclear. Cysteine and glycine-rich protein 2 (Csrp2) has been reported to promote cell proliferation and migration, and affect cell cycle progression. As a new invasive actin-binding factor, Csrp2 increased the invasion and even metastasis of some cancer cells. It was associated with tumor recurrence and chemotherapy resistance. However, the role of Csrp2 in PH remains unknown. We found that Csrp2 expression was increased both in pulmonary arteries (PAs) and smooth muscle cells (PASMCs) in PH. Csrp2 enhanced PASMC proliferation and phenotypic transition. The Wnt3α-ß-catenin/lymphoid enhancer-binding factor 1 (LEF1) pathway is involved in cell proliferation and phenotypic transition regulated by Csrp2 expression. These results suggest that hypoxia downregulates YinYang-1 (YY1) and then increases Csrp2 expression. Increased Csrp2 promotes PASMC proliferation and phenotypic transition by activating the Wnt3α-ß-catenin/LEF1 pathways, which leads to pulmonary vascular remodeling and even provides a new theoretical basis for studying the pathogenesis and therapeutic targets of PH.


Assuntos
Hipertensão Pulmonar , Remodelação Vascular , Actinas/metabolismo , Proliferação de Células , Células Cultivadas , Cisteína/metabolismo , Glicina/metabolismo , Humanos , Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , beta Catenina/metabolismo
5.
Cell Physiol Biochem ; 49(3): 869-883, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30184548

RESUMO

BACKGROUND/AIMS: The malignant biological behavior of gastric cancer(GC) is not only determined by cancer cells alone, but also closely regulated by the microenvironment. Fibroblasts represent a large proportion of the components in the tumor microenvironment, and they promote the development of disease. Currently, accumulating evidence suggests that exosomes can function as intercellular transport systems to relay their contents, especially microRNAs(miRNAs). METHODS: First, we detected the highly-expressed level of miR-27a in exosomes isolated from gastric cancer cells by qRT-PCR. MiR-27a -over-expressed models in vitro and in vivo were established to investigate the transformation of cancer-associated fibroblasts observed by Western blotting, and the malignant behavior of gastric cancer cells using the methods CCK8 and Transwell. Moreover, the downregulation of CSRP2 in fibroblasts was used to evaluate the promotion of malignancy of gastric cancer using the methods CCK8 and Transwell. RESULTS: In this study, we found a marked high level of miR-27a in exosomes derived from GC cells. miR-27a was found to function an oncogene that not only induced the reprogramming of fibroblasts into cancer-associated fibroblasts(CAFs), but also promoted the proliferation, motility and metastasis of cancer cells in vitro and in vivo. Conversely, CAFs with over-expression of miR-27a could pleiotropically increase the malignant behavior of the GC cells. For the first time, we revealed that CSRP2 is a downstream target of miR-27a. CSRP2 downregulation could increase the proliferation and motility of GC cells. CONCLUSION: Thus, this report indicates that miR-27a in exosomes derived from GC cells has a crucial impact on the microenvironment and may be used as a potential therapeutic target in the treatment of GC.


Assuntos
Exossomos/metabolismo , MicroRNAs/metabolismo , Animais , Fibroblastos Associados a Câncer/citologia , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica , Regulação para Baixo , Exossomos/genética , Feminino , Humanos , Proteínas com Domínio LIM/antagonistas & inibidores , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
6.
Head Neck ; 45(9): 2161-2172, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37466293

RESUMO

BACKGROUND: Cysteine-rich protein 2 (CSRP2) is discovered as oncogene. The study aims to investigate the clinical significance and potential mechanism of CSRP2 in head and neck squamous cell carcinoma (HNSCC). METHODS: CSRP2 expression was explored by immunohistochemistry tissue microarrays and Western blotting in HNSCC. The effect of CSRP2 on the cancer stemness and epithelial-to-mesenchymal transition (EMT) of HNSCC cells was investigated by sphere formation, wound healing, and transwell assays. The vitro and vivo experiments revealed that CSRP2 modulated cancer stemness and EMT phenotypes in HNSCC. RESULTS: CSRP2 was overexpressed in HNSCC patients and presented poor prognosis. CSRP2 knockdown inhibited the migration and invasion ability of the HNSCC cells. And CSRP2 expression was closely associated with CSCs markers, EMT-transcription factor, new oncoprotein, and immune checkpoint. CONCLUSION: The overexpression of CSRP2 indicates poor prognosis and plays a key role in maintaining the cancer cell stemness and EMT.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/genética , Fatores de Transcrição/genética , Fenótipo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/farmacologia , Proteínas Nucleares/genética , Proteínas com Domínio LIM/genética
7.
J Exp Clin Cancer Res ; 42(1): 268, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37845756

RESUMO

BACKGROUND: Dysregulated epithelial-mesenchymal transition (EMT) is involved in cervical cancer metastasis and associated with histone acetylation. However, the underlying molecular mechanisms of histone acetylation in cervical cancer EMT and metastasis are still elusive. METHODS: We systematically investigated the expression patterns of histone acetylation genes and their correlations with the EMT pathway in cervical cancer. The expression of CSRP2BP among cervical cancer tissues and cell lines was detected using Western blotting and immunohistochemistry analyses. The effects of CSRP2BP on cervical cancer cell proliferation and tumorigenicity were examined by cell growth curve, EdU assay, flow cytometry and xenotransplantation assays. Wound healing assays, transwell migration assays and pulmonary metastasis model were used to evaluate the effects of CSRP2BP on cell invasion and metastasis of cervical cancer cells in vivo and in vitro. RNA-seq, chromatin immunoprecipitation (ChIP), co-immunoprecipitation (Co-IP) and luciferase reporter assays were used to uncover the molecular mechanisms of CSRP2BP in promoting cervical cancer EMT and metastasis. RESULTS: We prioritized a top candidate histone acetyltransferase, CSRP2BP, as a key player in cervical cancer EMT and metastasis. The expression of CSRP2BP was significantly increased in cervical cancer tissues and high CSRP2BP expression was associated with poor prognosis. Overexpression of CSRP2BP promoted cervical cancer cell proliferation and metastasis both in vitro and in vivo, while knockdown of CSRP2BP obtained the opposite effects. In addition, CSRP2BP promoted resistance to cisplatin chemotherapy. Mechanistically, CSRP2BP mediated histone 4 acetylation at lysine sites 5 and 12, cooperated with the transcription factor SMAD4 to bind to the SEB2 sequence in the N-cadherin gene promotor and upregulated N-cadherin transcription. Consequently, CSRP2BP promoted cervical cancer cell EMT and metastasis through activating N-cadherin. CONCLUSIONS: This study demonstrates that the histone acetyltransferase CSRP2BP promotes cervical cancer metastasis partially through increasing the EMT and suggests that CSRP2BP could be a prognostic marker and a potential therapeutic target for combating cervical cancer metastasis.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Caderinas/genética , Caderinas/metabolismo , Transição Epitelial-Mesenquimal/genética , Histonas/metabolismo , Movimento Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Metástase Neoplásica
8.
Theranostics ; 10(24): 11063-11079, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042270

RESUMO

Metastasis is a major cause of death in patients with colorectal cancer (CRC). Cysteine-rich protein 2 (CSRP2) has been recently implicated in the progression and metastasis of a variety of cancers. However, the biological functions and underlying mechanisms of CSRP2 in the regulation of CRC progression are largely unknown. Methods: Immunohistochemistry, quantitative real-time polymerase chain reaction (qPCR) and Western blotting (WB) were used to detect the expression of CSRP2 in CRC tissues and paracancerous tissues. CSRP2 function in CRC was determined by a series of functional tests in vivo and in vitro. WB and immunofluorescence were used to determine the relation between CSRP2 and epithelial-mesenchymal transition (EMT). Co-immunoprecipitation and scanning electron microscopy were used to study the molecular mechanism of CSRP2 in CRC. Results: The CSRP2 expression level in CRC tissues was lower than in adjacent normal tissues and indicated poor prognosis in CRC patients. Functionally, CSRP2 could suppress the proliferation, migration, and invasion of CRC cells in vitro and inhibit CRC tumorigenesis and metastasis in vivo. Mechanistic investigations revealed a physical interaction between CSRP2 and p130Cas. CSRP2 could inhibit the activation of Rac1 by preventing the phosphorylation of p130Cas, thus activating the Hippo signaling pathway, and simultaneously inhibiting the ERK and PAK/LIMK/cortactin signaling pathways, thereby inhibiting the EMT and metastasis of CRC. Rescue experiments showed that blocking the p130Cas and Rac1 activation could inhibit EMT induced by CSRP2 silencing. Conclusion: Our results suggest that the CSRP2/p130Cas/Rac1 axis can inhibit CRC aggressiveness and metastasis through the Hippo, ERK, and PAK signaling pathways. Therefore, CSRP2 may be a potential therapeutic target for CRC.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Proteína Substrato Associada a Crk/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas Musculares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Aminoquinolinas/farmacologia , Animais , Biomarcadores Tumorais/genética , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colo/patologia , Colo/cirurgia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/cirurgia , Progressão da Doença , Regulação para Baixo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Via de Sinalização Hippo , Humanos , Estimativa de Kaplan-Meier , Proteínas com Domínio LIM/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Musculares/genética , Invasividade Neoplásica/patologia , Proteínas Nucleares/genética , Fosforilação , Prognóstico , Proteínas Serina-Treonina Quinases/metabolismo , Pirimidinas/farmacologia , Reto/patologia , Reto/cirurgia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores
9.
Oncotarget ; 8(22): 35984-36000, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28415593

RESUMO

Relapse is the major cause of treatment-failure in adults with B-cell acute lymphoblastic leukemia (ALL) achieving complete remission after induction chemotherapy. Greater precision identifying persons likely to relapse is important. We did bio-informatics analyses of transcriptomic data to identify mRNA transcripts aberrantly-expressed in B-cell ALL. We selected 9 candidate genes for validation 7 of which proved significantly-associated with B-cell ALL. We next focused on function and clinical correlations of the cysteine and glycine-rich protein 2 (CSRP2). Quantitative real-time polymerase chain reaction (RT-qPCR) was used to examine gene transcript levels in bone marrow samples from 236 adults with B-cell ALL compared with samples from normals. CSRP2 was over-expressed in 228 out of 236 adults (97%) with newly-diagnosed B-cell ALL. A prognostic value was assessed in 168 subjects. In subjects with normal cytogenetics those with high CSRP2 transcript levels had a higher 5-year cumulative incidence of relapse (CIR) and worse relapse-free survival (RFS) compared with subjects with low transcript levels (56% [95% confidence interval, 53, 59%] vs. 19% [18, 20%]; P = 0.011 and 41% [17, 65%] vs. 80% [66-95%]; P = 0.007). In multivariate analyses a high CSRP2 transcript level was independently-associated with CIR (HR = 5.32 [1.64-17.28]; P = 0.005) and RFS (HR = 5.56 [1.87, 16.53]; P = 0.002). Functional analyses indicated CSRP2 promoted cell proliferation, cell-cycle progression, in vitro colony formation and cell migration ability. Abnormal CSRP2 expression was associated with resistance to chemotherapy; sensitivity was restored by down-regulating CSRP2 expression.


Assuntos
Expressão Gênica , Proteínas com Domínio LIM/genética , Proteínas Musculares/genética , Proteínas Nucleares/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Adulto , Animais , Apoptose , Biomarcadores , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Análise Citogenética , Feminino , Humanos , Imunofenotipagem , Proteínas com Domínio LIM/metabolismo , Masculino , Camundongos , Proteínas Musculares/metabolismo , Neoplasia Residual , Proteínas Nucleares/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Prognóstico , Recidiva , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA