Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 25(15): e202400279, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776258

RESUMO

Bacteria use specialized proteins, like transcription factors, to rapidly control metal ion balance. CueR is a Gram-negative bacterial copper regulator. The structure of E. coli CueR complexed with Cu(I) and DNA was published, since then many studies have shed light on its function. However, P. aeruginosa CueR, which shows high sequence similarity to E. coli CueR, has been less studied. Here, we applied room-temperature electron paramagnetic resonance (EPR) measurements to explore changes in dynamics of P. aeruginosa CueR in dependency of copper concentrations and interaction with two different DNA promoter regions. We showed that P. aeruginosa CueR is less dynamic than the E. coli CueR protein and exhibits much higher sensitivity to DNA binding as compared to its E. coli CueR homolog. Moreover, a difference in dynamical behavior was observed when P. aeruginosa CueR binds to the copZ2 DNA promoter sequence compared to the mexPQ-opmE promoter sequence. Such dynamical differences may affect the expression levels of CopZ2 and MexPQ-OpmE proteins in P. aeruginosa. Overall, such comparative measurements of protein-DNA complexes derived from different bacterial systems reveal insights about how structural and dynamical differences between two highly homologous proteins lead to quite different DNA sequence-recognition and mechanistic properties.


Assuntos
Proteínas de Bactérias , Cobre , Pseudomonas aeruginosa , Fatores de Transcrição , Pseudomonas aeruginosa/metabolismo , Cobre/metabolismo , Cobre/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Regiões Promotoras Genéticas , Escherichia coli/metabolismo , Escherichia coli/genética , DNA Bacteriano/metabolismo , Ligação Proteica , Espectroscopia de Ressonância de Spin Eletrônica , DNA/metabolismo , DNA/química , Sítios de Ligação
2.
Eur Biophys J ; 50(3-4): 491-500, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33907862

RESUMO

The response of CueR towards environmental changes in solution was investigated. CueR is a bacterial metal ion selective transcriptional metalloregulator protein, which controls the concentration of copper ions in the cell. Although several articles have been devoted to the discussion of the structural and functional features of this protein, CueR has not previously been extensively characterized in solution. Here, we studied the effect of change in pH, temperature, and the presence of specific or non-specific binding partners on the secondary structure of CueR with circular dichroism (CD) spectroscopy. A rather peculiar reversible pH-dependent secondary structure transformation was observed, elucidated and supplemented with pKa estimation by PROPKA and CpHMD simulations suggesting an important role of His(76) and His(94) in this process. CD experiments revealed that the presence of DNA prevents this structural switch, suggesting that DNA locks CueR in the α-helical-rich form. In contrast to the non-cognate metal ions HgII, CdII and ZnII, the presence of the cognate AgI ion affects the secondary structure of CueR, most probably by stabilizing the metal ion and DNA-binding domains of the protein.


Assuntos
Estrutura Secundária de Proteína , Proteínas de Bactérias , Dicroísmo Circular , Cobre , DNA , Proteínas de Ligação a DNA , Concentração de Íons de Hidrogênio , Íons , Metais
3.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669570

RESUMO

Thirty-five thousand people die as a result of more than 2.8 million antibiotic-resistant infections in the United States of America per year. Pseudomonas aeruginosa (P. aeruginosa) is classified a serious threat, the second-highest threat category of the U.S. Department of Health and Human Services. Among others, the World Health Organization (WHO) encourages the discovery and development of novel antibiotic classes with new targets and mechanisms of action without cross-resistance to existing classes. To find potential new target sites in pathogenic bacteria, such as P. aeruginosa, it is inevitable to fully understand the molecular mechanism of homeostasis, metabolism, regulation, growth, and resistances thereof. P. aeruginosa maintains a sophisticated copper defense cascade comprising three stages, resembling those of public safety organizations. These stages include copper scavenging, first responder, and second responder. Similar mechanisms are found in numerous pathogens. Here we compare the copper-dependent transcription regulators cueR and copRS of Escherichia coli (E. coli) and P. aeruginosa. Further, phylogenetic analysis and structural modelling of mexPQ-opmE reveal that this efflux pump is unlikely to be involved in the copper export of P. aeruginosa. Altogether, we present current understandings of the copper homeostasis in P. aeruginosa and potential new target sites for antimicrobial agents or a combinatorial drug regimen in the fight against multidrug resistant pathogens.


Assuntos
Cobre/metabolismo , Homeostase , Pseudomonas aeruginosa/metabolismo , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transporte Biológico/efeitos dos fármacos , Cobre/farmacologia , Homeostase/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos
4.
Chemistry ; 25(66): 15030-15035, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31365771

RESUMO

Intracellular CuI is controlled by the transcriptional regulator CueR, which effectively discriminates between monovalent and divalent metal ions. It is intriguing that HgII does not activate transcription, as bis-thiolate metal sites exhibit high affinity for HgII . Here the binding of HgII to CueR and a truncated variant, ΔC7-CueR, without the last 7 amino acids at the C-terminus including a conserved CCHH motif is explored. ESI-MS demonstrates that up to two HgII bind to CueR, while ΔC7-CueR accommodates only one HgII . 199m Hg PAC and UV absorption spectroscopy indicate HgS2 structure at both the functional and the CCHH metal site. However, at sub-equimolar concentrations of HgII at pH 8.0, the metal binding site displays an equilibrium between HgS2 and HgS3 , involving cysteines from both sites. We hypothesize that the C-terminal CCHH motif provides auxiliary ligands that coordinate to HgII and thereby prevents activation of transcription.


Assuntos
Cisteína/química , Proteínas de Escherichia coli/química , Mercúrio/química , Transativadores/química , Sequência de Aminoácidos , Sítios de Ligação , Cátions Bivalentes/química , Cátions Monovalentes/química , Cobre/química , Cisteína/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligantes , Mercúrio/metabolismo , Alinhamento de Sequência , Transativadores/genética , Transativadores/metabolismo , Ativação Transcricional
5.
Int J Mol Sci ; 20(14)2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31337158

RESUMO

Appropriate maintenance of Cu(I) homeostasis is an essential requirement for proper cell function because its misregulation induces the onset of major human diseases and mortality. For this reason, several research efforts have been devoted to dissecting the inner working mechanism of Cu(I)-binding proteins and transporters. A commonly adopted strategy relies on mutations of cysteine residues, for which Cu(I) has an exquisite complementarity, to serines. Nevertheless, in spite of the similarity between these two amino acids, the structural and functional impact of serine mutations on Cu(I)-binding biomolecules remains unclear. Here, we applied various biochemical and biophysical methods, together with all-atom simulations, to investigate the effect of these mutations on the stability, structure, and aggregation propensity of Cu(I)-binding proteins, as well as their interaction with specific partner proteins. Among Cu(I)-binding biomolecules, we focused on the eukaryotic Atox1-ATP7B system, and the prokaryotic CueR metalloregulator. Our results reveal that proteins containing cysteine-to-serine mutations can still bind Cu(I) ions; however, this alters their stability and aggregation propensity. These results contribute to deciphering the critical biological principles underlying the regulatory mechanism of the in-cell Cu(I) concentration, and provide a basis for interpreting future studies that will take advantage of cysteine-to-serine mutations in Cu(I)-binding systems.


Assuntos
Substituição de Aminoácidos , ATPases Transportadoras de Cobre/química , ATPases Transportadoras de Cobre/metabolismo , Cisteína/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Serina/genética , ATPases Transportadoras de Cobre/genética , Humanos , Metalochaperonas/química , Metalochaperonas/genética , Metalochaperonas/metabolismo , Modelos Moleculares , Conformação Proteica , Análise Espectral , Relação Estrutura-Atividade
6.
Environ Sci Pollut Res Int ; 30(48): 105885-105896, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37718361

RESUMO

Pt-V bimetallic catalysts maybe promising substitutes to precious metal catalysts for selective catalytic oxidation (SCO) of NH3. But it remains a major challenge for Pt-V bimetallic catalysts to pursue high NH3 conversion rate and N2 selectivity simultaneously. In this work, both Cu and Er were adopted to modify V0.5/Pt0.04/TiO2 catalyst (denoted as V/PT), and the influences of Cu and Er doping amounts on NH3-SCO performance of V/PT catalysts were investigated systematically. The results indicated that the co-modification of Cu and Er imposed little influence on NH3 conversion efficiency, but significantly boosted N2 selectivity. Compared with other Cu-Er-modified V/PT catalysts, CEV/PT-4 catalyst exhibited outstanding NH3-SCO performance, which attained completely 100% NH3 conversion efficiency and > 90% N2 selectivity in the temperature range of 225-450 °C. It was significantly superior to the NH3-SCO performance of most previously reported catalysts. The characterization results indicated that the adequate doping amounts of Cu and Er resulted in an obvious enhancement on redox property and surface acidity of CEV/PT-4 catalyst. It also led to abundant Pt0 and surface chemisorbed oxygen species on catalyst surface, which facilitated the oxidation of NH3 to NOx and enhanced i-SCR reactions. In situ DRIFTS results showed that -NH2 species on the surface of CEV/PT-4 catalyst could actively react with nitrate species to generate N2 and H2O.


Assuntos
Amônia , Titânio , Oxirredução , Nitratos , Catálise
7.
Protein Sci ; 31(5): e4309, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481642

RESUMO

Metalloregulators bind and respond to metal ions by regulating the transcription of metal homeostasis genes. Copper efflux regulator (CueR) is a copper-responsive metalloregulator that is found in numerous Gram-negative bacteria. Upon Cu(I) coordination, CueR initiates transcription by bending the bound DNA promoter regions facilitating interaction with RNA polymerase. The structure of Escherichia coli CueR in presence of DNA and metal ion has been reported using X-ray crystallography and cryo-EM, providing information about the mechanism of action. However, the specific role of copper in controlling this transcription mechanism remains elusive. Herein, we use room temperature electron paramagnetic resonance (EPR) experiments to follow allosterically driven dynamical changes in E. coli CueR induced by Cu(I) binding. We suggest that more than one Cu(I) ion binds per CueR monomer, leading to changes in site-specific dynamics at the Cu(I) binding domain and at the distant DNA binding site. Interestingly, Cu(I) binding leads to an increase in dynamics about 27 Å away at the DNA binding domain. These changes in the dynamics of the DNA binding domain are important for exact coordination with the DNA. Thus, Cu(I) binding is critical to initiate a series of conformational changes that regulate and initiate gene transcription. BROAD AUDIENCE STATEMENT: The dynamics of metal transcription factors as a function of metal and DNA binding are complex. In this study, we use EPR spectroscopy to measure dynamical changes of Escherichia coli CueR as a function of copper and DNA binding. We show that copper controls the activation of the transcription processes by initiation a series of dynamical changes over the protein.


Assuntos
Cobre , Fatores de Transcrição , Cobre/metabolismo , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Metais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
Biophys Rev ; 14(5): 1141-1159, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36345280

RESUMO

Electron paramagnetic resonance (EPR) spectroscopy has become a promising structural biology tool to resolve complex and dynamic biological mechanisms in-vitro and in-cell. Here, we focus on the advantages of continuous wave (CW) and pulsed EPR distance measurements to resolve transcription processes and protein-DNA interaction. The wide range of spin-labeling approaches that can be used to follow structural changes in both protein and DNA render EPR a powerful method to study protein-DNA interactions and structure-function relationships in other macromolecular complexes. EPR-derived data goes well beyond static structural information and thus serves as the method of choice if dynamic insight is needed. Herein, we describe the conceptual details of the theory and the methodology and illustrate the use of EPR to study the protein-DNA interaction of the copper-sensitive transcription factor, CueR.

9.
Micromachines (Basel) ; 12(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572806

RESUMO

Cell-based biosensors harness a cell's ability to respond to the environment by repurposing its sensing mechanisms. MerR family proteins are activator/repressor switches that regulate the expression of bacterial metal resistance genes and have been used in metal biosensors. Upon metal binding, a conformational change switches gene expression from off to on. The genomes of the multimetal resistant bacterial strains, Stenotrophomonas maltophilia Oak Ridge strain 02 (S. maltophilia 02) and Enterobacter sp. YSU, were recently sequenced. Sequence analysis and gene cloning identified three mercury resistance operons and three MerR switches in these strains. Transposon mutagenesis and sequence analysis identified Enterobacter sp. YSU zinc and copper resistance operons, which appear to be regulated by the protein switches, ZntR and CueR, respectively. Sequence analysis and reverse transcriptase polymerase chain reaction (RT-PCR) showed that a CueR switch appears to activate a S. maltophilia 02 copper transport gene in the presence of CuSO4 and HAuCl4·3H2O. In previous studies, genetic engineering replaced metal resistance genes with the reporter genes for ß-galactosidase, luciferase or the green fluorescence protein (GFP). These produce a color change of a reagent, produce light, or fluoresce in the presence of ultraviolet (UV) light, respectively. Coupling these discovered operons with reporter genes has the potential to create whole-cell biosensors for HgCl2, ZnCl2, CuSO4 and HAuCl4·3H2O.

10.
ACS Sens ; 3(4): 744-748, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29589435

RESUMO

This paper presents a whole-cell biosensor that operates in conjunction with a smartphone-based fluorescence diagnostic system on a paper device to monitor the concentration of gold ions in human urine. The heavy metal-tolerant bacteria Cupriavidus metallidurans was genetically engineered for use as a chassis in a red fluorescent protein (RFP)-based microbial sensor. The biosensor is highly sensitive to gold ions, with a detection limit of 110 nM. The proposed smartphone-based analysis system provides a user-friendly approach to design tools of personal health monitoring for reporting the presence of gold ions in human urine.


Assuntos
Técnicas Biossensoriais/métodos , Cupriavidus/genética , Engenharia Genética , Ouro/urina , Substâncias Luminescentes/química , Proteínas Luminescentes/química , Papel , Humanos , Íons/urina , Proteína Vermelha Fluorescente
11.
Front Mol Biosci ; 4: 9, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293558

RESUMO

The trace element copper serves as cofactor for many enzymes but is toxic at elevated concentrations. In bacteria, the intracellular copper level is maintained by copper efflux systems including the Cue system controlled by the transcription factor CueR. CueR, a member of the MerR family, forms homodimers, and binds monovalent copper ions with high affinity. It activates transcription of the copper tolerance genes copA and cueO via a conserved DNA-distortion mechanism. The mechanism how CueR-induced transcription is turned off is not fully understood. Here, we report that Escherichia coli CueR is prone to proteolysis by the AAA+ proteases Lon, ClpXP, and ClpAP. Using a set of CueR variants, we show that CueR degradation is not altered by mutations affecting copper binding, dimerization or DNA binding of CueR, but requires an accessible C terminus. Except for a twofold stabilization shortly after a copper pulse, proteolysis of CueR is largely copper-independent. Our results suggest that ATP-dependent proteolysis contributes to copper homeostasis in E. coli by turnover of CueR, probably to allow steady monitoring of changes of the intracellular copper level and shut-off of CueR-dependent transcription.

12.
Structure ; 25(7): 988-996.e3, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28578875

RESUMO

CueR (Cu export regulator) is a metalloregulator protein that "senses" Cu(I) ions with very high affinity, thereby stimulating DNA binding and the transcription activation of two other metalloregulator proteins. The crystal structures of CueR when unbound or bound to DNA and a metal ion are very similar to each other, and the role of CueR and Cu(I) in initiating the transcription has not been fully understood yet. Using double electron-electron resonance (DEER) measurements and structure modeling, we investigate the conformational changes that CueR undergoes upon binding Cu(I) and DNA in solution. We observe three distinct conformations, corresponding to apo-CueR, DNA-bound CueR in the absence of Cu(I) (the "repression" state), and CueR-Cu(I)-DNA (the "activation" state). We propose a detailed structural mechanism underlying CueR's regulation of the transcription process. The mechanism explicitly shows the dependence of CueR activity on copper, thereby revealing the important negative feedback mechanism essential for regulating the intracellular copper concentration.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Ativação Transcricional , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cobre/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA