Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Trends Genet ; 40(5): 398-409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38423916

RESUMO

Abundant and plentiful fruit crops are threatened by the loss of diverse legacy cultivars which are being replaced by a limited set of high-yielding ones. This article delves into the potential of paleogenomics that utilizes ancient DNA analysis to revive lost diversity. By focusing on grapevines, date palms, and tomatoes, recent studies showcase the effectiveness of paleogenomic techniques in identifying and understanding genetic traits crucial for crop resilience, disease resistance, and nutritional value. The approach not only tracks landrace dispersal and introgression but also sheds light on domestication events. In the face of major future environmental challenges, integrating paleogenomics with modern breeding strategies emerges as a promising avenue to significantly bolster fruit crop sustainability.


Assuntos
Produtos Agrícolas , Frutas , Produtos Agrícolas/genética , Frutas/genética , Genômica/métodos , Domesticação , Melhoramento Vegetal/métodos , Variação Genética , Genoma de Planta/genética , Vitis/genética , Solanum lycopersicum/genética , Phoeniceae/genética
2.
BMC Plant Biol ; 24(1): 149, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418950

RESUMO

BACKGROUND: Consecutive droughts and quantitative and qualitative reduction of surface and underground water resources have caused an increase in greenhouse and hydroponic cultivation for most garden crops, including strawberries, in Iran. On the other hand, most of the inputs of greenhouse crops in Iran are imported. To possibility of replacing vermicompost with peat moss under hydroponic cultivation, an experiment was done in a split plot based on randomized complete blocks design in three replications in Isfahan (Iran) Agricultural and Natural Resources Research Center in 2019. The main treatment was substrate at four levels included different levels of vermicompost (30 and 50%) and peat moss (30 and 50%) in combination with perlite and sub-treatment were Selva and Camarosa cultivars. RESULTS: The results showed that Camarosa cultivar and Selva cultivar in (perlite/ peat moss 50:50) and Selva cultivar in (perlite / vermicompost 70:30) had maximum yield. Leaf number and chlorophyll index were maximum in Camarosa cultivar in peat moss substrates. Strawberry cultivars had the highest root fresh weight, the content of vitamin C and total soluble solids (TSS) in substrates containing vermicompost. Camarosa cultivar in (perlite / peat moss50:50) and Selva cultivar in (perlite /vermicompost 50:50) had maximum root dry weight. Also, the highest number of inflorescences was related to substrates containing peat moss and (perlite /vermicompost 70:30). Maximum amount of fresh and dry weight of shoots were observed in (perlite/ peat moss70:30). Selva cultivar had more inflorescences (16.5%) than Camarosa cultivar and Camarosa cultivar produced more fresh and dry weight of shoots (16.5%, 23.01%) than Selva cultivar. CONCLUSION: Expriment results highlighted the importance of considering both main and sub-treatments in agricultural research, as they interacted to influence various growth and yield parameters. 50% vermicompost treatment combined with perlite had a positive impact on plant growth and in quality index such as vitamin C content and TSS was highest. while the choice of cultivar affected different aspects of plant development. Selva cultivar was known to be more tolerant to salinity caused by vermicompost. Vermicompost is local and more economical, also salt resistant cultivars are recommended in a controlled (30%) amount of vermicompost.


Assuntos
Óxido de Alumínio , Fragaria , Dióxido de Silício , Sphagnopsida , Solo , Ácido Ascórbico
3.
BMC Plant Biol ; 24(1): 253, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589788

RESUMO

BACKGROUND: In many parts of the world, including Iran, walnut (Juglans regia L.) production is limited by late-spring frosts. Therefore, the use of late-leafing walnuts in areas with late-spring frost is the most important method to improve yield. In the present study, the phenotypic diversity of 141 seedling genotypes of walnut available in the Senejan area, Arak region, Markazi province, Iran was studied based on morphological traits to obtain superior late-leafing genotypes in the cropping seasons of 2022 and 2023. RESULTS: Based on the results of the analysis of variance, the studied genotypes showed a significant variation in terms of most of the studied morphological and pomological traits. Therefore, it is possible to choose genotypes for different values ​​of a trait. Kernel weight showed positive and significant correlations with leaf length (r = 0.32), leaf width (r = 0.33), petiole length (r = 0.26), terminal leaflet length (r = 0.34), terminal leaflet width (r = 0.21), nut length (r = 0.48), nut width (r = 0.73), nut weight (r = 0.83), kernel length (r = 0.64), and kernel width (r = 0.89). The 46 out of 141 studied genotypes were late-leafing and were analyzed separately. Among late-leafing genotypes, the length of the nut was in the range of 29.33-48.50 mm, the width of the nut was in the range of 27.51-39.89 mm, and nut weight was in the range of 8.18-16.06 g. The thickness of shell was in the range of 1.11-2.60 mm. Also, kernel length ranged from 21.97-34.84 mm, kernel width ranged from 21.10-31.09 mm, and kernel weight ranged from 3.10-7.97 g. CONCLUSIONS: Based on important and commercial traits in walnut breeding programs, such as nut weight, kernel weight, kernel percentage, kernel color, and ease of kernel removal from nuts, 15 genotypes, including no. 92, 91, 31, 38, 33, 18, 93, 3, 58, 108, 16, 70, 15, 82, and 32 were superior and could be used in walnut breeding programs in line with the introduction of new cultivars and the revival of traditional walnut orchards to commercialize them.


Assuntos
Juglans , Juglans/genética , Nozes/anatomia & histologia , Nozes/genética , Árvores , Plântula/genética , Melhoramento Vegetal , Genótipo , Folhas de Planta/genética
4.
BMC Plant Biol ; 24(1): 457, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797823

RESUMO

BACKGROUND: Cotton is globally important crop. Verticillium wilt (VW), caused by Verticillium dahliae, is the most destructive disease in cotton, reducing yield and fiber quality by over 50% of cotton acreage. Breeding resistant cotton cultivars has proven to be an efficient strategy for improving the resistance of cotton to V. dahliae. However, the lack of understanding of the genetic basis of VW resistance may hinder the progress in deploying elite cultivars with proven resistance. RESULTS: We planted the VW-resistant Gossypium hirsutum cultivar Zhongzhimian No.2 (ZZM2) in an artificial greenhouse and disease nursery. ZZM2 cotton was subsequently subjected to transcriptome sequencing after Vd991 inoculation (6, 12, 24, 48, and 72 h post-inoculation). Several differentially expressed genes (DEGs) were identified in response to V. dahliae infection, mainly involved in resistance processes, such as flavonoid and terpenoid quinone biosynthesis, plant hormone signaling, MAPK signaling, phenylpropanoid biosynthesis, and pyruvate metabolism. Compared to the susceptible cultivar Junmian No.1 (J1), oxidoreductase activity and reactive oxygen species (ROS) production were significantly increased in ZZM2. Furthermore, gene silencing of cytochrome c oxidase subunit 1 (COX1), which is involved in the oxidation-reduction process in ZZM2, compromised its resistance to V. dahliae, suggesting that COX1 contributes to VW resistance in ZZM2. CONCLUSIONS: Our data demonstrate that the G. hirsutum cultivar ZZM2 responds to V. dahliae inoculation through resistance-related processes, especially the oxidation-reduction process. This enhances our understanding of the mechanisms regulating the ZZM2 defense against VW.


Assuntos
Resistência à Doença , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Gossypium , Doenças das Plantas , Gossypium/genética , Gossypium/microbiologia , Gossypium/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Ascomicetos/fisiologia , Regulação da Expressão Gênica de Plantas , Transcriptoma , Verticillium
5.
Arch Microbiol ; 206(5): 213, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616201

RESUMO

Mulberry bacterial wilt disease, caused by Ralstonia pseudosolanacearum, is a devastating soil-borne disease in the silk-mulberry-related industry. In this study, through high-throughput sequencing, we compared the rhizosphere bacterial composition of the mulberry-resistant cultivar (K10) and susceptible cultivar (G12), confirming Bacillus as a genus-level biomarker for K10. Next, twelve Bacillus spp. isolates, derived from the rhizosphere of K10, were screened for their antagonistic activity against R. pseudosolanacearum. The isolate showing strong antagonism was identified as B. velezensis K0T24 and selected for further analysis. The fermentation supernatant of B. velezensis K0T24 significantly inhibited the growth of R. pseudosolanacearum (82.47%) and the expression of its pathogenic genes. Using B. velezensis K0T24 in mulberry seedlings also increased defense enzyme activities and achieved a control efficacy of up to 55.17% against mulberry bacterial wilt disease. Collectively, our findings demonstrate the potential of B. velezensis K0T24 in suppressing mulberry bacterial wilt disease.


Assuntos
Bacillus , Infecções Bacterianas , Morus , Bactérias , Bacillus/genética
6.
Environ Res ; 245: 118054, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157968

RESUMO

Cadmium (Cd) is a toxic heavy metal often found in soil and agricultural products. Due to its high mobility, Cd poses a significant health risk when absorbed by crops, a crucial component of the human diet. This absorption primarily occurs through roots and leaves, leading to Cd accumulation in edible parts of the plant. Our research aimed to understand the mechanisms behind the reduced Cd accumulation in certain crop cultivars through an extensive review of the literature. Crops employ various strategies to limit Cd influx from the soil, including rhizosphere microbial fixation and altering root cell metabolism. Additional mechanisms include membrane efflux, specific transport, chelation, and detoxification, facilitated by metalloproteins such as the natural resistance-associated macrophage protein (Nramp) family, heavy metal P-type ATPases (HMA), zinc-iron permease (ZIP), and ATP-binding cassette (ABC) transporters. This paper synthesizes differences in Cd accumulation among plant varieties, presents methods for identifying cultivars with low Cd accumulation, and explores the unique molecular biology of Cd accumulation. Overall, this review provides a comprehensive resource for managing agricultural lands with lower contamination levels and supports the development of crops engineered to accumulate minimal amounts of Cd.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Cádmio/toxicidade , Cádmio/análise , Solo/química , Rizosfera , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Poluentes do Solo/análise , Produtos Agrícolas/metabolismo , Metais Pesados/análise
7.
Phytopathology ; 114(5): 1039-1049, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514043

RESUMO

Aerial blight, caused by the fungus Rhizoctonia solani anastomosis group (AG) 1-IA, is an economically important soybean disease in the mid-Southern United States. Management has relied on fungicide applications during the season, but there is an increasing prevalence of resistance to commonly used strobilurin fungicides and an urgent need to identify soybean varieties resistant to aerial blight. Because the patchy distribution of the pathogen complicates field variety screening, the present study aimed to develop a greenhouse screening protocol to identify soybean varieties resistant to aerial blight. For this, 88 pathogen isolates were collected from commercial fields and research farms across five Louisiana parishes, and 77% were confirmed to be R. solani AG1-IA. Three polymorphic codominant microsatellite markers were used to explore the genetic diversity of 43 R. solani AG1-IA isolates, which showed high genetic diversity, with 35 haplotypes in total and only two haplotypes common to two other locations. Six genetically diverse isolates were chosen and characterized for their virulence and fungicide sensitivity. The isolate AC2 was identified as the most virulent and was resistant to both active ingredients, azoxystrobin and pyraclostrobin, tested. The six isolates were used in greenhouse variety screening trials using a millet inoculation protocol. Of the 31 varieties screened, only Armor 48-D25 was classified as moderately resistant, and plant height to the first node influenced final disease severity. The study provides short-term solutions for growers to choose less susceptible varieties for planting and lays the foundation to characterize host resistance against this important soybean pathogen.


Assuntos
Fungicidas Industriais , Glycine max , Doenças das Plantas , Rhizoctonia , Rhizoctonia/fisiologia , Rhizoctonia/genética , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/patogenicidade , Doenças das Plantas/microbiologia , Glycine max/microbiologia , Fungicidas Industriais/farmacologia , Resistência à Doença/genética , Estrobilurinas/farmacologia , Metacrilatos/farmacologia , Variação Genética , Repetições de Microssatélites/genética , Pirazóis/farmacologia , Virulência/genética , Louisiana , Pirimidinas
8.
Phytopathology ; 114(8): 1893-1903, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810265

RESUMO

Dioscorea opposita cultivar Tiegun is an economically important crop with high nutritional and medicinal value. Plants can activate complex and diverse defense mechanisms after infection by pathogenic fungi. Moreover, endophytic fungi can also trigger the plant immune system to resist pathogen invasion. However, the study of the effects of endophytic fungi on plant infection lags far behind that of pathogenic fungi, and the underlying mechanism is not fully understood. Here, the black spot pathogen Alternaria alternata and the endophytic fungus Penicillium halotolerans of Tiegun were identified and used to infect calli. The results showed that A. alternata could cause more severe membrane lipid peroxidation, whereas P. halotolerans could rapidly increase the activity of the plant antioxidant enzymes superoxide dismutase, peroxidase, and catalase; thus, the degree of damage to the callus caused by P. halotolerans was weaker than that caused by A. alternata. RNA sequencing analysis revealed that various plant defense pathways, such as phenylpropanoid biosynthesis, flavonoid biosynthesis, plant hormone signal transduction, and the mitogen-activated protein kinase signaling pathway, play important roles in triggering the plant immune response during fungal infection. Furthermore, the tryptophan metabolism, betalain biosynthesis, fatty acid degradation, flavonoid biosynthesis, tyrosine metabolism, and isoquinoline alkaloid biosynthesis pathways may accelerate the infection of pathogenic fungi, and the ribosome biogenesis pathway in eukaryotes may retard the damage caused by endophytic fungi. This study lays a foundation for exploring the infection mechanism of yam pathogens and endophytic fungi and provides insight for effective fungal disease control in agriculture.


Assuntos
Alternaria , Dioscorea , Endófitos , Doenças das Plantas , Dioscorea/microbiologia , Dioscorea/genética , Alternaria/fisiologia , Alternaria/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Endófitos/fisiologia , Endófitos/genética , Penicillium/genética , Penicillium/fisiologia , Penicillium/patogenicidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma
9.
Plant Dis ; 108(6): 1740-1749, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38219009

RESUMO

Phomopsis stem canker of cultivated sunflower (Helianthus annuus L.) can be caused by multiple necrotrophic fungi in the genus Diaporthe, with Diaporthe helianthi and D. gulyae being the most common causal agents in the United States. Infection begins at the leaf margins and proceeds primarily through the vasculature, progressing from the leaf through the petiole to the stem, resulting in formation of brown stem lesions centered around the petiole. Sunflower resistance to Phomopsis stem canker is quantitative and genetically complex. Due to the intricate disease process, resistance is possible at different stages of infection, and multiple forms of defense may contribute to the overall level of quantitative resistance. In this study, sunflower lines exhibiting field resistance to Phomopsis stem canker were evaluated for stem and leaf resistance to multiple isolates of D. helianthi and D. gulyae in greenhouse experiments, and responses to the two species were compared. Additionally, selected resistant and susceptible lines were evaluated for petiole transmission resistance to D. helianthi. Lines with distinct forms of resistance were identified, and results indicated that responses to stem inoculation were strongly correlated (Spearman's coefficient 0.598, P < 0.001) for the two fungal species, while leaf responses were not (Spearman's coefficient 0.396, P = 0.076). These results provide a basis for genetic dissection of distinct forms of sunflower resistance to Phomopsis stem canker and will facilitate combining different forms of resistance to potentially achieve durable control of this disease in sunflower hybrids.


Assuntos
Helianthus , Phomopsis , Doenças das Plantas , Helianthus/microbiologia , Helianthus/fisiologia , Doenças das Plantas/microbiologia , Caules de Planta/microbiologia , Resistência à Doença
10.
Plant Dis ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907521

RESUMO

The primary controls for charcoal rot in soybean, caused by the fungal pathogen Macrophomina phaseolina, are to avoid drought stress and to plant a moderately resistant cultivar. The effects of irrigation and cultivar were determined in 2011 and 2013 at the Lon Mann Cotton Research Station, Marianna, AR. Four soybean cultivars (Hutcheson, Osage, Ozark, and R01581F), were planted in plots with or without added M. phaseolina inoculum and subjected to three furrow irrigation regimes: full season irrigation (Full), irrigation terminated at R5 (CutR5), and non-irrigated (NonIrr). Normalized difference vegetative index (NDVI) was measured at R3 and R6. At harvest, plants and yields were collected. Roots and stems were split and the extent of visible colonization by M. phaseolina microsclerotia was assessed in the roots with a 1-5 scale (RSS) and the percent plant height stem discoloration (PHSD) measured. Precipitation in September and October was 54 and 65% below the 30-year average in 2011 and 2013, respectively. The CutR5 irrigation treatment resulted in one less irrigation than Full each year, but CutR5 NDVI's at R6 and yields were significantly lower than those with Full and not significantly different than those of NonIrr. The CutR5 RSS ratings were greater than either Full or NonIrr. Plant colonization by M. phaseolina was negatively correlated to yield in 2011 but not in 2013. No premature plant death caused by charcoal rot was observed in either year. These results indicated that late season drought stress may be more important to charcoal rot development than drought stress throughout the season, but other factors are needed to trigger early plant death and subsequent yield losses observed in grower fields.

11.
Plant Dis ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853334

RESUMO

Root-knot nematodes, genus Meloidogyne, are the most damaging nematodes of sweetpotato causing yield reduction and aesthetic damage of the marketable product. Several sweetpotato cultivars currently grown in the United States have intermediate to high resistance to Meloidogyne incognita, however, many of these cultivars are susceptible to M. enterolobii. Therefore, the response of 69 sweetpotato genotypes to M. enterolobii and M. incognita was evaluated under greenhouse conditions to identify potential sources of resistance. The cultivars 'Beauregard' and 'Jewel' were used as controls. Results showed that sweetpotato genotypes were either highly resistant or highly susceptible to M. enterolobii, while they showed a wide spectrum response to M. incognita ranging from highly susceptible to highly resistant. Twenty-six genotypes were resistant to M. enterolobii and eleven genotypes were resistant to M. incognita. Combined resistance to M. enterolobii and M. incognita was observed in three sweetpotato genotypes. Selected genotypes from this study will be used to incorporate the observed resistance into a commercially viable sweetpotato cultivar.

12.
Plant Dis ; 108(6): 1842-1850, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38311793

RESUMO

Panicle blast, caused by Magnaporthe oryzae, is a destructive disease of rice worldwide. Clarifying the susceptibility of rice panicles at different stages is of great significance for effective disease management. Field experiments were conducted in two paddy fields at Wuyuan County in 2016 and 2017 to determine the effects of head covering and its timing on the infection of rice panicle blast. Results revealed that panicle blast was reduced significantly by covering rice heads with sulfuric acid paper bags, regardless of the covering time, ranging from initial heading to 15 days afterward, suggesting that rice panicles could be infected by blast pathogen even 15 days after initial heading. Panicle blast incidence was also found to be significantly influenced by plant dates, with higher panicle blast incidence observed in plots planted on early dates, suggesting adjusting plant dates could help rice panicles escape the infection by blast pathogen. The results from this study also highlighted the importance of cultivars and environmental conditions to panicle blast. In conclusion, besides planting blast-resistant cultivars, it is important to protect rice heads from the initial heading to the early dough stages, and fungicides should be applied according to infection warnings based on host, inoculum, and weather conditions.


Assuntos
Oryza , Doenças das Plantas , Oryza/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Fatores de Tempo , Ascomicetos
13.
Plant Dis ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640427

RESUMO

Seedling diseases and root rot, caused by species of Fusarium, can limit soybean (Glycine max L.) production in the United States. Currently, there are few commercially available cultivars resistant to Fusarium. This study was conducted to assess the resistance of soybean maturity group (MG) accessions from 0 and I to Fusarium proliferatum, F. sporotrichioides, and F. subglutinans, as well as to identify common quantitative trait loci (QTL) for resistance to these pathogens, in addition to F. graminearum, using a genome-wide association study (GWAS). A total of 155, 91, and 48 accessions from the USDA soybean germplasm collection from maturity groups 0 and I were screened with a single isolate each of F. proliferatum, F. sporotrichioides, and F. subglutinans, respectively, using the inoculum layer inoculation method in the greenhouse. The disease severity was assessed 21 days post-inoculation and analyzed using non-parametric statistics to determine the relative treatment effects (RTE). Eleven and seven accessions showed significantly lower RTEs when inoculated with F. proliferatum and F. subglutinans, respectively, compared to the susceptible cultivar 'Williams 82'. One accession was significantly less susceptible to both F. proliferatum and F. subglutinans. The GWAS conducted with 41,985 single-nucleotide markers identified one QTL associated with resistance to both F. proliferatum and F. sporotrichioides, as well as another QTL for resistance to both F. subglutinans and F. graminearum. However, no common QTLs were identified for the four pathogens. The USDA accessions and QTLs identified in this study can be utilized to selectively breed resistance to multiple species of Fusarium.

14.
Plant Dis ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812368

RESUMO

Meloidogyne spp. (root-knot nematodes, RKN) are a major threat to a wide range of agricultural crops worldwide. Breeding crops for RKN resistance is an effective management strategy, yet assaying large numbers of breeding lines requires laborious bioassays that are time-consuming and require experienced researchers. In these bioassays, quantifying nematode eggs through manual counting is considered the current standard for quantifying establishing resistance in plant genotypes. Counting RKN eggs is highly laborious, and even experienced researchers are subject to fatigue or misclassification, leading to potential errors in phenotyping. Here, we present three automated egg counting models that rely on machine learning and image analysis to quantify RKN eggs extracted from tobacco and sweetpotato plants. The first method relied on convolutional neural networks trained using annotated images to identify eggs (M. enterolobii R2 = 0.899, M. incognita R2 = 0.927, M. javanica R2 = 0.886), while a second contour-based approach used image analysis to identify eggs from their morphological characteristics and did not rely on neural networks (M. enterolobii R2 = 0.977, M. incognita R2 = 0.990, M. javanica R2 = 0.924). A third hybrid model combined these approaches and was able to detect and count eggs nearly as well as human raters (M. enterolobii R2 = 0.985, M. incognita R2 = 0.992, M. javanica R2 = 0.983). These automated counting protocols have the potential to provide significant time and resource savings annually for breeders and nematologists, and may be broadly applicable to other nematode species.

15.
Plant Dis ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679593

RESUMO

Phytopythium root rot caused by Phytopythium vexans is an emerging threat to red maple and Freeman maple production that seriously impacts plant growth, aesthetic, and economic values. This study reports on the resistance of red maple and Freeman maple cultivars against root rot disease caused by P. vexans. Rooted cuttings were received from a commercial nursery and planted in three-gallon containers. For each cultivar, six plants were inoculated by drenching 300 mL/plant P. vexans suspension, prepared by blending 2 plates of ten-days-old P. vexans culture/L sterile water. An equal number of plants remained non-inoculated and were drenched with 300 mL of sterile water. Two trials were conducted for four months in the greenhouse during the summer of 2023. Plants were evaluated for growth, physiology, Phytopythium root rot severity (0% to 100% roots affected), and pathogen reisolation frequency. Out of seven cultivars, Somerset had the lowest Phytopythium root rot severity and pathogen reisolation frequency. Cultivars Autumn Blaze, Brandywine, and October Glory were highly susceptible to P. vexans, whereas Sun Valley, Summer Red and Celebration were found to have a partial resistance to P. vexans. Cultivars Autumn Blaze, Brandywine, and October Glory had significantly lower chlorophyll content, net photosynthesis, and stomatal conductance compared with the other three cultivars under pathogen inoculation. Phytopythium root rot reduced plant height, width, total plant, and root fresh weight. The disease severity was negatively correlated with width, chlorophyll content, net photosynthesis, and stomatal conductance. These results can aid growers and landscapers in developing effective P. vexans management strategies.

16.
Plant Dis ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143813

RESUMO

Take-all of wheat (Triticum aestivum L.), caused by Gaeumannomyces tritici (syn. G. graminis var. tritici), is perhaps the most important soil-borne disease of wheat globally and can cause substantial yield losses under several cropping scenarios in Oregon. Though resistance to take-all has not been identified in hexaploid wheat, continuous cropping of wheat for several years can reduce take-all severity through the development of suppressive soils, a process called "take-all decline" (TAD). Extensive work has shown that TAD is driven primarily by members of the Pseudomonas fluorescens complex that produce 2,4-diacetlyphloroglucinol (DAPG), an antibiotic that is associated with antagonism and induced host resistance against multiple pathogens. Field experiments were conducted to determine the influence of agronomically relevant first year wheat cultivars on take-all levels and ability to accumulate DAPG-producing pseudomonads within their rhizospheres in second-year field trials and in greenhouse trials. One first year wheat cultivar consistently resulted in less take-all in second-year wheat and accumulated significantly more DAPG-producing pseudomonads than other cultivars, suggesting a potential mechanism for take-all reduction associated with that cultivar. An intermediate level of take-all suppression in other other cultivars was not clearly associated with population size of DAPG-producing pseudomonads, however. The first year cultivar effect on take-all dominated in subsequent plantings, and its impact was not specific to the first year cultivar. Our results confirm that wheat cultivars may be used to suppress take-all when deployed appropriately over cropping seasons, an approach that is cost effective, sustainable, and currently being utilized by some wheat growers in Oregon to reduce take-all.

17.
Exp Appl Acarol ; 92(2): 183-201, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38358409

RESUMO

Vitis vinifera is cultivated worldwide for its high nutritional and commercial value. More than 60 grape cultivars are cultivated in Chile. Two of these, the país and the corinto cultivars, are the oldest known and widely used for the preparation of traditional homemade drinks and consumption as table grapes. These two grape cultivars are affected by Colomerus vitis, an eriophyid mite which establishes on their leaves and forms erinea, where the mite and its offspring obtain shelter and food. Although C. vitis has a cosmopolitan distribution, few studies of its impact on the structure and physiology of affected plants have been reported. Herein we aimed to evaluate the impact of C. vitis infection on the structural and physiological leaf performance of the two grape cultivars. The results showed tissue hyperplasia and cell hypertrophy in the epidermis, with an overproduction of trichomes and emergences in the abaxial epidermis in both cultivars. The anatomical changes were similar between the país and corinto cultivars, but they were proportionally greater in the país, where the area affected by the erinea were greater. No significant changes were detected in the photosynthetic pigment content; however, there was an increase in the total soluble sugars content in the erineum leaves of the país cultivar. Higher contents of anthocyanins and total phenols, as well as the presence of the pinocembrin in the corinto cultivar, which was less affected by C. vitis, could also indicate some resistance to mites' attack, which should be investigated in future studies.


Assuntos
Ácaros , Vitis , Animais , Vitis/fisiologia , Antocianinas/análise , Ácaros/fisiologia , Fenóis/análise , Folhas de Planta/fisiologia , Frutas/química
18.
J Sci Food Agric ; 104(7): 4218-4225, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38294189

RESUMO

BACKGROUND: Bacterial contamination of produce is a concern in indoor farming due to close plant spacing, recycling irrigation, warm temperatures, and high relative humidity during production. Cultivars that inherently resist contamination and photo-sanitization using ultraviolet (UV) radiation during the production phase can reduce bacterial contamination. However, there is limited information to support their use in indoor farming. RESULTS: Lettuce (Lactuca sativa) cultivars with varying plant architectures grown in a custom-built indoor farm exhibited differences in E. coli O157:H7 survival after inoculation. The survival of E. coli O157:H7 was lowest in the leaf cultivar (open architecture) and highest in the romaine and oakleaf cultivars (compact architecture). Of the different UV wavelengths that were tested (UV-A, UV-A + B, UV-A + C), UV A + C at an intensity of 54.5 µmol m-2 s-1 (with 3.5 µmol m-2 s-1 of UV-C), provided for 15 min every day, was found to be most efficacious in reducing the E. coli O157:H7 survival on romaine lettuce with no negative effects on plant growth and quality. CONCLUSION: Contamination of E. coli O157:H7 on lettuce plants can be reduced and the food safety levels in indoor farms can be increased by selecting cultivars with an open leaf architecture coupled with photo-sanitization using low and frequent exposure to UV A + C radiation. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Escherichia coli O157 , Microbiologia de Alimentos , Fazendas , Contagem de Colônia Microbiana , Agricultura , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise
19.
J Sci Food Agric ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113436

RESUMO

BACKGROUND: Water and nutrients are two main determinants of wheat yield, which are vital for maintaining high crop yields. In the present study, the effects of water and phosphate fertilization on wheat yield, photosynthetic parameters, water productivity and phosphate use efficiency were investigated. Five dryland wheat cultivars from the 1940s to the 2010s that are widely cultivated in Shaanxi Province, China, were used. Experiments were conducted from 2019 to 2022 using two irrigation levels (normal rainfall and no precipitation after the reviving stage) and two phosphorus application levels (0 and 100 kg ha-1). RESULTS: Compared with old cultivars ('Mazha'), the grain yield of modern cultivars ('Changhan 58') was 89.24% higher and was closely correlated with chlorophyll index, leaf area index, photosynthetic rate and tillers. With the replacement of cultivars, the phosphorus content, water potential and phosphatase activity of wheat leaves increased. Considering water-phosphorus interactions, the water use efficiency and phosphorus use efficiency of wheat showed a significant positive correlation. CONCLUSION: Our findings indicate that modern wheat cultivars are more responsive to phosphorus. Further analysis revealed that modern varieties have evolved two phosphorus absorption strategies in response to phosphorus deficiency - namely, the formation of a phosphorus supply source, which may result in larger numbers of green organs; and an increase in phosphorus sinks, which tended to activation and transport of plant phosphorus. Our results may thus contribute to water conservation, increased yields and the development of strategies for efficient phosphorus fertilization. © 2024 Society of Chemical Industry.

20.
Plants (Basel) ; 13(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891383

RESUMO

Climate change is leading to an increase in the intensity, duration, and frequency of severe droughts, especially in southern and southeastern Europe, thus aggravating water scarcity problems. Water deficit stress harms the growth, physiology, and yield of crops like durum wheat. Hence, studying ancient wheat varieties' stress responses could help identify genetic traits to enhance crop tolerance to environmental stresses. In this background, this study aimed to investigate the effects of PEG 6000-stimulated drought stress in the ancient wheat variety Saragolla and the modern one Svevo by analyzing various biochemical and molecular parameters that can especially condition the stomatal movement. Our data revealed that drought stress caused a significant increase in the levels of total soluble sugars, ABA, and IAA in both selected cultivars to a greater extent in the Saragolla than in the Svevo. We demonstrated that, under water deficit stress, calcium dynamics as well as the expression of ERF109, MAPK3/6, MYB60, and TaTPC1, involved in the activation of drought-related calcium-sensitive pathways, display significant differences between the two varieties. Therefore, our study provided further evidence regarding the ability of the ancient wheat variety Saragolla to better cope with drought stress compared to the modern variety Svevo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA