RESUMO
Generation of genetically uniform non-human primates may help to establish animal models for primate biology and biomedical research. In this study, we have successfully cloned cynomolgus monkeys (Macaca fascicularis) by somatic cell nuclear transfer (SCNT). We found that injection of H3K9me3 demethylase Kdm4d mRNA and treatment with histone deacetylase inhibitor trichostatin A at one-cell stage following SCNT greatly improved blastocyst development and pregnancy rate of transplanted SCNT embryos in surrogate monkeys. For SCNT using fetal monkey fibroblasts, 6 pregnancies were confirmed in 21 surrogates and yielded 2 healthy babies. For SCNT using adult monkey cumulus cells, 22 pregnancies were confirmed in 42 surrogates and yielded 2 babies that were short-lived. In both cases, genetic analyses confirmed that the nuclear DNA and mitochondria DNA of the monkey offspring originated from the nucleus donor cell and the oocyte donor monkey, respectively. Thus, cloning macaque monkeys by SCNT is feasible using fetal fibroblasts.
Assuntos
Clonagem de Organismos , Técnicas de Transferência Nuclear , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Feminino , Ácidos Hidroxâmicos/farmacologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/metabolismo , Macaca fascicularis , GravidezRESUMO
It is known that the oocyte has a limited capacity to acquire and metabolize glucose, and it must rely on cumulus cells (CCs) to take up glucose and produce pyruvate for use to produce ATP through oxidative phosphorylation. We therefore propose that miRNAs might regulate glucose metabolism (GM) in CCs and might be used as markers for oocyte quality assessment. Here, mouse CC models with impaired glycolysis or pentose phosphate pathway (PPP) were established, and miRNAs targeting the key enzymes in glycolysis/PPP were predicted using the miRNA target prediction databases. Expression of the predicted miRNAs was compared between CCs with normal and impaired glycolysis/PPP to identify candidate miRNAs. Function of the candidate miRNAs was validated by transfecting CCs or cumulus-oocyte-complexes (COCs) with miRNA inhibitors and observing effects on glucose metabolites of CCs and on competence of oocytes. The results validated that miR-23b-3p, let-7b-5p, 34b-5p and 145a-5p inhibited glycolysis, and miR-24-3p, 3078-3p,183-5p and 7001-5p inhibited PPP of CCs. Our observation using a more physiologically relevant model (intact cultured COCs) further validated the four glycolysis-targeting miRNAs we identified. Furthermore, miR-let-7b-5p, 34b-5p and 145a-5p may also inhibit PPP, as they decreased the production of glucose-6-phosphate. In conclusion, miRNAs play critical roles in GM of CCs and may be used as markers for oocyte quality assessment. Summary sentence: We identified and validated eight new miRNAs that inhibit glycolysis and/or pentose phosphate pathways in cumulus cells (CCs) suggesting that miRNAs play critical roles in glucose metabolism of CCs and may be used for oocyte quality markers.
Assuntos
Células do Cúmulo , Glucose , Glicólise , MicroRNAs , Animais , Células do Cúmulo/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Camundongos , Glucose/metabolismo , Feminino , Glicólise/fisiologia , Via de Pentose Fosfato , Oócitos/metabolismoRESUMO
Assisted reproductive technologies are an emerging field in equine reproduction, with species-dependent peculiarities, such as the low success rate of conventional IVF. Here, the 'cumulome' was related to the developmental capacity of its corresponding oocyte. Cumulus-oocyte complexes collected from slaughterhouse ovaries were individually matured, fertilized by ICSI, and cultured. After maturation, the cumulus was collected for proteomics analysis using label-free mass spectrometry (MS)-based protein profiling by nano-HPLC MS/MS and metabolomics analysis by UPLC-nanoESI MS. Overall, a total of 1671 proteins and 612 metabolites were included in the quantifiable 'cumulome'. According to the development of the corresponding oocytes, three groups were compared with each other: not matured (NM; n = 18), cleaved (CV; n = 15), and blastocyst (BL; n = 19). CV and BL were also analyzed together as the matured group (M; n = 34). The dataset revealed a closer connection within the two M groups and a more distinct separation from the NM group. Overrepresentation analysis detected enrichments related to energy metabolism as well as vesicular transport in the M group. Functional enrichment analysis found only the KEGG pathway 'oxidative phosphorylation' as significantly enriched in the NM group. A compound attributed to ATP was observed with significantly higher concentrations in the BL group compared with the NM group. Finally, in the NM group, proteins related to degradation of glycosaminoglycans were lower and components of cumulus extracellular matrix were higher compared to the other groups. In summary, the study revealed novel pathways associated with the maturational and developmental competence of oocytes.
Assuntos
Células do Cúmulo , Técnicas de Maturação in Vitro de Oócitos , Oócitos , Animais , Cavalos , Oócitos/metabolismo , Oócitos/crescimento & desenvolvimento , Oócitos/citologia , Feminino , Células do Cúmulo/metabolismo , Proteômica/métodos , Blastocisto/metabolismo , Blastocisto/citologia , Metabolômica/métodos , Espectrometria de Massas em Tandem , Injeções de Esperma IntracitoplásmicasRESUMO
The role of cumulus cells (CCs) in the acquisition of oocyte developmental competence is not yet fully understood. In a previous study, we matured cumulus-denuded fully-grown mouse oocytes to metaphase II (MII) on a feeder layer of CCs (FL-CCs) isolated from developmentally competent (FL-SN-CCs) or incompetent (FL-NSN-CCs) SN (surrounded nucleolus) or NSN (not surrounding nucleolus) oocytes, respectively. We observed that oocytes cultured on the former could develop into blastocysts, while those matured on the latter arrested at the 2-cell stage. To investigate the CC factors contributing to oocyte developmental competence, here we focused on the CCs' release into the medium of extracellular vesicles (EVs) and on their miRNA content. We found that, during the 15-h transition to MII, both FL-SN-CCs and FL-NSN-CCs release EVs that can be detected, by confocal microscopy, inside the zona pellucida (ZP) or the ooplasm. The majority of EVs are <200 nm in size, which is compatible with their ability to cross the ZP. Next-generation sequencing of the miRNome of FL-SN-CC versus FL-NSN-CC EVs highlighted 74 differentially expressed miRNAs, with 43 up- and 31 down-regulated. Although most of these miRNAs do not have known roles in the ovary, in silico functional analysis showed that seven of these miRNAs regulate 71 target genes with specific roles in meiosis resumption (N = 24), follicle growth (N = 23), fertilization (N = 1), and the acquisition of oocyte developmental competence (N = 23). Overall, our results indicate CC EVs as emerging candidates of the CC-to-oocyte communication axis and uncover a group of miRNAs as potential regulatory factors.
Assuntos
Células do Cúmulo , Vesículas Extracelulares , MicroRNAs , Oócitos , Animais , Células do Cúmulo/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Oócitos/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Camundongos , Feminino , Técnicas de Maturação in Vitro de Oócitos , Oogênese/genética , Zona Pelúcida/metabolismoRESUMO
STUDY QUESTION: Can fluorescence lifetime imaging microscopy (FLIM) detect associations between the metabolic state of cumulus cell (CC) samples and the clinical outcome of the corresponding embryos? SUMMARY ANSWER: FLIM can detect significant variations in the metabolism of CC associated with the corresponding embryos that resulted in a clinical pregnancy versus those that did not. WHAT IS KNOWN ALREADY: CC and oocyte metabolic cooperativity are known to be necessary for the acquisition of developmental competence. However, reliable CC biomarkers that reflect oocyte viability and embryo developmental competency have yet to be established. Quantitative measures of CC metabolism could be used to aid in the evaluation of oocyte and embryo quality in ART. STUDY DESIGN, SIZE, DURATION: A prospective observational study was carried out. In total, 223 patients undergoing IVF with either conventional insemination or ICSI at a tertiary care center from February 2018 to May 2020 were included, with no exclusion criteria applied. PARTICIPANTS/MATERIALS, SETTING, METHODS: This cohort had a mean maternal age of 36.5 ± 4.4 years and an average oocyte yield of 16.9 (range 1-50). One to four CC clusters from each patient were collected after oocyte retrieval and vitrified. CC metabolic state was assessed using FLIM to measure the autofluorescence of the molecules NAD(P)H and FAD+, which are essential for multiple metabolic pathways. CC clusters were tracked with their corresponding oocytes and associated embryos. Patient age, Day 3 and Day 5/6 embryo morphological grades, and clinical outcomes of embryos with traceable fate were recorded. Nine FLIM quantitative parameters were obtained for each CC cluster. We investigated associations between the FLIM parameters and patient maternal age, embryo morphological rank, ploidy, and clinical outcome, where false discovery rate P-values of <0.05 were considered statistically significant. MAIN RESULTS AND THE ROLE OF CHANCE: A total of 851 CC clusters from 851 cumulus-oocyte complexes from 223 patients were collected. Of these CC clusters, 623 were imaged using FLIM. None of the measured CC FLIM parameters were correlated with Day 3 morphological rank or ploidy of the corresponding embryos, but FAD+ FLIM parameters were significantly associated with morphological rank of blastocysts. There were significant differences for FAD+ FLIM parameters (FAD+ fraction engaged and short lifetime) from CC clusters linked with embryos resulting in a clinical pregnancy compared with those that did not, as well as for CC clusters associated with embryos that resulted in a live birth compared those that did not. LIMITATIONS, REASONS FOR CAUTION: Our data are based on a relatively low number of traceable embryos from an older patient population. Additionally, we only assessed CCs from 1 to 4 oocytes from each patient. Future work in a younger patient population with a larger number of traceable embryos, as well as measuring the metabolic state of CCs from all oocytes from each patient, would provide a better understanding of the potential utility of this technology for oocyte/embryo selection. WIDER IMPLICATIONS OF THE FINDINGS: Metabolic imaging via FLIM is able to detect CC metabolic associations with maternal age and detects variations in the metabolism of CCs associated with oocytes leading to embryos that result in a clinical pregnancy and a live birth versus those that do not. Our findings suggest that FLIM of CCs may be used as a new approach to aid in the assessment of oocyte and embryo developmental competence in clinical ART. STUDY FUNDING/COMPETING INTEREST(S): National Institutes of Health grant NIH R01HD092550-03 (to C.R., and D.J.N.). Becker and Hickl GmbH and Boston Electronics sponsored research with the loaning of equipment for FLIM. D.J.N. and C.R. are inventors on patent US20170039415A1. TRIAL REGISTRATION NUMBER: N/A.
Assuntos
Células do Cúmulo , Nascido Vivo , Humanos , Feminino , Gravidez , Células do Cúmulo/metabolismo , Adulto , Estudos Prospectivos , Microscopia de Fluorescência/métodos , Fertilização in vitro , Oócitos/metabolismo , Oócitos/citologia , Taxa de Gravidez , Injeções de Esperma Intracitoplásmicas , Transferência Embrionária/métodosRESUMO
In this study, we reported for the first time the dose-dependent dual effects of Alpha-Ketoglutarate (AKG) on cumulus oocyte complexes (COCs) during in vitro maturation (IVM). AKG at appropriate concentration (30 µM) has beneficial effects on IVM. This includes improved cumulus expansion, oocyte quality, and embryo development. These effects are mediated through multiple underlying mechanisms. AKG reduced the excessive accumulation of reactive oxygen species (ROS) in cumulus cells, reduced the consumption of GSH and NADPH. Cumulus GSH and NADPH were transported to oocytes via gap junctions, thereby reducing the oxidative stress, apoptosis and maintaining the redox balance in oocytes. In addition, AKG improved the mitochondrial function by regulating the mitochondrial complex 1 related gene expression in oocytes to maintain mitochondrial membrane potential and ATP production. On the other hand, oocyte generated GDF9 could also be transported to cumulus cells to promote cumulus expansion. Conversely, a high concentration of AKG (750 µM) exerted adverse effects on IVM and suppressed the cumulus expansion as well as reduced the oocyte quality. The suppression of the cumulus expansion caused by high concentration of AKG could be rescued with GDF9 supplementation in COCs, indicating the critical role of GDF9 in IVM. The results provide valuable information on the variable effects of AKG at different concentrations on reproductive physiology.
Assuntos
Células do Cúmulo , Técnicas de Maturação in Vitro de Oócitos , Ácidos Cetoglutáricos , Oócitos , Espécies Reativas de Oxigênio , Ácidos Cetoglutáricos/farmacologia , Ácidos Cetoglutáricos/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Animais , Células do Cúmulo/efeitos dos fármacos , Células do Cúmulo/metabolismo , Células do Cúmulo/citologia , Técnicas de Maturação in Vitro de Oócitos/métodos , Feminino , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Relação Dose-Resposta a Droga , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fator 9 de Diferenciação de Crescimento/metabolismo , Fator 9 de Diferenciação de Crescimento/genética , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , NADP/metabolismo , Apoptose/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacosRESUMO
RESEARCH QUESTION: Does rescue in-vitro maturation (IVM) in the presence or absence of cumulus cells, affect the progress of meiosis I, compared with oocytes that mature in vivo? DESIGN: This prospective study was conducted in a university-affiliated fertility centre. Ninety-five young oocyte donors (mean age 25.57 ± 4.47) with a normal karyotype and no known fertility problems were included. A total of 390 oocytes (116 mature metaphase II [MII] and 274 immature oocytes) were analysed. The immature oocytes underwent rescue IVM in the presence of cumulus cells (CC; IVM+CC; nâ¯=â¯137) or without them (IVM-CC; nâ¯=â¯137), and IVM rate was calculated. Chromosome copy number analysis using next-generation sequencing (NGS) was performed on all rescue IVM oocytes reaching MII as well as those that were mature at the time of initial denudation (in-vivo-matured oocytes [IVO]). RESULTS: Maturation rates were similar in IVM+CC and IVM-CC oocytes (62.8 versus 71.5%, Pâ¯=â¯0.16). Conclusive cytogenetic results were obtained from 65 MII oocytes from the IVM+CC group, 87 from the IVM-CC group, and 99 from the IVO group. Oocyte euploidy rates for the three groups were similar, at 75.4%, 83.9% and 80.8%, respectively (Pâ¯=â¯0.42). CONCLUSIONS: The results suggest that culture of germinal vesicle and metaphase I oocytes in the presence of cumulus cells does not improve rates of IVM. In general, the process of rescue IVM does not appear to alter the frequency of oocytes with a normal chromosome copy number.
Assuntos
Segregação de Cromossomos , Técnicas de Maturação in Vitro de Oócitos , Humanos , Adulto Jovem , Adulto , Estudos Prospectivos , Oócitos , MeioseRESUMO
This study aimed to investigate the structural and metabolic changes in cumulus cells of underweight women and their effects on oocyte maturation and fertilization. The cytoplasmic ultrastructure was analyzed by electron microscopy, mitochondrial membrane potential by immunofluorescence, and mitochondrial DNA copy number by relative quantitative polymerase chain reaction. The expression of various proteins including the oxidative stress-derived product 4-hydroxynonenal (4-HNE) and autophagy and apoptosis markers such as Vps34, Atg-5, Beclin 1, Lc3-I, II, Bax, and Bcl-2 was assessed and compared between groups. Oocyte maturation and fertilization rates were lower in underweight women (P < 0.05), who presented with cumulus cells showing abnormal mitochondrial morphology and increased cell autophagy. Compared with the mitochondrial DNA copies of the control group, those of the underweight group increased but not significantly. The mitochondrial membrane potential was similar between the groups (P = 0.8). Vps34, Atg-5, Lc3-II, Bax, and Bcl-2 expression and 4-HNE levels were higher in the underweight group compared with the control group (P < 0.01); however, the Bax/Bcl-2 ratio was lower in the underweight group compared with the control group (P = 0.031). Additionally, Beclin 1 protein levels were higher in the underweight group compared with the control group but without statistical significance. In conclusion, malnutrition and other conditions in underweight women may adversely affect ovulation, and the development, and fertilization of oocytes resulting from changes to the intracellular structure of cumulus cells and metabolic processes. These changes may lead to reduced fertility or unsatisfactory reproduction outcomes in women.
Assuntos
Células do Cúmulo , Magreza , Feminino , Humanos , Proteína X Associada a bcl-2/genética , Magreza/metabolismo , Oócitos , DNA Mitocondrial/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodosRESUMO
PURPOSE: Although significant improvements in assisted reproductive technology (ART) outcomes have been accomplished, a critical question remains: which embryo is most likely to result in a pregnancy? Embryo selection is currently based on morphological and genetic criteria; however, these criteria do not fully predict good-quality embryos and additional objective criteria are needed. The cumulus cells are critical for oocyte and embryo development. This systematic review assessed biomarkers in cumulus-oocyte complexes and their association with successful IVF outcomes. METHODS: A comprehensive search was conducted using PubMed, Embase, Scopus, and Web of Science from inception until November 2022. Only English-language publications were included. Inclusion criteria consisted of papers that evaluated genetic biomarkers associated with the cumulus cells (CCs) in humans and the following three outcomes of interest: oocyte quality, embryo quality, and clinical outcomes, including fertilization, implantation, pregnancy, and live birth rates. RESULTS: The search revealed 446 studies of which 42 met eligibility criteria. Nineteen studies correlated genetic and biochemical biomarkers in CCs with oocyte quality. A positive correlation was reported between oocyte quality and increased mRNA expression in CCs of genes encoding for calcium homeostasis (CAMK1D), glucose metabolism (PFKP), extracellular matrix (HAS2, VCAN), TGF-ß family (GDF9, BMP15), and prostaglandin synthesis (PTGS2). Nineteen studies correlated genetic and biochemical biomarkers in CCs with embryo quality. A positive correlation was reported between embryo quality and increased mRNA expression in CCs of genes encoding for extracellular matrix (HAS2), prostaglandin synthesis (PTGS2), steroidogenesis (GREM1), and decreased expression of gene encoding for hormone receptor (AMHR2). Twenty-two studies assessed genetic and biochemical biomarkers in CCs with clinical outcomes. Increased expression of genes encoding for extracellular matrix (VCAN), and TGF-ß family (GDF9, BMP15) were positively correlated with pregnancy rate. CONCLUSION: Genetic biomarkers from cumulus cells were associated with oocyte quality (CAMK1D, PFKP, HAS2, VCAN, GDF-9, BMP-15, PTGS2), embryo quality (GREM1, PTGS2, HAS2), and pregnancy rate (GDF9, BMP15, VCAN). These results might help guide future studies directed at tests of cumulus cells to devise objective criteria to predict IVF outcomes.
Assuntos
Células do Cúmulo , Oócitos , Gravidez , Feminino , Humanos , Células do Cúmulo/metabolismo , Ciclo-Oxigenase 2/genética , Oócitos/metabolismo , Fertilização in vitro , Técnicas de Reprodução Assistida , Marcadores Genéticos/genética , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/genética , Prostaglandinas/metabolismoRESUMO
Oocyte-cumulus cell interaction is essential for oocyte maturation and competence. The bidirectional crosstalk network mediated by gap junctions is fundamental for the metabolic cooperation between these cells. As cumulus cells exhibit a more glycolytic phenotype, they can provide metabolic substrates that the oocyte can use to produce ATP via oxidative phosphorylation. The impairment of mitochondrial activity plays a crucial role in ovarian aging and, thus, in fertility, determining the success or failure of assisted reproductive techniques. This review aims to deepen the knowledge about the electro-metabolic coupling of the cumulus-oocyte complex and to hypothesize a putative role of potassium channel modulators in order to improve fertility, promote intracellular Ca2+ influx, and increase the mitochondrial biogenesis and resulting ATP levels in cumulus cells.
Assuntos
Células do Cúmulo , Oócitos , Oócitos/metabolismo , Células do Cúmulo/metabolismo , Células do Cúmulo/citologia , Humanos , Animais , Feminino , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Junções Comunicantes/metabolismo , Fosforilação Oxidativa , Cálcio/metabolismo , Canais de Potássio/metabolismo , Comunicação CelularRESUMO
Cumulus cell (CC) expansion is pivotal for oocyte maturation, during which CCs release factors that initiate paracrine signaling within the follicular fluid (FF). The FF is abundant in extracellular vesicles (EVs) that facilitate intercellular communication. Although bovine and murine EVs can control cumulus expansion, these effects have not been observed in equines. This study aimed to assess the impact of FF-derived EVs (ffEVs) on equine CC expansion, viability, and transcriptome. Cumulus-oocyte complexes (COCs) that underwent in vitro maturation (IVM) in the presence (200 µg protein/mL) or absence (control) of ffEVs were assessed for cumulus expansion and viability. CCs were isolated after 12 h of IVM, followed by RNA extraction, cDNA library generation, and subsequent transcriptome analysis using next-generation sequencing. Confocal microscopy images illustrated the internalization of labeled ffEVs by CCs. Supplementation with ffEVs significantly enhanced cumulus expansion in both compacted (Cp, p < 0.0001) and expanded (Ex, p < 0.05) COCs, while viability increased in Cp groups (p < 0.01), but decreased in Ex groups (p < 0.05), compared to the controls. Although transcriptome analysis revealed a subtle effect on CC RNA profiles, differentially expressed genes encompassed processes (e.g., MAPK and Wnt signaling) potentially crucial for cumulus properties and, consequently, oocyte maturation.
Assuntos
Vesículas Extracelulares , Líquido Folicular , Feminino , Animais , Cavalos , Bovinos , Camundongos , Transcriptoma , Sobrevivência Celular , Células do Cúmulo , Oócitos , Vesículas Extracelulares/genética , RNA , Técnicas de Maturação in Vitro de OócitosRESUMO
Purpose: We investigated the interactions between mural granulosa cells (MGCs) and cumulus granulosa cells (CGCs) during ovulation after the LH surge. Methods: We performed clustering, pseudotime, and interactome analyses utilizing reported single-cell RNA sequencing data of mouse ovary at 6 h after eCG-hCG injection. Results: Clustering analysis classified granulosa cells into two distinct populations, MGCs and CGCs. Pseudotime analysis divided granulosa cells into before and after the LH surge, and further divided them into two branches, the ovulatory MGCs and the ovulatory CGCs. Interactome analysis was performed to identify the interactions between MGCs and CGCs. Twenty-six interactions were acting from CGCs toward MGCs, involving ovulation and steroidogenesis. Thirty-six interactions were acting from MGCs toward CGCs, involving hyaluronan synthesis. There were 25 bidirectional interactions, involving the EGFR pathway. In addition, we found three novel interactions: Ephrins-Ephs pathway and Wnt-Lrp6 pathway from CGCs to MGCs, associated with steroidogenesis and lipid transport, respectively, and TGF-ß-TGFBR1 pathway from MGCs to CGCs, associated with hyaluronan synthesis. Conclusions: MGCs and CGCs interact with each other in the preovulatory follicle after the LH surge, and their interactions have roles in corpus luteum formation, oocyte maturation, and follicle rupture.
RESUMO
Purpose: LH induces the expression of EGF-like factors and their shedding enzyme (ADAM17) in granulosa cells (GCs), which is essential for ovulation via activation of the ErbB-ERK1/2 pathway in cumulus cells (CCs). Neurotensin (NTS) is reported as a novel regulator of ovulation, whereas the NTS-induced maturation mechanism in oocytes remains unclear. In this study, we focused on the role of NTS in the expression of EGF-like factors and ErbBs, and ADAM17 activity, during oocyte maturation and ovulation in mice. Methods: The expression and localization in GC and CC were examined. Next, hCG and NTS receptor 1 antagonist (SR) were injected into eCG-primed mice, and the effects of SR on ERK1/2 phosphorylation were investigated. Finally, we explored the effects of SR on the expression of EGF-like factors and ErbBs, and ADAM17 activity in GC and CC. Results: NTS was significantly upregulated in GC and CC following hCG injection. SR injection suppressed oocyte maturation and ERK1/2 phosphorylation. SR also downregulated part of the expression of EGF-like factors and their receptors, and ADAM17 activity. Conclusions: NTS induces oocyte maturation through the sustainable activation of the ERK1/2 signaling pathway by upregulating part of the EGF-like factor-induced pathway during oocyte maturation in mice.
RESUMO
Excessive FSH doses during ovarian stimulation in the small ovarian reserve heifer (SORH) cause premature cumulus expansion and follicular hyperstimulation dysgenesis (FHD) in nearly all ovulatory-size follicles with predicted disruptions in cell-signaling pathways in cumulus cells and oocytes (before ovulatory hCG stimulation). These observations support the hypothesis that excessive FSH dysregulates cumulus cell function and oocyte maturation. To test this hypothesis, we determined whether excessive FSH-induced differentially expressed genes (DEGs) in cumulus cells identified in our previously published transcriptome analysis were altered independent of extreme phenotypic differences observed amongst ovulatory-size follicles, and assessed predicted roles of these DEGs in cumulus and oocyte biology. We also determined if excessive FSH alters cumulus cell morphology, and oocyte nuclear maturation before (premature) or after an ovulatory hCG stimulus or during IVM. Excessive FSH doses increased expression of 17 cumulus DEGs with known roles in cumulus cell and oocyte functions (responsiveness to gonadotrophins, survival, expansion, and oocyte maturation). Excessive FSH also induced premature cumulus expansion and oocyte maturation but inhibited cumulus expansion and oocyte maturation post-hCG and diminished the ability of oocytes with prematurely expanded cumulus cells to undergo IVF or nuclear maturation during IVM. Ovarian stimulation with excessive FSH is concluded to disrupt cumulus cell and oocyte functions by inducing premature cumulus expansion and dysregulating oocyte maturation without an ovulatory hCG stimulus yielding poor-quality cumulus-oocyte complexes that may be incorrectly judged morphologically as suitable for IVF during ART.
Assuntos
Células do Cúmulo , Reserva Ovariana , Feminino , Bovinos , Animais , Células do Cúmulo/metabolismo , Meiose , Oócitos/metabolismo , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Indução da OvulaçãoRESUMO
STUDY QUESTION: Is the abundance of certain biochemical compounds in human cumulus cells (CCs) related to oocyte quality? SUMMARY ANSWER: Malonate, 5-oxyproline, and erythronate were positively associated with pregnancy potential. WHAT IS KNOWN ALREADY: CCs are removed and discarded prior to ICSI, thereby constituting an interesting biological material on which to perform molecular analysis aimed to predict oocyte developmental competence. Mitochondrial DNA content and transcriptional analyses in CC have been shown to provide a poor predictive value of oocyte competence, but the untargeted analysis of biochemical compounds (metabolomics) has been unexplored. STUDY DESIGN, SIZE, DURATION: CCs were obtained from three groups of cumulus-oocyte complexes (COCs) of known developmental potential: oocytes not developing to blastocyst following ICSI (Bl-); oocytes developing to blastocyst but failing to establish pregnancy following embryo transfer (P-); and oocytes developing to blastocyst able to establish a pregnancy (P+). Metabolomics analyses were performed on 12 samples per group, each sample comprising the CC recovered from a single COC. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human CC samples were obtained from IVF treatments. Only unfrozen oocytes and embryos not submitted to preimplantation genetic testing were included in the analysis. Metabolomics analysis was performed by ultra-high performance liquid chromatography-tandem mass spectroscopy. MAIN RESULTS AND THE ROLE OF CHANCE: The analysis identified 98 compounds, five of which were differentially abundant (P < 0.05) between groups: asparagine, proline, and malonate were less abundant in P- compared to Bl-, malonate and 5-oxoproline were less abundant in P- group compared to P+, and erythronate was less abundant in Bl- group compared to P+. No significant association between the abundance of the compounds identified and donor age or BMI was noted. LIMITATIONS, REASONS FOR CAUTION: Data dispersion and the lack of coherence between developmental groups preclude the direct use of metabolic markers in clinical practice, where the uterine environment plays a major role in pregnancy outcome. The abundance of other compounds not detected by the analysis may be associated with oocyte competence. As donors were lean (only two with BMI > 30 kg/m2) and young (<34 years old), a possible effect of obesity or advanced age on the CC metabolome could not be determined. WIDER IMPLICATIONS OF THE FINDINGS: The abundance of malonate, 5-oxyproline, and erythronate in CC was significantly higher in COCs ultimately establishing pregnancy, providing clues on the pathways required for oocyte competence. The untargeted analysis uncovered the presence of compounds that were not expected in CC, such as ß-citrylglutamate and the neurotransmitter N-acetyl-aspartyl-glutamate, which may play roles in chromatin remodeling and signaling, respectively. STUDY FUNDING/COMPETING INTEREST(S): Research was supported by the Industrial Doctorate Project IND2017/BIO-7748 funded by Madrid Region Government. The authors declare no competing interest. TRIAL REGISTRATION NUMBER: N/A.
Assuntos
Células do Cúmulo , Oócitos , Feminino , Humanos , Gravidez , Adulto , Células do Cúmulo/metabolismo , Hidroxiprolina/metabolismo , Hidroxiprolina/farmacologia , Oócitos/metabolismo , Oogênese , Malonatos/metabolismo , Malonatos/farmacologiaRESUMO
STUDY QUESTION: What are the differences in gene expression of cumulus cells (CCs) between young women with diminished ovarian reserve (DOR) and those of similar age with normal ovarian reserve (NOR)? SUMMARY ANSWER: Gene expression and metabolome profiling analysis demonstrate that the de novo serine synthesis pathway (SSP) is increased in the CCs of young women with DOR. WHAT IS KNOWN ALREADY: The incidence of DOR has risen, tending to present at younger ages. Its mechanisms and aetiologies are still poorly understood. Abnormal metabolism is present in luteinized CCs of patients with DOR. Previous studies have revealed that mitochondrial dysfunction and impaired oxidative phosphorylation in CCs are related to DOR in women of advanced age. The pathogenic mechanisms likely differ between young women with DOR and cases associated with advanced maternal age. Several studies have examined amino acid metabolism in the follicle, with a focus on embryo development, but less information is available about CCs. The physiological significance of de novo serine synthesis in follicles and oocytes remains largely unknown. STUDY DESIGN, SIZE, DURATION: CC samples were obtained from 107 young infertile women (age <38 years) undergoing ICSI, from July 2017 to June 2019, including 54 patients with DOR and 53 patients with NOR. PARTICIPANTS/MATERIALS, SETTING, METHODS: Oocyte development data were analysed retrospectively. Comprehensive genome-wide transcriptomics of CCs was performed. Differentially expressed genes (DEGs) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to categorize the functions of the DEGs and identify significantly enriched pathways. The transcript and protein levels of key enzymes involved in serine synthesis were verified in additional samples using quantitative real-time PCR (qRT-PCR) (n = 10) and capillary western blotting (n = 36). Targeted metabolomics of amino acids in CC extracts was performed by ultrahigh-performance liquid MS (UHPLC-MS/MS). MAIN RESULTS AND THE ROLE OF CHANCE: The number of oocytes (2.4 ± 2.2 versus 12.1 ± 5.3) and metaphase II oocytes (2.1 ± 2.0 versus 9.9 ± 4.9) retrieved was significantly decreased in the DOR versus the NOR group, respectively (P < 0.0001). The rates of fertilization (80.7% versus 78.8%), viable embryos (73.7% versus 72.5%), and high-quality embryos (42.8% versus 49.0%) did not differ between the DOR and NOR groups, respectively (P > 0.05). A total of 95 DEGs were found by transcriptome sequencing. GO and KEGG analyses demonstrated that the DEGs were linked to amino acid metabolism and suggested significantly higher activity of the de novo SSP in the CCs of young women with DOR. Further qRT-PCR and capillary western blotting revealed that key enzymes (PHGDH, PSAT1, PSPH, and SHMT2) involved in de novo serine synthesis were upregulated, and UHPLC-MS/MS analysis showed increases in serine and glycine (a downstream product of serine) levels in the CCs of young patients with DOR. Our data clearly demonstrate that the de novo SSP, which diverts 3-phosphoglycerate from glycolysis to serine synthesis, was upregulated in young DOR CCs. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Regarding the reproductive capacity of young patients DOR, the pregnancy outcomes were not analysed. The sample size was limited, and only women undergoing ICSI were examined since this was a prerequisite for the acquisition of CCs, which may cause selection bias. The exact mechanisms by which the SSP in CCs regulates ovarian reserve still require further study. WIDER IMPLICATIONS OF THE FINDINGS: Our research presents new evidence that alterations of the SSP in CCs of young infertile women are associated with DOR. We believe this is a significant contribution to the field, which should be key for understanding the cause and mechanisms of ovarian hypofunction in young women. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by grants from the Ministry of Science and Technology of China (2018YFC1005001) and National Natural Science Foundation of China (31601197). There were no competing interests. TRIAL REGISTRATION NUMBER: N/A.
Assuntos
Infertilidade Feminina , Doenças Ovarianas , Reserva Ovariana , Gravidez , Humanos , Feminino , Infertilidade Feminina/metabolismo , Células do Cúmulo/metabolismo , Estudos Retrospectivos , Reserva Ovariana/fisiologia , Serina/metabolismo , Espectrometria de Massas em Tandem , Oócitos/metabolismo , Doenças Ovarianas/metabolismoRESUMO
Throughout the reproductive life of women, cumulus cells (CC) protect the dormant oocyte from damage, act as sensors of the follicular microenvironment, and act as a gatekeeper for oocyte developmental potential. One such mechanism relies on the hypoxia-tolerance response, which, with age, decreases systematically, including in the ovary. We aimed to evaluate the association between gene expression related to hypoxia and aging in CC and reproductive results in in vitro fertilization cycles. We recruited 94 women undergoing controlled ovarian stimulation. Total RNA was extracted from pooled CCs collected after oocyte pick-up (OPU) and reverse-transcribed to complementary DNA using random hexamers to test 14 genes related to hypoxia response via HIF1α activation, oxidative stress, and angiogenic responses. The expression of CLU, NOS2, and TXNIP had a positive correlation with age (rs = 0.25, rs = 0.24, and rs = 0.35, respectively). Additionally, NOS2 and HMOX1 expression correlated positively with the retrieval of immature oocytes (rs = 0.22 and rs = 0.40, respectively). Moreover, VEGFC levels decreased overall with increasing fertilization rate, independently of age (rs = -0.29). We found that the fertilization potential of a cohort of oocytes is related to the ability of CC to respond to oxidative stress and hypoxia with age, pointing at NOS2, HMOX1, and VEGFC expression as markers for oocyte maturation and fertilization success.
Assuntos
Células do Cúmulo , Oogênese , Feminino , Humanos , Células do Cúmulo/metabolismo , Fertilização/fisiologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Óxido Nítrico Sintase Tipo II/metabolismo , Oócitos/metabolismo , Oogênese/fisiologiaRESUMO
RESEARCH QUESTION: Can time-lapse parameters and the transcriptional profile of cumulus cells be used to achieve a more stringent and non-invasive method of embryo assessment and to identify possible factors affecting the embryo's ability to implant in repeated implantation failure (RIF) patients? DESIGN: A total of 190 embryos from 18 oocyte donors and 145 embryos from 15 RIF patients were evaluated based on time-lapse parameters. Three morphokinetic parameters including T5 (time to reach five cells), T3 (time to reach three cells) and CC2 (time to two to three cells) were recorded for all embryos. Embryos that had all three parameters in the normal range were graded as high quality and comparison between these parameters were compared in high-quality embryos between two groups. The transcriptional profile of cumulus cells related to high-quality embryos of both groups were analysed by RNA sequencing and compared. Finally, the possible relationship between differentially expressed genes and time-lapse parameters was examined. RESULTS: T5 was significantly lower in the RIF group than the donor group (P = 0.011). The cumulus cell transcriptome analysis showed 193 genes were down-regulated and 222 genes up-regulated. The mammalian target of rapamycin and the transforming growth factor beta pathways were significantly increased in the RIF group compared to the donor group (P = 0.007 and 0.01, respectively). Vitamin B12 and fatty acid beta-oxidation pathways were also significantly reduced in the RIF group compared to the donor group (P = 0.006 and 0.01, respectively). CONCLUSIONS: Differences in the transcriptomic profiles of cumulus cells and some morphokinetic parameters may be one of the main factors contributing to unexplained RIF.
Assuntos
Implantação do Embrião , Embrião de Mamíferos , Imagem com Lapso de Tempo/métodos , BlastocistoRESUMO
RESEARCH QUESTION: Is the transcriptome of cumulus cells a good predictor of the embryo's developmental competence? DESIGN: Cumulus cells were collected from donor oocytes and their transcriptome was analysed by RNA sequencing analysis at >30â¯×â¯106 reads in samples grouped according to the developmental potential of their enclosed oocyte: not able to develop to the blastocyst stage (Bl-), able to develop to the blastocyst stage but failing to establish a pregnancy (P-), or able to develop to the blastocyst stage and to establish a clinical pregnancy (P+). RESULTS: The cumulus cell trancriptome was largely independent of the developmental potential as, using a false dscovery rate-adjusted P-value of <0.05, only 10, 11 and 5 genes were differentially expressed for the comparisons P+ versus P-, P+ versus Bl-, and P- versus Bl-, respectively, out of a total of 17,469 genes expressed. Between the differentially expressed genes, those showing little overlap between samples from different groups were CHAC1, up-regulated in the P- and P+ groups compared with the Bl- group, and CENPE, CD93, PECAM1 and HSPA1B, which showed the opposite expression pattern. Focusing on the pregnancy potential, only EPN3 was consistently downregulated in the P+ compared with the P- and Bl- groups. CONCLUSIONS: The cumulus cell transcriptome is largely unrelated to the establishment of clinical pregnancy following embryo transfer, although the expression level of a subset of genes in cumulus cells may indicate the ability to develop to the blastocyst stage.
Assuntos
Células do Cúmulo , Transcriptoma , Gravidez , Feminino , Humanos , Células do Cúmulo/metabolismo , Oócitos/metabolismo , Transferência Embrionária , Blastocisto/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismoRESUMO
Follicles consist of specialized somatic cells that encase a single oocyte. Follicle development is a process regulated by a variety of endocrine, paracrine, and secretory factors that work together to select follicles for ovulation. Zinc is an essential nutrient for the human body and is involved in many physiological processes, such as follicle development, immune response, homeostasis, oxidative stress, cell cycle progression, DNA replication, DNA damage repair, apoptosis, and aging. Zinc deficiency can lead to blocked oocyte meiotic process, cumulus expansion, and follicle ovulation. In this mini-review, we summarize the the role of zinc in follicular development.