RESUMO
Electrical stimulation is a promising tool for modulating brain networks. However, it is unclear how stimulation interacts with neural patterns underlying behavior. Specifically, how might external stimulation that is not sensitive to the state of ongoing neural dynamics reliably augment neural processing and improve function? Here, we tested how low-frequency epidural alternating current stimulation (ACS) in non-human primates recovering from stroke interacted with task-related activity in perilesional cortex and affected grasping. We found that ACS increased co-firing within task-related ensembles and improved dexterity. Using a neural network model, we found that simulated ACS drove ensemble co-firing and enhanced propagation of neural activity through parts of the network with impaired connectivity, suggesting a mechanism to link increased co-firing to enhanced dexterity. Together, our results demonstrate that ACS restores neural processing in impaired networks and improves dexterity following stroke. More broadly, these results demonstrate approaches to optimize stimulation to target neural dynamics.
Assuntos
Potenciais de Ação/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Comportamento Animal/fisiologia , Fenômenos Biomecânicos/fisiologia , Estimulação Elétrica , Haplorrinos , Córtex Motor/fisiopatologia , Redes Neurais de Computação , Neurônios/fisiologia , Análise e Desempenho de Tarefas , Fatores de TempoRESUMO
Voltage-gated sodium channel Nav1.5 generates cardiac action potentials and initiates the heartbeat. Here, we report structures of NaV1.5 at 3.2-3.5 Å resolution. NaV1.5 is distinguished from other sodium channels by a unique glycosyl moiety and loss of disulfide-bonding capability at the NaVß subunit-interaction sites. The antiarrhythmic drug flecainide specifically targets the central cavity of the pore. The voltage sensors are partially activated, and the fast-inactivation gate is partially closed. Activation of the voltage sensor of Domain III allows binding of the isoleucine-phenylalanine-methionine (IFM) motif to the inactivation-gate receptor. Asp and Ala, in the selectivity motif DEKA, line the walls of the ion-selectivity filter, whereas Glu and Lys are in positions to accept and release Na+ ions via a charge-delocalization network. Arrhythmia mutation sites undergo large translocations during gating, providing a potential mechanism for pathogenic effects. Our results provide detailed insights into Nav1.5 structure, pharmacology, activation, inactivation, ion selectivity, and arrhythmias.
Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/ultraestrutura , Animais , Linhagem Celular , Células HEK293 , Coração/fisiologia , Humanos , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp/métodos , Ratos , Sódio/metabolismo , Canais de Sódio/química , Relação Estrutura-Atividade , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/ultraestruturaRESUMO
We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice.
Assuntos
Estimulação Encefálica Profunda/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Animais , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/instrumentação , Eletrodos , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Estimulação Transcraniana por Corrente Contínua/instrumentaçãoRESUMO
Although many studies have addressed the regulatory circuits affecting neuronal activities, local non-synaptic mechanisms that determine neuronal excitability remain unclear. Here, we found that microglia prevented overactivation of pre-sympathetic neurons in the hypothalamic paraventricular nucleus (PVN) at steady state. Microglia constitutively released platelet-derived growth factor (PDGF) B, which signaled via PDGFRα on neuronal cells and promoted their expression of Kv4.3, a key subunit that conducts potassium currents. Ablation of microglia, conditional deletion of microglial PDGFB, or suppression of neuronal PDGFRα expression in the PVN elevated the excitability of pre-sympathetic neurons and sympathetic outflow, resulting in a profound autonomic dysfunction. Disruption of the PDGFBMG-Kv4.3Neuron pathway predisposed mice to develop hypertension, whereas central supplementation of exogenous PDGFB suppressed pressor response when mice were under hypertensive insult. Our results point to a non-immune action of resident microglia in maintaining the balance of sympathetic outflow, which is important in preventing cardiovascular diseases.
Assuntos
Hipertensão , Microglia , Animais , Hipertensão/metabolismo , Camundongos , Neurônios/fisiologia , Potássio/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismoRESUMO
AMPA receptors (AMPARs) mediate the majority of excitatory neurotransmission. Their surface expression, trafficking, gating, and pharmacology are regulated by auxiliary subunits. Of the two types of TARP auxiliary subunits, type I TARPs assume activating roles, while type II TARPs serve suppressive functions. We present cryo-EM structures of GluA2 AMPAR in complex with type II TARP γ5, which reduces steady-state currents, increases single-channel conductance, and slows recovery from desensitization. Regulation of AMPAR function depends on its ligand-binding domain (LBD) interaction with the γ5 head domain. GluA2-γ5 complex shows maximum stoichiometry of two TARPs per AMPAR tetramer, being different from type I TARPs but reminiscent of the auxiliary subunit GSG1L. Desensitization of both GluA2-GSG1L and GluA2-γ5 complexes is accompanied by rupture of LBD dimer interface, while GluA2-γ5 but not GluA2-GSG1L LBD dimers remain two-fold symmetric. Different structural architectures and desensitization mechanisms of complexes with auxiliary subunits endow AMPARs with broad functional capabilities.
Assuntos
Canais de Cálcio/química , Claudinas/química , Receptores de AMPA/química , Motivos de Aminoácidos , Animais , Microscopia Crioeletrônica , Dimerização , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Bicamadas Lipídicas/química , Proteínas de Membrana , Conformação Molecular , Técnicas de Patch-Clamp , Polímeros , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Ratos , Transmissão SinápticaRESUMO
Maximizing the welfare of society requires distributing goods between groups of people with different preferences. Such decisions are difficult because different moral principles impose irreconcilable solutions. For example, utilitarian efficiency (maximize overall outcome across individuals) may need trade-off against Rawlsian fairness norms (maximize the outcome for the worst-off individual). We identify a brain mechanism enabling decision-makers to solve such trade-offs between efficiency and fairness using separate neuroimaging and sham-controlled brain stimulation experiments. As activity in the temporoparietal junction (TPJ) increases, people are more likely to implement the Rawlsian fairness criterion rather than efficiency or inequality concerns. Strikingly, reducing TPJ excitability with brain stimulation reduces the concern for fairness in fairness-efficiency trade-offs. Moreover, the reduced fairness concerns statistically relate to stimulation-induced reductions in perspective-taking skills as measured in a separate task. Together, our findings not only reveal the neural underpinning of efficiency-fairness trade-offs but also recast the role of TPJ in social decision-making by showing that its perspective-taking function serves to promote fairness for the worst-off rather than efficiency or equality.
Assuntos
Tomada de Decisões , Lobo Parietal , Lobo Temporal , Humanos , Lobo Parietal/fisiologia , Tomada de Decisões/fisiologia , Masculino , Feminino , Lobo Temporal/fisiologia , Adulto , Adulto Jovem , Imageamento por Ressonância MagnéticaRESUMO
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by social and communication deficits and repetitive behaviors. The genetic heterogeneity of ASD presents a challenge to the development of an effective treatment targeting the underlying molecular defects. ASD gating charge mutations in the KCNQ/KV7 potassium channel cause gating pore currents (Igp) and impair action potential (AP) firing of dopaminergic neurons in brain slices. Here, we investigated ASD gating charge mutations of the voltage-gated SCN2A/NaV1.2 brain sodium channel, which ranked high among the ion channel genes with mutations in individuals with ASD. Our results show that ASD mutations in the gating charges R2 in Domain-II (R853Q), and R1 (R1626Q) and R2 (R1629H) in Domain-IV of NaV1.2 caused Igp in the resting state of ~0.1% of the amplitude of central pore current. The R1626Q mutant also caused significant changes in the voltage dependence of fast inactivation, and the R1629H mutant conducted proton-selective Igp. These potentially pathogenic Igp were exacerbated by the absence of the extracellular Mg2+ and Ca2+. In silico simulation of the effects of these mutations in a conductance-based single-compartment cortical neuron model suggests that the inward Igp reduces the time to peak for the first AP in a train, increases AP rates during a train of stimuli, and reduces the interstimulus interval between consecutive APs, consistent with increased neural excitability and altered input/output relationships. Understanding this common pathophysiological mechanism among different voltage-gated ion channels at the circuit level will give insights into the underlying mechanisms of ASD.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Canais de Sódio Disparados por Voltagem , Humanos , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Encéfalo , MutaçãoRESUMO
In kagome metals, the chiral current order parameter [Formula: see text] with time-reversal-symmetry-breaking is the source of various exotic electronic states, while the method of controlling the current order and its interplay with the star-of-David bond order [Formula: see text] are still unsolved. Here, we reveal that tiny uniform orbital magnetization [Formula: see text] is induced by the chiral current order, and its magnitude is prominently enlarged under the presence of the bond order. Importantly, we derive the magnetic-field ([Formula: see text])-induced Ginzburg-Landau (GL) free energy expression [Formula: see text], which enables us to elucidate the field-induced current-bond phase transitions in kagome metals. The emergent current-bond-[Formula: see text] trilinear coupling term in the free energy, [Formula: see text], naturally explains the characteristic magnetic-field sensitive electronic states in kagome metals, such as the field-induced current order and the strong interplay between the bond and current orders. The GL coefficients of [Formula: see text] derived from the realistic multiorbital model are appropriate to explain various experiments. Furthermore, we discuss the field-induced loop current orders in the square lattice models that have been studied in cuprate superconductors.
RESUMO
The phagotrophic flagellates described as "typical excavates" have been hypothesized to be morphologically similar to the Last Eukaryotic Common Ancestor and understanding the functional ecology of excavates may therefore help shed light on the ecology of these early eukaryotes. Typical excavates are characterized by a posterior flagellum equipped with a vane that beats in a ventral groove. Here, we combined flow visualization and observations of prey capture in representatives of the three clades of excavates with computational fluid dynamic modeling, to understand the functional significance of this cell architecture. We record substantial differences amongst species in the orientation of the vane and the beat plane of the posterior flagellum. Clearance rate magnitudes estimated from flow visualization and modeling are both like that of other similarly sized flagellates. The interaction between a vaned flagellum beating in a confinement is modeled to produce a very efficient feeding current at low energy costs, irrespective of the beat plane and vane orientation and of all other morphological variations. Given this predicted uniformity of function, we suggest that the foraging systems of typical excavates studied here may be good proxies to understand those potentially used by our distant ancestors more than 1 billion years ago.
Assuntos
Flagelos , Flagelos/fisiologia , Animais , Eucariotos/fisiologia , Modelos Biológicos , Evolução Biológica , HidrodinâmicaRESUMO
Transition metal dichalcogenide (TMD) moiré superlattices provide an emerging platform to explore various light-induced phenomena. Recently, the discoveries of novel moiré excitons have attracted great interest. The nonlinear optical responses of these systems are however still underexplored. Here, we report investigation of light-induced shift currents (a second-order response generating DC current from optical illumination) in the WSe2/WS2 moiré superlattice. We identify a striking phenomenon of the formation of shift current vortex crystals-i.e., two-dimensional periodic arrays of moiré-scale current vortices and associated magnetic fields with remarkable intensity under laboratory laser setup. Furthermore, we demonstrate high optical tunability of these current vortices-their location, shape, chirality, and magnitude can be tuned by the frequency, polarization, and intensity of the incident light. Electron-hole interactions (excitonic effects) are found to play a crucial role in the generation and nature of the shift current intensity and distribution. Our findings provide a promising all-optical control route to manipulate nanoscale shift current density distributions and magnetic field patterns, as well as shed light on nonlinear optical responses in moiré quantum matter and their possible applications.
RESUMO
Long-term biological time series that monitor ecosystems across the ocean's full water column are extremely rare. As a result, classic paradigms are yet to be tested. One such paradigm is that variations in coastal upwelling drive changes in marine ecosystems throughout the water column. We examine this hypothesis by using data from three multidecadal time series spanning surface (0 m), midwater (200 to 1,000 m), and benthic (~4,000 m) habitats in the central California Current Upwelling System. Data include microscopic counts of surface plankton, video quantification of midwater animals, and imaging of benthic seafloor invertebrates. Taxon-specific plankton biomass and midwater and benthic animal densities were separately analyzed with principal component analysis. Within each community, the first mode of variability corresponds to most taxa increasing and decreasing over time, capturing seasonal surface blooms and lower-frequency midwater and benthic variability. When compared to local wind-driven upwelling variability, each community correlates to changes in upwelling damped over distinct timescales. This suggests that periods of high upwelling favor increase in organism biomass or density from the surface ocean through the midwater down to the abyssal seafloor. These connections most likely occur directly via changes in primary production and vertical carbon flux, and to a lesser extent indirectly via other oceanic changes. The timescales over which species respond to upwelling are taxon-specific and are likely linked to the longevity of phytoplankton blooms (surface) and of animal life (midwater and benthos), which dictate how long upwelling-driven changes persist within each community.
Assuntos
Ecossistema , Invertebrados , Animais , Oceanos e Mares , Biomassa , Plâncton , ÁguaRESUMO
As a major sink of anthropogenic heat and carbon, the Southern Ocean experienced pronounced warming with increasing extreme temperature events over the past decades. Mesoscale eddies that strongly influence the uptake, redistribution, and storage of heat in the ocean are expected to play important roles in these changes, yet observational evidence remains limited. Here, we employ a comprehensive analysis of over 500,000 historical hydrographic profile measurements combined with satellite-based eddy observations to show enhanced thermal eddy imprints in the Southern Ocean. Our observations reveal that anticyclonic (cyclonic) eddies are responsible for nearly half of the subsurface high (low)-temperature extremes detected, although only 10% of the profiles are located in eddy interiors. Over the past decade (2006 to 2019), both mean and extreme temperature anomalies within eddies in the Antarctic Circumpolar Current increased significantly, promoting the rise in subsurface ocean temperature variability. This enhanced role of eddies is likely a result of enhanced eddy pumping due to the increase in eddy intensity and ocean stratification caused by ocean warming. Our analysis underscores the crucial role of eddies in amplifying ocean temperature variability and extremes, with their effects expected to be even more pronounced as global warming persists.
RESUMO
In retinitis pigmentosa (RP), rod and cone photoreceptors degenerate, depriving downstream neurons of light-sensitive input, leading to vision impairment or blindness. Although downstream neurons survive, some undergo morphological and physiological remodeling. Bipolar cells (BCs) link photoreceptors, which sense light, to retinal ganglion cells (RGCs), which send information to the brain. While photoreceptor loss disrupts input synapses to BCs, whether BC output synapses remodel has remained unknown. Here we report that synaptic output from BCs plummets in RP mouse models of both sexes owing to loss of voltage-gated Ca2+ channels. Remodeling reduces the reliability of synaptic output to repeated optogenetic stimuli, causing RGC firing to fail at high-stimulus frequencies. Fortunately, functional remodeling of BCs can be reversed by inhibiting the retinoic acid receptor (RAR). RAR inhibitors targeted to BCs present a new therapeutic opportunity for mitigating detrimental effects of remodeling on signals initiated either by surviving photoreceptors or by vision-restoring tools.
Assuntos
Células Bipolares da Retina , Sinapses , Tretinoína , Animais , Células Bipolares da Retina/efeitos dos fármacos , Células Bipolares da Retina/fisiologia , Camundongos , Tretinoína/farmacologia , Masculino , Feminino , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Retinose Pigmentar/fisiopatologia , Retinose Pigmentar/genética , Degeneração Retiniana/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/efeitos dos fármacosRESUMO
Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique gaining more attention in neurodevelopmental disorders (NDDs). Due to the phenotypic heterogeneity of NDDs, tDCS is unlikely to be equally effective in all individuals. The present study aimed to establish neuroanatomical markers in typically developing (TD) individuals that may be used for the prediction of individual responses to tDCS. Fifty-seven male and female children received 2â mA anodal and sham tDCS, targeting the left dorsolateral prefrontal cortex (DLPFCleft), right inferior frontal gyrus, and bilateral temporoparietal junction. Response to tDCS was assessed based on task performance differences between anodal and sham tDCS in different neurocognitive tasks (N-back, flanker, Mooney faces detection, attentional emotional recognition task). Measures of cortical thickness (CT) and surface area (SA) were derived from 3 Tesla structural MRI scans. Associations between neuroanatomy and task performance were assessed using general linear models (GLM). Machine learning (ML) algorithms were employed to predict responses to tDCS. Vertex-wise estimates of SA were more closely linked to differences in task performance than measures of CT. Across ML algorithms, highest accuracies were observed for the prediction of N-back task performance differences following stimulation of the DLPFCleft, where 65% of behavioral variance was explained by variability in SA. Lower accuracies were observed for all other tasks and stimulated regions. This suggests that it may be possible to predict individual responses to tDCS for some behavioral measures and target regions. In the future, these models might be extended to predict treatment outcome in individuals with NDDs.
Assuntos
Imageamento por Ressonância Magnética , Estimulação Transcraniana por Corrente Contínua , Humanos , Masculino , Estimulação Transcraniana por Corrente Contínua/métodos , Feminino , Criança , Adolescente , Cognição/fisiologia , Desempenho Psicomotor/fisiologiaRESUMO
Since prehistory, human species have depended on plants for both food and medicine. Even in countries with ready access to modern medicines, alternative treatments are still highly regarded and commonly used. Unlike modern pharmaceuticals, many botanical medicines are in widespread use despite a lack of safety and efficacy data derived from controlled clinical trials and often unclear mechanisms of action. Contributing to this are the complex and undefined composition and likely multifactorial mechanisms of action and multiple targets of many botanical medicines. Here, we review the newfound importance of the ubiquitous KCNQ subfamily of voltage-gated potassium channels as targets for botanical medicines, including basil, capers, cilantro, lavender, fennel, chamomile, ginger, and Camellia, Sophora, and Mallotus species. We discuss the implications for the traditional use of these plants for disorders such as seizures, hypertension, and diabetes and the molecular mechanisms of plant secondary metabolite effects on KCNQ channels.
Assuntos
Canais de Potássio KCNQ , Medicina Tradicional , Humanos , Canais de Potássio KCNQ/metabolismoRESUMO
Nanopore sequencing provides signal data corresponding to the nucleotide motifs sequenced. Through machine learning-based methods, these signals are translated into long-read sequences that overcome the read size limit of short-read sequencing. However, analyzing the raw nanopore signal data provides many more opportunities beyond just sequencing genomes and transcriptomes: algorithms that use machine learning approaches to extract biological information from these signals allow the detection of DNA and RNA modifications, the estimation of poly(A) tail length, and the prediction of RNA secondary structures. In this review, we discuss how developments in machine learning methodologies contributed to more accurate basecalling and lower error rates, and how these methods enable new biological discoveries. We argue that direct nanopore sequencing of DNA and RNA provides a new dimensionality for genomics experiments and highlight challenges and future directions for computational approaches to extract the additional information provided by nanopore signal data.
Assuntos
Sequenciamento por Nanoporos , Nanoporos , Algoritmos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Aprendizado de Máquina , Análise de Sequência de DNA/métodosRESUMO
Mutations in SCN4A gene encoding Nav1.4 channel α-subunit, are known to cause neuromuscular disorders such as myotonia or paralysis. Here, we study the effect of two amino acid replacements, K1302Q and G1306E, in the DIII-IV loop of the channel, corresponding to mutations found in patients with myotonia. We combine clinical, electrophysiological, and molecular modeling data to provide a holistic picture of the molecular mechanisms operating in mutant channels and eventually leading to pathology. We analyze the existing clinical data for patients with the K1302Q substitution, which was reported for adults with or without myotonia phenotypes, and report two new unrelated patients with the G1306E substitution, who presented with severe neonatal episodic laryngospasm and childhood-onset myotonia. We provide a functional analysis of the mutant channels by expressing Nav1.4 α-subunit in Xenopus oocytes in combination with ß1 subunit and recording sodium currents using two-electrode voltage clamp. The K1302Q variant exhibits abnormal voltage dependence of steady-state fast inactivation, being the likely cause of pathology. K1302Q does not lead to decelerated fast inactivation, unlike several other myotonic mutations such as G1306E. For both mutants, we observe increased window currents corresponding to a larger population of channels available for activation. To elaborate the structural rationale for our experimental data, we explore the contacts involving K/Q1302 and E1306 in the AlphaFold2 model of wild-type Nav1.4 and Monte Carlo-minimized models of mutant channels. Our data provide the missing evidence to support the classification of K1302Q variant as likely pathogenic and may be used by clinicians.
Assuntos
Miotonia , Canal de Sódio Disparado por Voltagem NAV1.4 , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Humanos , Animais , Miotonia/genética , Feminino , Xenopus laevis , Masculino , Mutação , Oócitos/metabolismo , Adulto , Substituição de AminoácidosRESUMO
Ion channel function of native delta glutamate receptors (GluDR ) is incompletely understood. Previously, we and others have shown that activation of Gαq protein-coupled receptors (GqPCR) produces a slow inward current carried by GluD1R . GluD1R also carries a tonic cation current of unknown cause. Here, using voltage-clamp electrophysiological recordings from adult mouse brain slices containing the dorsal raphe nucleus, we find no role of ongoing G-protein-coupled receptor activity in generating or sustaining tonic GluD1R currents. Neither augmentation nor disruption of G protein activity affects tonic GluD1R currents, suggesting that ongoing G-protein-coupled receptor activity does not give rise to tonic GluD1R currents. Further, the tonic GluD1R current is unaffected by the addition of external glycine or D-serine, which influences GluD2R current at millimolar concentrations. Instead, GqPCR-stimulated and tonic GluD1R currents are regulated by physiological levels of external calcium. In current-clamp recordings, block of GluD1R channels hyperpolarizes the membrane by ~7 mV at subthreshold potentials, reducing excitability. Thus, GluD1R carries a G-protein-independent tonic current that contributes to subthreshold neuronal excitation in the dorsal raphe nucleus.
Assuntos
Canais Iônicos , Neurônios , Camundongos , Animais , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Encéfalo , Receptores Acoplados a Proteínas G , Glutamato DesidrogenaseRESUMO
The reward positivity (RewP) is an event-related brain potential (ERP) component that emerges approximately 250 to 350 milliseconds (ms) after receiving reward-related feedback stimuli and is believed to be important for reinforcement learning and reward processing. Although numerous localization studies have indicated that the anterior cingulate cortex (ACC) is the neural generator of this component, other studies have identified sources outside of the ACC, fuelling a debate about its origin. Because the results of EEG and MEG source localization studies are severely limited by the inverse problem, we addressed this question by leveraging the high spatial and temporal resolution of intracranial EEG. We predicted that we would identify a neural generator of the RewP in the caudal ACC. We recorded intracranial EEG in 19 refractory epilepsy patients who underwent invasive video-EEG monitoring at Ghent University Hospital, Belgium. Participants engaged in the virtual T-maze task (vTMT), a trial-and-error task known to elicit a canonical RewP, while scalp and intracranial EEG were simultaneously recorded. The RewP was identified using a difference wave approach for both scalp and intracranial EEG. The data were aggregated across participants to create a virtual "meta-participant" that contained all the recorded intracranial ERPs (iERPs) with respect to their intracranial contact locations. We used both a hypothesis-driven (focused on ACC) and exploratory (whole-brain analysis) approach to segment the brain into regions of interest (ROI). For each ROI, we evaluated the degree to which the time course of the absolute current density (ACD) activity mirrored the time course of the RewP, and confirmed the statistical significance of the results using permutation analysis. The grand average waveform of the scalp data revealed a RewP at 309 ms after reward feedback with a frontocentral scalp distribution, consistent with the identification of this component as the RewP. The meta-participant contained iERPs recorded from 582 intracranial contacts in total. The ACD activity of the aggregated iERPs were most similar to the RewP in left caudal ACC, left dorsolateral prefrontal cortex, left frontomedial cortex, and left white matter, with the highest score attributed to caudal ACC, as predicted. To our knowledge, this is the first study that uses intracranial EEG aggregated across multiple human epilepsy patients and current source density analysis to identify the neural generator(s) of the RewP. These results provide direct evidence that the ACC is a neural generator of the RewP.
RESUMO
Vincristine-induced peripheral neuropathy is a common side effect of vincristine treatment, which is accompanied by pain and can be dose-limiting. The molecular mechanisms that underlie vincristine-induced pain are not well understood. We have established an animal model to investigate pathophysiological mechanisms of vincristine-induced pain. Our previous studies have shown that the tetrodotoxin-sensitive voltage-gated sodium channel Nav1.6 in medium-diameter dorsal root ganglion (DRG) neurons contributes to the maintenance of vincristine-induced allodynia. In this study, we investigated the effects of vincristine administration on excitability in small-diameter DRG neurons and whether the tetrodotoxin-resistant (TTX-R) Nav1.8 channels contribute to mechanical allodynia. Current-clamp recordings demonstrated that small DRG neurons become hyper-excitable following vincristine treatment, with both reduced current threshold and increased firing frequency. Using voltage-clamp recordings in small DRG neurons, we now show an increase in TTX-R current density and a -7.3 mV hyperpolarizing shift in the half-maximal potential (V1/2) of activation of Nav1.8 channels in vincristine-treated animals, which likely contributes to the hyperexcitability that we observed in these neurons. Notably, vincristine treatment did not enhance excitability of small DRG neurons from Nav1.8 knockout mice, and the development of mechanical allodynia was delayed but not abrogated in these mice. Together, our data suggest that sodium channel Nav1.8 in small DRG neurons contributes to the development of vincristine-induced mechanical allodynia.