Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 38(10): 1835-44, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26084256

RESUMO

The efficiency of linear alkylbenzene sulfonate (LAS) removal from laundry wastewater and the related microbial community was investigated in an anaerobic fluidized bed reactor (AFBR). The AFBR was operated in three stages, in addition to the biomass adaptation stage without LAS (stage I). The stages were differentiated by their supplementary co-substrates: stage II had sucrose plus ethanol, stage III had only ethanol, and stage IV had no co-substrate. The replacement of sucrose plus ethanol with ethanol only for the substrate composition favored the efficiency of LAS removal, which remained high after the co-substrate was removed (stage II: 52 %; stage III: 73 %; stage IV: 77 %). A transition in the microbial community from Comamonadaceae to Rhodocyclaceae in conjunction with the co-substrate variation was observed using ion sequencing analysis. The microbial community that developed in response to an ethanol-only co-substrate improved LAS degradation more than the community that developed in response to a mixture of sucrose and ethanol, suggesting that ethanol is a better option for enriching an LAS-degrading microbial community.


Assuntos
Bactérias/metabolismo , Etanol/metabolismo , Consórcios Microbianos/fisiologia , Sacarose/metabolismo , Tensoativos/metabolismo , Poluentes Químicos da Água/metabolismo , Ácidos Alcanossulfônicos/isolamento & purificação , Ácidos Alcanossulfônicos/metabolismo , Ânions , Bactérias/classificação , Bactérias/isolamento & purificação , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Especificidade da Espécie , Tensoativos/isolamento & purificação , Microbiologia da Água , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos
2.
Placenta ; 152: 1-8, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729066

RESUMO

INTRODUCTION: The majority of unexplained recurrent pregnancy loss (URPL) cases have been attributed to immune abnormalities. Inappropriate changes in microbiota could lead to immune disorders. However, the specific role of uterine cavity microbiota in URPL remains unclear, and only a limited number of related studies are available for reference. METHODS: We utilized double-lumen embryo transfer tubes to collect uterine cavity fluid samples from pregnant women in their first trimester. Subsequently, we conducted 16S rRNA sequencing to analyze the composition and abundance of the microbiota in these samples. RESULTS: For this study, we enlisted 10 cases of URPL and 28 cases of induced miscarriages during early pregnancy. Microbial communities were detected in all samples of the URPL group (100 %, n = 10), whereas none were found in the control group (0 %, n = 28). Among the identified microbes, Lactobacillus and Curvibacter were the two most dominant species. The abundance of Curvibacter is correlated with the number of NK cells in peripheral blood (r = -0.759, P = 0.018). DISCUSSION: This study revealed that during early pregnancy, Lactobacillus and Curvibacter were the predominant colonizers in the uterine cavity of URPL patients and were associated with URPL. Consequently, alterations in the dominant microbiota may lead to adverse pregnancy outcomes.


Assuntos
Aborto Habitual , Microbiota , Útero , Humanos , Feminino , Gravidez , Aborto Habitual/microbiologia , Adulto , Útero/microbiologia , Primeiro Trimestre da Gravidez , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Lactobacillus/isolamento & purificação , Estudos de Casos e Controles
3.
J Microbiol Biotechnol ; 33(11): 1428-1436, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37644736

RESUMO

The three Gram-negative, catalase- and oxidase-positive bacterial strains RS43T, HBC28, and HBC61T, were isolated from fresh water and subjected to a polyphasic study. Comparison of 16S rRNA gene sequence initially indicated that strains RS43T, HBC28, and HBC61T were closely related to species of genus Curvibacter and shared the highest sequence similarity of 98.14%, 98.21%, and 98.76%, respectively, with Curvibacter gracilis 7-1T. Phylogenetic analysis based on genome sequences placed all strains within the genus Curvibacter. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the three strains and related type strains supported their recognition as two novel genospecies in the genus Curvibacter. Comparative genomic analysis revealed that the genus possessed an open pangenome. Based on KEGG BlastKOALA analyses, Curvibacter species have the potential to metabolize benzoate, phenylacetate, catechol, and salicylate, indicating their potential use in the elimination of these compounds from the water systems. The results of polyphasic characterization indicated that strain RS43T and HBC61T represent two novel species, for which the name Curvibacter microcysteis sp. nov. (type strain RS43T =KCTC 92793T=LMG 32714T) and Curvibacter cyanobacteriorum sp. nov. (type strain HBC61T =KCTC 92794T =LMG 32713T) are proposed.


Assuntos
Cianobactérias , Ácidos Graxos , Ácidos Graxos/análise , Análise de Sequência de DNA , Filogenia , RNA Ribossômico 16S/genética , Água Doce , Hibridização de Ácido Nucleico , Cianobactérias/genética , DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
4.
Front Microbiol ; 13: 1056388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36560945

RESUMO

Bacteriophages and their interactions with microbes are not well understood. As a first step toward achieving a better understanding, we isolated and sequenced the Curvibacter phage PCA1 for the purpose of eliminating Curvibacter sp. AEP1.3, the main colonizer of Hydra vulgaris AEP. Our experiments showed that PCA1 phage caused a strong, virulent infection only in sessile Curvibacter sp. AEP1.3 but was unable to infect planktonic and host-associated bacterial cells of the same strain. In an effort to investigate this phenomenon, we compared sessile, planktonic, and host-associated bacteria via RNA sequencing and found that all three states differed significantly in their expression patterns. This finding led us to propose that the adaptive lifestyle of Curvibacter sp. AEP1.3 results in varying degrees of susceptibility to bacteriophage infection. This concept could be relevant for phage research and phage therapy in particular. Finally, we were able to induce phage infection in planktonic cells and pinpoint the infection process to a membrane protein. We further identified potential phage-binding protein candidates based on expression pattern analysis.

5.
Micron ; 140: 102980, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190005

RESUMO

Microbial-induced carbonate precipitation is important in the global carbon cycle, especially in fixing atmospheric CO2. Many simulation experiments have shown that microbes can induce carbonate precipitation, although there is no established understanding of the mechanism. In this study, several mineralization experiments were performed using Curvibacter lanceolatus strain HJ-1, including its secreted extracellular polymeric substances (EPS) and carbonic anhydrase (CA). We found that strain HJ-1, EPS, and CA could promote carbonate precipitation if compared with the respective control experiments (CK). Also, both HJ-1 and EPS1 experiments contained calcite and aragonite, whereas CA experiments formed calcite only. Therefore, HJ-1 and EPS is favorable for carbonate precipitation, especially for aragonite. Besides, the formation of calcite in the EPS2 experiments indicated that EPS contains a trace amount of CA, which might promote CO2 hydration and eventually lead to carbonate precipitation. It was suggested that CA only provide CO32- for the formation of carbonate minerals. In the absence of exogenous HCO3-, the optimized calcification rate followed the order: HJ-1(49.5 %) > CA(6.6 %) > EPS2(4.1 %). In addition, MICP mechanisms was studied, an increase in pH and CO2 hydration by CA play synergetic roles in providing supersaturated alkaline conditions in the system with bacteria. Finally, bacterial cells and EPS promote the formation of calcite and aragonite by acting as nucleation sites.


Assuntos
Carbonatos/metabolismo , Precipitação Química , Comamonadaceae/metabolismo , Carbonato de Cálcio/química , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Concentração de Íons de Hidrogênio
6.
Front Microbiol ; 9: 443, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593687

RESUMO

Most eukaryotic species are colonized by a microbial community - the microbiota - that is acquired during early life stages and is critical to host development and health. Much research has focused on the microbiota biodiversity during the host life, however, empirical data on the basic ecological principles that govern microbiota assembly is lacking. Here we quantify the contribution of colonizer order, arrival time and colonization history to microbiota assembly on a host. We established the freshwater polyp Hydra vulgaris and its dominant colonizer Curvibacter as a model system that enables the visualization and quantification of colonizer population size at the single cell resolution, in vivo, in real time. We estimate the carrying capacity of a single Hydra polyp as 2 × 105Curvibacter cells, which is robust among individuals and time. Colonization experiments reveal a clear priority effect of first colonizers that depends on arrival time and colonization history. First arriving colonizers achieve a numerical advantage over secondary colonizers within a short time lag of 24 h. Furthermore, colonizers primed for the Hydra habitat achieve a numerical advantage in the absence of a time lag. These results follow the theoretical expectations for any bacterial habitat with a finite carrying capacity. Thus, Hydra colonization and succession processes are largely determined by the habitat occupancy over time and Curvibacter colonization history. Our experiments provide empirical data on the basic steps of host-associated microbiota establishment - the colonization stage. The presented approach supplies a framework for studying habitat characteristics and colonization dynamics within the host-microbe setting.

7.
Front Microbiol ; 9: 2808, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559723

RESUMO

Although earlier circumstantial observations have suggested the presence of iron oxidizing bacteria (IOB) in groundwater-fed rapid sand filters (RSF), ferrous iron (Fe(II)) oxidation in this environment is often considered a chemical process due to the highly oxic and circumneutral pH conditions. The low water temperature (5-10°C), typical of groundwaters, on the other hand, may reduce the rates of chemical Fe(II) oxidation, which may allow IOB to grow and compete with chemical Fe(II) oxidation. Hence, we hypothesized that IOB are active and abundant in groundwater-fed RSFs. Here, we applied a combination of cultivation and molecular approaches to isolate, quantify, and confirm the growth of IOB from groundwater-fed RSFs, operated at different influent Fe(II) concentrations. Isolates related to Undibacterium and Curvibacter were identified as novel IOB lineages. Gallionella spp. were dominant in all waterworks, whereas Ferriphaselus and Undibacterium were dominant at pre-filters of waterworks receiving groundwaters with high (>2 mg/l) Fe(II) concentrations. The high density and diversity of IOB in groundwater-fed RSFs suggest that neutrophilic IOB may not be limited to oxic/anoxic interfaces.

8.
Microbiome ; 5(1): 126, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28938908

RESUMO

BACKGROUND: Non-carbonated natural mineral waters contain microorganisms that regularly grow after bottling despite low concentrations of dissolved organic matter (DOM). Yet, the compositions of bottled water microbiota and organic substrates that fuel microbial activity, and how both change after bottling, are still largely unknown. RESULTS: We performed a multifaceted analysis of microbiota and DOM diversity in 12 natural mineral waters from six European countries. 16S rRNA gene-based analyses showed that less than 10 species-level operational taxonomic units (OTUs) dominated the bacterial communities in the water phase and associated with the bottle wall after a short phase of post-bottling growth. Members of the betaproteobacterial genera Curvibacter, Aquabacterium, and Polaromonas (Comamonadaceae) grew in most waters and represent ubiquitous, mesophilic, heterotrophic aerobes in bottled waters. Ultrahigh-resolution mass spectrometry of DOM in bottled waters and their corresponding source waters identified thousands of molecular formulae characteristic of mostly refractory, soil-derived DOM. CONCLUSIONS: The bottle environment, including source water physicochemistry, selected for growth of a similar low-diversity microbiota across various bottled waters. Relative abundance changes of hundreds of multi-carbon molecules were related to growth of less than ten abundant OTUs. We thus speculate that individual bacteria cope with oligotrophic conditions by simultaneously consuming diverse DOM molecules.


Assuntos
Bactérias/isolamento & purificação , Água Potável , Microbiota , Águas Minerais/microbiologia , Compostos Orgânicos/análise , Microbiologia da Água , Bactérias/classificação , Betaproteobacteria/classificação , Betaproteobacteria/isolamento & purificação , Biodiversidade , Água Potável/química , Água Potável/microbiologia , Europa (Continente) , Espectrometria de Massas , Microbiota/genética , Águas Minerais/análise , Compostos Orgânicos/química , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA