RESUMO
Antibodies mediate natural and vaccine-induced immunity against viral and bacterial pathogens, whereas fungi represent a widespread kingdom of pathogenic species for which neither vaccine nor neutralizing antibody therapies are clinically available. Here, using a multi-kingdom antibody profiling (multiKAP) approach, we explore the human antibody repertoires against gut commensal fungi (mycobiota). We identify species preferentially targeted by systemic antibodies in humans, with Candida albicans being the major inducer of antifungal immunoglobulin G (IgG). Fungal colonization of the gut induces germinal center (GC)-dependent B cell expansion in extraintestinal lymphoid tissues and generates systemic antibodies that confer protection against disseminated C. albicans or C. auris infection. Antifungal IgG production depends on the innate immunity regulator CARD9 and CARD9+CX3CR1+ macrophages. In individuals with invasive candidiasis, loss-of-function mutations in CARD9 are associated with impaired antifungal IgG responses. These results reveal an important role of gut commensal fungi in shaping the human antibody repertoire through CARD9-dependent induction of host-protective antifungal IgG.
Assuntos
Anticorpos Antifúngicos/imunologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Imunidade , Imunoglobulina G/imunologia , Micobioma/imunologia , Animais , Linfócitos B/imunologia , Candida albicans/imunologia , Candidíase/imunologia , Candidíase/microbiologia , Fezes/microbiologia , Centro Germinativo/imunologia , Humanos , Camundongos Endogâmicos C57BL , Fagócitos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica , Transdução de SinaisRESUMO
Biliary atresia (BA) is a severe cholangiopathy that leads to liver failure in infants, but its pathogenesis remains to be fully characterized. By single-cell RNA profiling, we observed macrophage hypo-inflammation, Kupffer cell scavenger function defects, cytotoxic T cell expansion, and deficiency of CX3CR1+effector T and natural killer (NK) cells in infants with BA. More importantly, we discovered that hepatic B cell lymphopoiesis did not cease after birth and that tolerance defects contributed to immunoglobulin G (IgG)-autoantibody accumulation in BA. In a rhesus-rotavirus induced BA model, depleting B cells or blocking antigen presentation ameliorated liver damage. In a pilot clinical study, we demonstrated that rituximab was effective in depleting hepatic B cells and restoring the functions of macrophages, Kupffer cells, and T cells to levels comparable to those of control subjects. In summary, our comprehensive immune profiling in infants with BA had educed that B-cell-modifying therapies may alleviate liver pathology.
Assuntos
Atresia Biliar/imunologia , Atresia Biliar/terapia , Fígado/imunologia , Animais , Antígenos CD20/metabolismo , Linfócitos B/imunologia , Atresia Biliar/sangue , Atresia Biliar/tratamento farmacológico , Biópsia , Receptor 1 de Quimiocina CX3C/metabolismo , Morte Celular , Linhagem Celular , Proliferação de Células , Transdiferenciação Celular , Criança , Pré-Escolar , Estudos de Coortes , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/metabolismo , Lactente , Inflamação/patologia , Células Matadoras Naturais/imunologia , Células de Kupffer/patologia , Fígado/patologia , Cirrose Hepática/sangue , Cirrose Hepática/complicações , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Depleção Linfocítica , Linfopoese , Masculino , Camundongos Endogâmicos BALB C , Fagocitose , RNA/metabolismo , Rituximab/administração & dosagem , Rituximab/farmacologia , Rituximab/uso terapêutico , Rotavirus/fisiologia , Análise de Célula Única , Células Th1/imunologia , Células Th17/imunologiaRESUMO
T cells differentiate into functionally distinct states upon antigen encounter. These states are delineated by different cell surface markers for murine and human T cells, which hamper cross-species translation of T cell properties. We aimed to identify surface markers that reflect the graded nature of CD8+ T cell differentiation and delineate functionally comparable states in mice and humans. CITEseq analyses revealed that graded expression of CX3CR1, encoding the chemokine receptor CX3CR1, correlated with the CD8+ T cell differentiation gradient. CX3CR1 expression distinguished human and murine CD8+ and CD4+ T cell states, as defined by migratory and functional properties. Graded CX3CR1 expression, refined with CD62L, accurately captured the high-dimensional T cell differentiation continuum. Furthermore, the CX3CR1 expression gradient delineated states with comparable properties in humans and mice in steady state and on longitudinally tracked virus-specific CD8+ T cells in both species. Thus, graded CX3CR1 expression provides a strategy to translate the behavior of distinct T cell differentiation states across species.
Assuntos
Linfócitos T CD8-Positivos , Receptores de Quimiocinas , Animais , Humanos , Camundongos , Diferenciação Celular , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Memória ImunológicaRESUMO
Microglia, the resident macrophages of the brain parenchyma, are key players in central nervous system (CNS) development, homeostasis, and disorders. Distinct brain pathologies seem associated with discrete microglia activation modules. How microglia regain quiescence following challenges remains less understood. Here, we explored the role of the interleukin-10 (IL-10) axis in restoring murine microglia homeostasis following a peripheral endotoxin challenge. Specifically, we show that lipopolysaccharide (LPS)-challenged mice harboring IL-10 receptor-deficient microglia displayed neuronal impairment and succumbed to fatal sickness. Addition of a microglial tumor necrosis factor (TNF) deficiency rescued these animals, suggesting a microglia-based circuit driving pathology. Single cell transcriptome analysis revealed various IL-10 producing immune cells in the CNS, including most prominently Ly49D+ NK cells and neutrophils, but not microglia. Collectively, we define kinetics of the microglia response to peripheral endotoxin challenge, including their activation and robust silencing, and highlight the critical role of non-microglial IL-10 in preventing deleterious microglia hyperactivation.
Assuntos
Endotoxinas/imunologia , Interleucina-10/metabolismo , Microglia/imunologia , Microglia/metabolismo , Animais , Biomarcadores , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Imunofenotipagem , Interleucina-10/genética , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , CamundongosRESUMO
The skin comprises tissue macrophages as the most abundant resident immune cell type. Their diverse tasks including resistance against invading pathogens, attraction of bypassing immune cells from vessels, and tissue repair require dynamic specification. Here, we delineated the postnatal development of dermal macrophages and their differentiation into subsets by adapting single-cell transcriptomics, fate mapping, and imaging. Thereby we identified a phenotypically and transcriptionally distinct subset of prenatally seeded dermal macrophages that self-maintained with very low postnatal exchange by hematopoietic stem cells. These macrophages specifically interacted with sensory nerves and surveilled and trimmed the myelin sheath. Overall, resident dermal macrophages contributed to axon sprouting after mechanical injury. In summary, our data show long-lasting functional specification of macrophages in the dermis that is driven by stepwise adaptation to guiding structures and ensures codevelopment of ontogenetically distinct cells within the same compartment.
Assuntos
Diferenciação Celular/imunologia , Vigilância Imunológica , Macrófagos/imunologia , Regeneração Nervosa , Pele/imunologia , Pele/inervação , Animais , Animais Recém-Nascidos , Biomarcadores , Receptor 1 de Quimiocina CX3C/metabolismo , Derme/citologia , Derme/imunologia , Derme/metabolismo , Imunofenotipagem , Macrófagos/metabolismo , Camundongos , Pele/citologiaRESUMO
Hematopoietic stem cells (HSCs) are generated from specialized endothelial cells of the embryonic aorta. Inflammatory factors are implicated in regulating mouse HSC development, but which cells in the aorta-gonad-mesonephros (AGM) microenvironment produce these factors is unknown. In the adult, macrophages play both pro- and anti-inflammatory roles. We sought to examine whether macrophages or other hematopoietic cells found in the embryo prior to HSC generation were involved in the AGM HSC-generative microenvironment. CyTOF analysis of CD45+ AGM cells revealed predominance of two hematopoietic cell types, mannose-receptor positive macrophages and mannose-receptor negative myeloid cells. We show here that macrophage appearance in the AGM was dependent on the chemokine receptor Cx3cr1. These macrophages expressed a pro-inflammatory signature, localized to the aorta, and dynamically interacted with nascent and emerging intra-aortic hematopoietic cells (IAHCs). Importantly, upon macrophage depletion, no adult-repopulating HSCs were detected, thus implicating a role for pro-inflammatory AGM-associated macrophages in regulating the development of HSCs.
Assuntos
Diferenciação Celular , Desenvolvimento Embrionário , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/metabolismo , Animais , Biomarcadores , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Imunofluorescência , Imunofenotipagem , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Células Mieloides/citologia , Células Mieloides/metabolismoRESUMO
T cell dysfunction is a characteristic feature of chronic viral infection and cancer. Recent studies in chronic lymphocytic choriomeningitis virus (LCMV) infection have defined a PD-1+ Tcf-1+ CD8+ T cell subset capable of self-renewal and differentiation into more terminally differentiated cells that downregulate Tcf-1 and express additional inhibitory molecules such as Tim3. Here, we demonstrated that expression of the glycoprotein CD101 divides this terminally differentiated population into two subsets. Stem-like Tcf-1+ CD8+ T cells initially differentiated into a transitory population of CD101-Tim3+ cells that later converted into CD101+ Tim3+ cells. Recently generated CD101-Tim3+ cells proliferated in vivo, contributed to viral control, and were marked by an effector-like transcriptional signature including expression of the chemokine receptor CX3CR1, pro-inflammatory cytokines, and granzyme B. PD-1 pathway blockade increased the numbers of CD101-Tim3+ CD8+ T cells, suggesting that these newly generated transitional cells play a critical role in PD-1-based immunotherapy.
Assuntos
Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Animais , Biomarcadores/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Feminino , Granzimas/genética , Granzimas/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/biossíntese , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Coriomeningite Linfocítica/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/genéticaRESUMO
Live vaccines historically afford superior protection, yet the cellular and molecular mechanisms mediating protective immunity remain unclear. Here we found that vaccination of mice with live, but not dead, Gram-negative bacteria heightened follicular T helper cell (Tfh) differentiation, germinal center formation, and protective antibody production through the signaling adaptor TRIF. Complementing the dead vaccine with an innate signature of bacterial viability, bacterial RNA, recapitulated these responses. The interferon (IFN) and inflammasome pathways downstream of TRIF orchestrated Tfh responses extrinsically to B cells and classical dendritic cells. Instead, CX3CR1+CCR2- monocytes instructed Tfh differentiation through interleukin-1ß (IL-1ß), a tightly regulated cytokine secreted upon TRIF-dependent IFN licensing of the inflammasome. Hierarchical production of IFN-ß and IL-1ß dictated Tfh differentiation and elicited the augmented humoral responses characteristic of live vaccines. These findings identify bacterial RNA, an innate signature of microbial viability, as a trigger for Tfh differentiation and suggest new approaches toward vaccine formulations for coordinating augmented Tfh and B cell responses.
Assuntos
Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Ativação Linfocitária/imunologia , Viabilidade Microbiana/imunologia , RNA Bacteriano/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Linfócitos B/metabolismo , Vacinas Bacterianas/imunologia , Biomarcadores , Diferenciação Celular/imunologia , Citocinas/metabolismo , Centro Germinativo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Celular , Imunidade Inata , Inflamassomos/metabolismo , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/metabolismoRESUMO
Intestinal macrophages are critical for gastrointestinal (GI) homeostasis, but our understanding of their role in regulating intestinal motility is incomplete. Here, we report that CX3C chemokine receptor 1-expressing muscularis macrophages (MMs) were required to maintain normal GI motility. MMs expressed the transient receptor potential vanilloid 4 (TRPV4) channel, which senses thermal, mechanical, and chemical cues. Selective pharmacologic inhibition of TRPV4 or conditional deletion of TRPV4 from macrophages decreased intestinal motility and was sufficient to reverse the GI hypermotility that is associated with chemotherapy treatment. Mechanistically, stimulation of MMs via TRPV4 promoted the release of prostaglandin E2 and elicited colon contraction in a paracrine manner via prostaglandin E receptor signaling in intestinal smooth muscle cells without input from the enteric nervous system. Collectively, our data identify TRPV4-expressing MMs as an essential component required for maintaining normal GI motility and provide potential drug targets for GI motility disorders.
Assuntos
Colo/fisiologia , Motilidade Gastrointestinal , Macrófagos/metabolismo , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Canais de Cátion TRPV/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Colo/fisiopatologia , Ciclo-Oxigenase 1/deficiência , Ciclo-Oxigenase 1/metabolismo , Dinoprostona/análise , Dinoprostona/metabolismo , Feminino , Mucosa Gástrica/citologia , Expressão Gênica , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Contração Muscular , Receptores de Prostaglandina E/antagonistas & inibidores , Receptores de Prostaglandina E/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genéticaRESUMO
Inflammatory bowel disease (IBD) results from a dysregulated interaction between the microbiota and a genetically susceptible host. Genetic studies have linked TNFSF15 polymorphisms and its protein TNF-like ligand 1A (TL1A) with IBD, but the functional role of TL1A is not known. Here, we found that adherent IBD-associated microbiota induced TL1A release from CX3CR1+ mononuclear phagocytes (MNPs). Using cell-specific genetic deletion models, we identified an essential role for CX3CR1+MNP-derived TL1A in driving group 3 innate lymphoid cell (ILC3) production of interleukin-22 and mucosal healing during acute colitis. In contrast to this protective role in acute colitis, TL1A-dependent expression of co-stimulatory molecule OX40L in MHCII+ ILC3s during colitis led to co-stimulation of antigen-specific T cells that was required for chronic T cell colitis. These results identify a role for ILC3s in activating intestinal T cells and reveal a central role for TL1A in promoting ILC3 barrier immunity during colitis.
Assuntos
Colite/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Microbiota/imunologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Adulto , Idoso , Animais , Colite/genética , Colite/metabolismo , Feminino , Humanos , Imunidade Inata/genética , Interleucinas/genética , Interleucinas/imunologia , Interleucinas/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Linfócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microbiota/fisiologia , Pessoa de Meia-Idade , Fagócitos/citologia , Fagócitos/imunologia , Fagócitos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Adulto Jovem , Interleucina 22RESUMO
Protective immunity against pathogens depends on the efficient generation of functionally diverse effector and memory T lymphocytes. However, whether plasticity during effector-to-memory CD8+ T cell differentiation affects memory lineage specification and functional versatility remains unclear. Using genetic fate mapping analysis of highly cytotoxic KLRG1+ effector CD8+ T cells, we demonstrated that KLRG1+ cells receiving intermediate amounts of activating and inflammatory signals downregulated KLRG1 during the contraction phase in a Bach2-dependent manner and differentiated into all memory T cell linages, including CX3CR1int peripheral memory cells and tissue-resident memory cells. "ExKLRG1" memory cells retained high cytotoxic and proliferative capacity distinct from other populations, which contributed to effective anti-influenza and anti-tumor immunity. Our work demonstrates that developmental plasticity of KLRG1+ effector CD8+ T cells is important in promoting functionally versatile memory cells and long-term protective immunity.
Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Ativação Linfocitária/imunologia , Receptores Imunológicos/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Linhagem da Célula/imunologia , Vírus da Influenza A/imunologia , Subunidade p35 da Interleucina-12/imunologia , Lectinas Tipo C , Listeria monocytogenes/imunologia , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Imunológicos/genética , Vírus da Estomatite Vesicular Indiana/imunologiaRESUMO
The importance of classical CD8+ T cells in tumor eradication is well acknowledged. However, the anti-tumor activity of MHC (major histocompatibility complex) Ib-restricted CD8+ T (Ib-CD8+ T) cells remains obscure. Here, we show that CX3CR1-expressing Ib-CD8+ T cells (Ib-restricted CD8+ T cells) highly express cytotoxic factors, austerely resist exhaustion, and effectively eliminate various tumors. These Ib-CD8+ T cells can be primed by MHC Ia (MHC class Ia molecules) expressed on various cell types for optimal activation in a Tbet-dependent manner. Importantly, MHC Ia does not allogeneically activate Ib-CD8+ T cells, rather, sensitizes these cells for T cell receptor activation. Such effects were observed when MHC Ia+ cells were administered to tumor-bearing Kb-/-Db-/-mice. A similar population of tumoricidal CX3CR1+CD8+ T cells was identified in wild-type mice and melanoma patients. Adoptive transfer of Ib-CD8+ T cells to wild-type mice inhibited tumor progression without damaging normal tissues. Taken together, we demonstrate that MHC class Ia can prime Ib-CD8+ T cells for robust tumoricidal activities.
Assuntos
Linfócitos T CD8-Positivos , Antígenos de Histocompatibilidade Classe I , Humanos , Camundongos , Animais , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos H-2 , Antígenos de Histocompatibilidade/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Expression levels of the chemokine receptor CX3CR1 serve as high-resolution marker delineating functionally distinct antigen-experienced T-cell states. The factors that influence CX3CR1 expression in T cells are, however, incompletely understood. Here, we show that in vitro priming of naïve CD8+ T cells failed to robustly induce CX3CR1, which highlights the shortcomings of in vitro priming settings in recapitulating in vivo T-cell differentiation. Nevertheless, in vivo generated memory CD8+ T cells maintained CX3CR1 expression during culture. This allowed us to investigate whether T-cell receptor ligation, cell death, and CX3CL1 binding influence CX3CR1 expression. T-cell receptor stimulation led to downregulation of CX3CR1. Without stimulation, CX3CR1+ CD8+ T cells had a selective survival disadvantage, which was enhanced by factors released from necrotic but not apoptotic cells. Exposure to CX3CL1 did not rescue their survival and resulted in a dose-dependent loss of CX3CR1 surface expression. At physiological concentrations of CX3CL1, CX3CR1 surface expression was only minimally reduced, which did not hamper the interpretability of T-cell differentiation states delineated by CX3CR1. Our data further support the broad utility of CX3CR1 surface levels as T-cell differentiation marker and identify factors that influence CX3CR1 expression and the maintenance of CX3CR1 expressing CD8+ T cells.
Assuntos
Linfócitos T CD8-Positivos , Receptores de Quimiocinas , Linfócitos T CD8-Positivos/metabolismo , Receptores de Quimiocinas/genética , Microambiente Celular , Receptores de Antígenos de Linfócitos T/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismoRESUMO
Enterococci are common commensal bacteria that colonize the gastrointestinal tracts of most mammals, including humans. Importantly, these bacteria are one of the leading causes of nosocomial infections. This study examined the role of colonic macrophages in facilitating Enterococcus faecalis infections in mice. We determined that depletion of colonic phagocytes resulted in the reduction of E. faecalis dissemination to the gut-draining mesenteric lymph nodes. Furthermore, we established that trafficking of monocyte-derived CX3CR1-expressing macrophages contributed to E. faecalis dissemination in a manner that was not reliant on CCR7, the conventional receptor involved in lymphatic migration. Finally, we showed that E. faecalis mutants with impaired intracellular survival exhibited reduced dissemination, suggesting that E. faecalis can exploit host immune cell migration to disseminate systemically and cause disease. Our findings indicate that modulation of macrophage trafficking in the context of antibiotic therapy could serve as a novel approach for preventing or treating opportunistic infections by disseminating enteric pathobionts like E. faecalis.
Assuntos
Receptor 1 de Quimiocina CX3C , Colo , Enterococcus faecalis , Macrófagos , Receptores CCR2 , Receptores de Quimiocinas , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Macrófagos/microbiologia , Macrófagos/imunologia , Camundongos , Colo/microbiologia , Colo/imunologia , Receptores CCR2/metabolismo , Receptores CCR2/genética , Receptores de Quimiocinas/metabolismo , Receptores de Quimiocinas/genética , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Camundongos Endogâmicos C57BL , Linfonodos/microbiologia , Linfonodos/imunologia , Receptores CCR7/metabolismo , Receptores CCR7/genéticaRESUMO
Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases employing abnormal levels of insulin. Enhancing the insulin production is greatly aided by the regulatory mechanisms of the Fractalkine receptor (CX3CR1) system in islet ß-cell function. However, elements including a high-fat diet, obesity, and ageing negatively impact the expression of CX3CR1 in islets. CX3CL1/CX3CR1 receptor-ligand complex is now recognized as a novel therapeutic target. It suggests that T2DM-related ß-cell dysfunction may result from lower amount of these proteins. We analyzed the differential expression of CX3CR1 gene samples taken from persons with T2DM using data obtained from the Gene Expression Omnibus database. Homology modeling enabled us to generate the three-dimensional structure of CX3CR1 and a possible binding pocket. The optimized CX3CR1 structure was subjected to rigorous screening against a massive library of 693 million drug-like molecules from the ZINC15 database. This screening process led to the identification of three compounds with strong binding affinity at the identified binding pocket of CX3CR1. To further evaluate the potential of these compounds, molecular dynamics simulations were conducted over a 50 ns time scale to assess the stability of the protein-ligand complexes. These simulations revealed that ZINC000032506419 emerged as the most promising drug-like compound among the three potent molecules. The discovery of ZINC000032506419 holds exciting promise as a potential therapeutic agent for T2D and other related metabolic disorders. These findings pave the way for the development of effective medications to address the complexities of T2DM and its associated metabolic diseases.
Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Descoberta de Drogas , Insulina , LigantesRESUMO
CX3CR1 functions as the specific receptor for the chemokine CX3CL1, demonstrating expression across a broad spectrum of immune cells. This underscores its pivotal role in communication and response mechanisms within the immune system. Upon engagement with CX3CL1, CX3CR1 initiates a cascade of downstream signaling pathways that regulate various biological functions. In the context of tumor progression, the intricate and inhibitory nature of the tumor microenvironment presents a significant challenge to current clinical treatment techniques. This review aims to comprehensively explore the tumor-destructive potential shown by CX3CR1+CD8+ T cells. Simultaneously, it investigates the promising prospects of utilizing CX3CR1 in future tumor immunotherapies.
RESUMO
Monocyte aberrations have been increasingly recognized as contributors to renal damage in systemic lupus erythematosus (SLE), however, recognition of the underlying mechanisms and modulating strategies is at an early stage. Our studies have demonstrated that brain-derived neurotrophic factor precursor (proBDNF) drives the progress of SLE by perturbing antibody-secreting B cells, and proBDNF facilitates pro-inflammatory responses in monocytes. By utilizing peripheral blood from patients with SLE, GEO database and spontaneous MRL/lpr lupus mice, we demonstrated in the present study that CX3CR1+ patrolling monocytes (PMo) numbers were decreased in SLE. ProBDNF was specifically expressed in CX3CR1+ PMo and was closely correlated with disease activity and the degree of renal injury in SLE patients. In MRL/lpr mice, elevated proBDNF was found in circulating PMo and the kidney, and blockade of proBDNF restored the balance of circulating and kidney-infiltrating PMo. This blockade also led to the reversal of pro-inflammatory responses in monocytes and a noticeable improvement in renal damage in lupus mice. Overall, the results indicate that the upregulation of proBDNF in PMo plays a crucial role in their infiltration into the kidney, thereby contributing to nephritis in SLE. Targeting of proBDNF offers a potential therapeutic role in modulating monocyte-driven renal damage in SLE.
Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Animais , Humanos , Camundongos , Rim , Camundongos Endogâmicos MRL lpr , Monócitos , Regulação para Cima , Precursores de ProteínasRESUMO
In neuroinflammation, distinguishing microglia from macrophages and identifying microglial-specific biomarkers in peripheral blood pose significant challenges. This study comprehensively profiled the extracellular vesicles (EVs) of microglia and macrophages, respectively, revealing co-expressed EVs with UCHL1 and CX3CR1 as EVs derived specifically from microglia in human blood. After extensive validation, using optimized nano flow cytometry, we evaluated plasma CX3CR1+/UCHL1+ EVs across clinical cohorts [multiple sclerosis (MS), HTLV-1 associated myelopathy (HAM), Alzheimer's disease (AD), and Parkinson's disease (PD)], along with established neurodegenerative markers (NMDAR2A and NFL). The findings discovered a notable rise in CX3CR1+/UCHL1+ EVs in MS, particularly heightened in HAM, in contrast to controls. Conversely, AD and PD exhibited unaltered or diminished levels of microglial EVs. An integrated model of CX3CR1+/UCHL1+, NMDAR2A+, and NFL+ EVs demonstrated promising diagnostic potential for distinguishing MS from controls and HAM. As to the disease duration, CX3CR1+/UCHL1+ EVs increased in the initial five years of MS, stabilizing thereafter, whereas NMDAR2A+ and NFL+ EVs remained stable initially but increased significantly in the subsequent five years, suggesting their correlation with disease duration. This study uncovers unique blood microglial EVs with potential as biomarkers for MS diagnosis, differentiation from HAM, and correlation with disease duration.
Assuntos
Biomarcadores , Receptor 1 de Quimiocina CX3C , Vesículas Extracelulares , Microglia , Esclerose Múltipla , Humanos , Biomarcadores/sangue , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Esclerose Múltipla/sangue , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Microglia/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Feminino , Masculino , Pessoa de Meia-Idade , Ubiquitina Tiolesterase/metabolismo , Adulto , Idoso , Estudos de CoortesRESUMO
BACKGROUND: The eye is a highly specialized sensory organ which encompasses the retina as a part of the central nervous system, but also non-neural compartments such as the transparent vitreous body ensuring stability of the eye globe and a clear optical axis. Hyalocytes are the tissue-resident macrophages of the vitreous body and are considered to play pivotal roles in health and diseases of the vitreoretinal interface, such as proliferative vitreoretinopathy or diabetic retinopathy. However, in contrast to other ocular macrophages, their embryonic origin as well as the extent to which these myeloid cells might be replenished by circulating monocytes remains elusive. RESULTS: In this study, we combine transgenic reporter mice, embryonic and adult fate mapping approaches as well as parabiosis experiments with multicolor immunofluorescence labeling and confocal laser-scanning microscopy to comprehensively characterize the murine hyalocyte population throughout development and in adulthood. We found that murine hyalocytes express numerous well-known myeloid cell markers, but concomitantly display a distinct immunophenotype that sets them apart from retinal microglia. Embryonic pulse labeling revealed a yolk sac-derived origin of murine hyalocytes, whose precursors seed the developing eye prenatally. Finally, postnatal labeling and parabiosis established the longevity of hyalocytes which rely on Colony Stimulating Factor 1 Receptor (CSF1R) signaling for their maintenance, independent of blood-derived monocytes. CONCLUSION: Our study identifies hyalocytes as long-living progeny of the yolk sac hematopoiesis and highlights their role as integral members of the innate immune system of the eye. As a consequence of their longevity, immunosenescence processes may culminate in hyalocyte dysfunction, thereby contributing to the development of vitreoretinal diseases. Therefore, myeloid cell-targeted therapies that convey their effects through the modification of hyalocyte properties may represent an interesting approach to alleviate the burden imposed by diseases of the vitreoretinal interface.
Assuntos
Macrófagos , Camundongos Transgênicos , Corpo Vítreo , Saco Vitelino , Animais , Camundongos , Corpo Vítreo/citologia , Saco Vitelino/citologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Animais Recém-NascidosRESUMO
As a versatile element for maintaining homeostasis, the chemokine system has been reported to be implicated in the pathogenesis of immune thrombocytopenia (ITP). However, research pertaining to chemokine receptors and related ligands in adult ITP is still limited. The states of several typical chemokine receptors and cognate ligands in the circulation were comparatively assessed through various methodologies. Multiple variable analyses of correlation matrixes were conducted to characterize the correlation signatures of various chemokine receptors or candidate ligands with platelet counts. Our data illustrated a significant decrease in relative CXCR3 expression and elevated plasma levels of CXCL4, 9-11, 13, and CCL3 chemokines in ITP patients with varied platelet counts. Flow cytometry assays revealed eminently diminished CXCR3 levels on T and B lymphocytes and increased CXCR5 on cytotoxic T cell (Tc) subsets in ITP patients with certain platelet counts. Meanwhile, circulating CX3CR1 levels were markedly higher on T cells with a concomitant increase in plasma CX3CL1 level in ITP patients, highlighting the importance of aberrant alterations of the CX3CR1-CX3CL1 axis in ITP pathogenesis. Spearman's correlation analyses revealed a strong positive association of peripheral CXCL4 mRNA level, and negative correlations of plasma CXCL4 concentration and certain chemokine receptors with platelet counts, which might serve as a potential biomarker of platelet destruction in ITP development. Overall, these results indicate that the differential expression patterns and distinct activation states of peripheral chemokine network, and the subsequent expansion of circulating CXCR5+ Tc cells and CX3CR1+ T cells, may be a hallmark during ITP progression, which ultimately contributes to thrombocytopenia in ITP patients.