Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 189: 106595, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387848

RESUMO

Cymodocea serrulata mediated titanium dioxide nanoparticles (TiO2 NPs) were successfully synthesized. The XRD pattern and FTIR spectra demonstrated the crystalline structure of TiO2 NPs and the presence of phenols, flavonoids and alkaloids in the extract. Further SEM revealed that TiO2 NPs has uniform structure and spherical in shape with their size ranged from 58 to 117 nm. Antibacterial activity of TiO2 NPs against methicillin-resistant Staphylococcus aureus (MRSA) and Vibrio cholerae (V. cholerae), provided the zone of inhibition of 33.9 ± 1.7 and 36.3 ± 1.9 mm, respectively at 100 µg/mL concentration. MIC of TiO2 NPs against MRSA and V. cholerae showed 84% and 87% inhibition at 180 µg/mL and 160 µg/mL respectively. Subsequently, the sub-MIC of V. cholerae demonstrated minimal or no impact on bacterial growth at concentration of 42.5 µg/mL concentration. In addition, TiO2 NPs exhibited their ability to inhibit the biofilm forming V. cholerae which caused distinct morphological and intercellular damages analysed using CLSM and TEM. The antioxidant properties of TiO2 NPs were demonstrated through TAA and DPPH assays and exposed its scavenging activity with IC50 value of 36.42 and 68.85 µg/mL which denotes its valuable antioxidant properties with potential health benefits. Importantly, the brine shrimp based lethality experiment yielded a low cytotoxic effect with 13% mortality at 100 µg/mL. In conclusion, the multifaceted attributes of C. serrulata mediated TiO2 NPs encompassed the antibacterial, antioxidant and anti-biofilm inhibition effects with low cytotoxicity in nature were highlighted in this study and proved the bioderived TiO2 NPs could be used as a promising agent for biomedical applications.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Titânio , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Biofilmes , Nanopartículas Metálicas/química
2.
J Exp Bot ; 74(1): 472-488, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272111

RESUMO

Understanding species-specific trait responses under future global change scenarios is of importance for conservation efforts and to make informed decisions within management projects. The combined and single effects of seawater acidification and warmer average temperature were investigated by means of the trait responses of Cymodocea serrulata, a tropical seagrass, under experimental conditions. After a 35 d exposure period, biochemical, morphological, and photo-physiological trait responses were measured. Overall, biochemical traits mildly responded under the individual exposure to high temperature and increasing pCO2 values. The response of C. serrulata was limited to a decrease in %C and an increase in the sucrose content in the rhizome under the high temperature treatment, 32 °C. This suggests that this temperature was lower than the maximum tolerance limit for this species. Increasing pCO2 levels increased %C in the rhizome, and also showed a significant increase in leaf δ13C values. The effects of all treatments were sublethal; however, small changes in their traits could affect the ecosystem services they provide. In particular, changes in tissue carbon concentrations may affect carbon storage capacity, one key ecosystem service. The simultaneous study of different types of trait responses contributes to establish a holistic framework of seagrass ecosystem health under climate change.


Assuntos
Alismatales , Água do Mar , Água do Mar/química , Ecossistema , Alismatales/fisiologia , Temperatura Alta , Temperatura , Carbono , Dióxido de Carbono , Concentração de Íons de Hidrogênio
3.
Environ Res ; 229: 115985, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116681

RESUMO

The purpose of this research was to look into the spectral categorization of fraction 7a from the Cymodocea serrulata ethyl acetate extract employing 1H as well as 13C NMR and FTIR techniques. Besides this, the antifungal (Candida tropicalis, Candida parapsilosis, Candida albicans, and Candida glabrata), antioxidant, and antidiabetic activities were also determined through in-vitro studies. Surprisingly, the 1H and 13C NMR analyses revealed that fraction 7a contains the most aliphatic and the least aromatic compounds. FTIR analysis revealed that the test fraction 7a contains the most active functional groups related to alkanes, phenols, esters, and amide groups. At a dosage of 500 µg mL-1, the fraction 7a does have outstanding antifungal activity against fungal pathogens such as Candida tropicalis, C. parapsilosis, C. albicans, and C. glabrata. The results suggest that the fraction 7a does have excellent anti-candida activity against candidiasis-causing fungal pathogens. This fraction 7a also demonstrated fine dose dependent antioxidant and antidiabetic activities.


Assuntos
Antifúngicos , Candida , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antioxidantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana
4.
Biotechnol Appl Biochem ; 70(3): 1346-1356, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36724497

RESUMO

In the present study, the green synthesis of silver nanoparticles (AgNPs) using ethanol extract of Cymodocea serrulata and biological activity were investigated by UV-visible spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), x-ray powder diffraction (XRD), and scanning electron microscopy. The results show that nanoparticles synthesized were confirmed by color change from green to dark brown. The XRD analysis confirmed that the AgNPs were crystalline and found that their UV maximum specific absorbance was between 200 and 400 nm, and their field emission scanning electron microscopy size was between 60 and 69 nm. FTIR studies identified different functional groups involved in the potential capping of AgNPs. The antidiabetic activity of the AgNPs was tested by the inhibition of carbohydrate digestive enzymes (a-glucosidase and amylase). In addition, it has exhibited potential anticancer activity against breast cancer cells (MDF7). Hence, the present result warrants ecofriendly and efficient method in the synthesis of AgNPs, which can act as an alternative biomaterial for biomedical applications.


Assuntos
Antioxidantes , Nanopartículas Metálicas , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Prata/farmacologia , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Neoplasias da Mama , Antineoplásicos/química , Antineoplásicos/farmacocinética
5.
New Phytol ; 223(3): 1217-1229, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31059120

RESUMO

Tropical marine seagrasses live in environments with low nutrient concentrations. However, as land development intensifies along tropical coastlines, the marine environment in which these organisms grow is becoming more nutrient-rich. Nitrogen (N) uptake, assimilation, translocation and storage under a diversity of N sources in enriched conditions were investigated in two tropical seagrass species, Cymodocea serrulata and Thalassia hemprichii, from an oligotrophic marine environment. Both seagrasses were able to take up different inorganic and organic N sources through their above- and belowground tissues when enriched with high N concentrations. The uptake rates of T. hemprichii were generally higher than C. serrulata in leaves and rhizome, whereas root uptake was systematically higher in C. serrulata. Acropetal and basipetal translocation was observed in both species. Reduction and assimilation of N, measured in terms of their nitrate reductase and glutamine synthetase activity, were correlated with nitrate and ammonium uptake rates, respectively. Cymodocea serrulata showed a tendency to immediately use the available N, whereas T. hemprichii allocated more N in assimilation and storage investment. The responses of these seagrasses to N-enrichment demonstrate their ability to adapt to over-enrichment by varying N sources in the first step of the eutrophication process.


Assuntos
Alismatales/metabolismo , Hydrocharitaceae/metabolismo , Nitrogênio/metabolismo , Clima Tropical , Análise de Variância , Transporte Biológico , Glutamato-Amônia Ligase/metabolismo , Modelos Biológicos , Nitrato Redutase/metabolismo
6.
New Phytol ; 219(3): 1005-1017, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29855044

RESUMO

Seagrasses are globally important coastal habitat-forming species, yet it is unknown how seagrasses respond to the combined pressures of ocean acidification and warming of sea surface temperature. We exposed three tropical species of seagrass (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri) to increasing temperature (21, 25, 30, and 35°C) and pCO2 (401, 1014, and 1949 µatm) for 7 wk in mesocosms using a controlled factorial design. Shoot density and leaf extension rates were recorded, and plant productivity and respiration were measured at increasing light levels (photosynthesis-irradiance curves) using oxygen optodes. Shoot density, growth, photosynthetic rates, and plant-scale net productivity occurred at 25°C or 30°C under saturating light levels. High pCO2 enhanced maximum net productivity for Z. muelleri, but not in other species. Z. muelleri was the most thermally tolerant as it maintained positive net production to 35°C, yet for the other species there was a sharp decline in productivity, growth, and shoot density at 35°C, which was exacerbated by pCO2 . These results suggest that thermal stress will not be offset by ocean acidification during future extreme heat events and challenges the current hypothesis that tropical seagrass will be a 'winner' under future climate change conditions.


Assuntos
Ácidos/química , Oceanos e Mares , Pressão , Estresse Fisiológico , Temperatura , Clima Tropical , Zosteraceae/fisiologia , Aclimatação/efeitos dos fármacos , Aclimatação/efeitos da radiação , Dióxido de Carbono/farmacologia , Respiração Celular/efeitos dos fármacos , Respiração Celular/efeitos da radiação , Luz , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos da radiação , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação , Zosteraceae/efeitos dos fármacos , Zosteraceae/efeitos da radiação
7.
Phytother Res ; 29(4): 554-60, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25586134

RESUMO

A total of 40 extract types of varying polarities from commonly occurring seagrasses were tested for their antibacterial efficiency against 14 clinically isolated human pathogens using agar well diffusion technique. The extracts from acetone of Cymodocea serrulata expressed moderate broad span of activity against a range of gram-positive and gram-negative isolates that were at least resistant to five of the commercially available antibiotics at a minimal concentration of 10 µg. The active extracts of C. serrulata that showed maximal inhibitions were purified using column chromatography that afforded six compounds (a-f). Compound f elicited pronounced inhibitions against Escherichia coli with minimal inhibitory concentration values of 1-3 µg concentration using micro-dilution method. The active compound was identified as phenyl thioketone using various spectral analyses. This is the first investigation that reveals thioketone functionality from this seagrass species possessing antibacterial actions. This study indicates that there are thiocarbonyl groups from marine floral sources too, which could be possibly used for therapeutic purposes.


Assuntos
Alismatales/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Cetonas/farmacologia , Extratos Vegetais/farmacologia , Cetonas/isolamento & purificação , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Compostos de Sulfidrila/isolamento & purificação , Compostos de Sulfidrila/farmacologia , Tionas/isolamento & purificação , Tionas/farmacologia
8.
Cureus ; 16(3): e55521, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38576637

RESUMO

Introduction The utilization of Cymodocea serrulata for the eco-friendly synthesis of zinc oxide nanoparticles, which contain distinguishable nanostructures, presents a cost-effective and environmentally sustainable alternative for producing zinc nanoparticles. The production process of zinc nanoparticles are rich in phytochemicals, which can serve as stabilizing and reducing agents. Zinc nanoparticles can easily pass through bacterial cell walls and reach all cellular components. C. serrulata, is a small submerged angiosperm commonly found in submerged and tidal coastal environments. Aim Analysis of the biological activities of zinc oxide nanoparticles made from C. serrulata leaf extract. Materials and Methods Dry leaves of C. serrulata were ground into a powder, which was then placed into a conical flask and filled with water. Subsequently, the color of the mixture turned black. Next, a 20 mm piece of ZnO was dissolved in a 60 ml sample of distilled water to prepare the metal solution. Following this, a wavelength scan ranging from 200 to 700 nm was conducted using ultraviolet (UV) spectroscopy. After shaking the solution for an hour, a final reading was taken across the UV spectrum. The synthetic sample should also be centrifuged to remove any pellets and subsequently dried in a hot air oven. Result Using nanoscale profiling, the average particle size was measured and found to be less than 100 nm, specifically UV spectrum analysis revealed a notable absorbance value of 47.0 nm, at different angles within the peak height. The wavelength range of the zinc nanoparticles was observed to be between 250 and 350 nm. Conclusion The antibacterial properties of ZnO NPs have been demonstrated through in vitro investigations, indicating their potential application in in vivo studies.

9.
Environ Sci Pollut Res Int ; 29(10): 14948-14960, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34623585

RESUMO

The search for solutions to environmental pollution has been on the increase, with many questions recently as to which marine organisms can bioaccumulate trace elements in the marine ecosystem. Cadmium, Cr, Cu, Fe, Mn, Ni, Pb, and Zn concentrations in sediment, seawater, and seagrass compartments (root, rhizome, and leaf blade) were determined at Rabigh lagoon, Red Sea. This is to provide an insight into the potential of Cymodocea serrulata to bioaccumulate trace elements and as a good candidate to biomonitor these elements in a natural aquatic ecosystem. Results revealed significant variations in trace element concentrations across the three compartments of C. serrulata and the sites, with site S8 located in the most closed part of the lagoon recording the highest concentrations for all the trace elements. The translocation factor (TFrhizome/root = 1.00) of trace elements was higher in the root compartment. This implies that the root compartment is a better bioindicator of trace elements and has more potential to be utilized for biomonitoring. A significant positive correlation (p < 0.01) was established between the trace element concentrations in sediment, seawater, and the three compartments of C. serrulata except for Mn concentration in the compartments. The seagrass C. serrulata can be used for biomonitoring of trace elements in marine ecosystems as our results provide information on its capacity to bioaccumulate these elements. This is one of the key characteristics of a typical bioindicator of aquatic pollutants.


Assuntos
Oligoelementos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Oceano Índico , Oligoelementos/análise , Poluentes Químicos da Água/análise
10.
Front Plant Sci ; 11: 571363, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224162

RESUMO

Seagrass meadows are declining globally. The decrease of seagrass area is influenced by the simultaneous occurrence of many factors at the local and global scale, including nutrient enrichment and climate change. This study aims to find out how increasing temperature and nutrient enrichment affect the morphological, biochemical and physiological responses of three coexisting tropical species, Thalassia hemprichii, Cymodocea serrulata and Halophila stipulacea. To achieve these aims, a 1-month experiment under laboratory conditions combining two temperature (maximum ambient temperature and current average temperature) and two nutrient (high and low N and P concentrations) treatments was conducted. The results showed that the seagrasses were differentially affected by all treatments depending on their life-history strategies. Under higher temperature treatments, C. serrulata showed photo-acclimation strategies, while T. hemprichii showed decreased photo-physiological performance. In contrast, T. hemprichii was resistant to nutrient over-enrichment, showing enhanced nutrient content and physiological changes, but C. serrulata suffered BG nutrient loss. The limited response of H. stipulacea to nutrient enrichment or high temperature suggests that this seagrass is a tolerant species that may have a dormancy state with lower photosynthetic performance and smaller-size individuals. Interaction between both factors was limited and generally showed antagonistic effects only on morphological and biochemical traits, but not on physiological traits. These results highlight the different effects and strategies co-inhabiting seagrasses have in response to environmental changes, showing winners and losers of a climate change scenario that may eventually cause biodiversity loss. Trait responses to these stressors could potentially make the seagrasses weaker to cope with following events, due to BG biomass or nutrient loss. This is of importance as biodiversity loss in tropical seagrass ecosystems could change the overall effectiveness of ecosystem functions and services provided by the seagrass meadows.

11.
Front Plant Sci ; 8: 1446, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878790

RESUMO

Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri). To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum (Topt) for gross photosynthesis of Z. muelleri, which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The Topt for photosynthesis of the tropical species, H. uninervis and C. serrulata, was considerably higher (35°C on average). This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature (Topt varied by 1°C in C. serrulata and 2°C in H. uninervis, and the variation did not follow changes in ambient water temperature). The Topt for gross photosynthesis were higher than Topt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C) and H. uninervis (33°C), but remained unchanged at 35°C in C. serrulata. Both estimated plant net productivity and Topt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The thermal optimum for plant net productivity was lower than ambient summer water temperature in Z. muelleri, indicating likely contemporary heat stress. In contrast, thermal optima of H. uninervis and C. serrulata exceeded ambient water temperature. This study found limited capacity to acclimate: thus the thermal optima can forewarn of both the present and future vulnerability to ocean warming during periods of elevated water temperature.

12.
J Photochem Photobiol B ; 153: 145-52, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26409094

RESUMO

The present study pertains to the synthesis, structural elucidation, antioxidant and in vitro cytotoxic properties of silver nanoparticles (AgNPs) from marine angiosperm, Cymodocea serrulata aqueous extract (CSAE). The characterization was made through UV-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), zeta potential and dynamic light scanning (DLS) analyses. The UV-Vis spectrum resulted in a strong surface plasmon resonance (SPR) at 430 nm. The average crystalline size of the AgNPs was predicted through XRD peaks that indicated the 2 theta values of 37.84°, 44.06°, 64.42° and 77.74° for Bragg's refraction index. The functional groups responsible for the bio-reduction of Ag(+) into Ag(0) were focused through FTIR spectrum. The FESEM images showed that the C. serrulata mediated AgNPs (CS-AgNPs) were spherical in shape. DPPH assay revealed the higher free radical scavenging activity in CS-AgNPs, when compared to CSAE. The cytotoxicity assay on the cervical cancer (HeLa) and African green monkey kidney (Vero) cells upon treatment with CSAE: 107.7 & 124.3 µgml(-1) and CS-AgNPs: 34.5 & 61.24 µgml(-1), respectively showed good inhibition rate. These findings highlight the fact that C. serrulata could be a potential source for developing potent drugs and further studies are needed.


Assuntos
Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Magnoliopsida/química , Nanopartículas Metálicas/química , Prata/química , Animais , Antioxidantes/química , Chlorocebus aethiops , Difusão Dinâmica da Luz , Células HeLa , Humanos , Magnoliopsida/metabolismo , Microscopia Eletrônica de Varredura , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície , Células Vero , Difração de Raios X
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 138: 885-90, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25467657

RESUMO

The present study reports, green synthesis of bioactive silver nanoparticles (AgNPs) under different temperature (60°C, room temperature and 4° refrigerator) using the aqueous extract of sea grass Cymodocea serrulata as a potential bioreductant. Increased temperature fabricates more AgNPs compare to room temperature and refrigerator condition. At first the reduction of Ag(+) ions were confirmed through color change which produces an absorbance spectra at 420nm in UV-Visible spectrophotometer. Additionally various exclusive instrumentations such as X-ray diffraction (XRD), Dynamic light scattering (DLS), scanning electron microscope (SEM) analysis and Transmission electron microscope (TEM) were authorizes the biosynthesis and physio-chemical characterization of AgNPs. From Fourier transform infrared spectroscopy (FTIR) analysis, it was identified that the water soluble fractions of the sea grass mainly responsible for reduction of ionic silver (Ag(+)) into (Ag(0)) nano-ranged particles and also they act as stabilizing agent to sustain the durability of NPs for long period of time. Further, synthesized AgNPs shows potential cytotoxicity against human lung cancer A549 cells (LD50-100µg/ml). The overall results suggest that C. serrulata is a valuable bioresource to generate rapid and eco-friendly bioactive AgNPs towards cancer therapy.


Assuntos
Nanopartículas Metálicas/toxicidade , Tamanho da Partícula , Poaceae/química , Prata/toxicidade , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Concentração Inibidora 50 , Nanopartículas Metálicas/ultraestrutura , Extratos Vegetais/química , Folhas de Planta/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
14.
Asian Pac J Trop Biomed ; 2(7): 570-3, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23569973

RESUMO

OBJECTIVE: To identify the larvicidal activity of the seagrass extracts. METHODS: Seagrass extracts, Syringodium isoetifolium (S. isoetifolium), Cymodocea serrulata and Halophila beccarii, were dissolved in DMSO to prepare a graded series of concentration. Batches of 25 early 4th instars larvae of Aedes aegypti (Ae. aegypti) were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts (0.01 mg - 0.1 mg). After 24 h the mortality rate was identified with the formulae [(% of test mortality - % of control mortality)/(100 - % of control mortality)] × 100. Each experiment was conducted with three replicates and a concurrent control group. A control group consisted of 1 mL of DMSO and 199 mL of distilled water only. RESULTS: : The root extract of S. isoetifolium showed maximum larvicidal activity with minimum concentration of extract of LC50= 0.0 604 ± 0.0 040)µg/mL with lower confidence limit (LCL) - upper confidence limit (UCL) = (0.051-0.071) and LC90=0.0 972µg/mL followed by leaf extract of S. isoetifolium showed LC50= (0.062 ± 0.005)µg/mL. The regression equation of root and leaf extract of S. isoetifolium for 4th instar larvae were Y= 4.909 + 1.32x (R(2)= 0.909) and Y= 2.066 + 1.21x (R(2) =0.897) respectively. The results of the preliminary phytochemical constituents shows the presence of saponin, steroids, terpenoid, phenols, protein and sugars. CONCLUSIONS: From the present study the ethanolic extracts of seagrass of S. isoetifolium possesses lead compound for development of larvicidal activity.


Assuntos
Aedes/efeitos dos fármacos , Alismatales/química , Insetos Vetores , Inseticidas/farmacologia , Aedes/fisiologia , Animais , Feminino , Inseticidas/isolamento & purificação , Larva/efeitos dos fármacos , Larva/fisiologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA