Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mycoses ; 67(5): e13732, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712846

RESUMO

BACKGROUND: Triazole-resistant Aspergillus fumigatus (TRAF) isolates are a growing public health problem with worldwide distribution. Epidemiological data on TRAF is limited in Africa, particularly in West Africa. OBJECTIVES: This study aimed to screen for the environmental presence of TRAF isolates in the indoor air of two hospitals in Burkina Faso. MATERIALS AND METHODS: Air samples were collected in wards housing patients at risk for invasive aspergillosis, namely infectious diseases ward, internal medicine ward, nephrology ward, pulmonology ward, medical emergency ward and paediatric ward. Sabouraud Dextrose Agar supplemented with triazoles was used to screen the suspected TRAF isolates and EUCAST method to confirm the resistance of suspected isolates. Sequencing of cyp51A gene was used to identify the resistance mechanism of confirmed TRAF isolates. RESULTS: Of the 198 samples collected and analysed, 67 showed growth of A. fumigatus isolates. The prevalence of TRAF isolates was 3.23% (4/124). One TRAF isolate exhibited a pan-triazole resistance. Sequencing of cyp51A gene identified the TR34/L98H mutation for this pan-triazole resistant isolate. This study showed for the first time the circulation of the pan-azole resistant isolate harbouring the TR34/L98H mutation in Burkina Faso. CONCLUSIONS: These findings emphasise the need to map these TRAF isolates in all parts of Burkina Faso and to establish local and national continuous surveillance of environmental and clinical TRAF isolates in this country.


Assuntos
Antifúngicos , Aspergillus fumigatus , Sistema Enzimático do Citocromo P-450 , Farmacorresistência Fúngica , Proteínas Fúngicas , Mutação , Triazóis , Aspergillus fumigatus/genética , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/isolamento & purificação , Farmacorresistência Fúngica/genética , Triazóis/farmacologia , Humanos , Burkina Faso/epidemiologia , Proteínas Fúngicas/genética , Antifúngicos/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Testes de Sensibilidade Microbiana , Aspergilose/microbiologia , Aspergilose/epidemiologia , Microbiologia do Ar
2.
Med Mycol ; 61(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37580143

RESUMO

Aspergillus species is a widespread environmental mould that can cause aspergillosis. The purpose of this study was to investigate the antifungal susceptibility profile and genotypic characterization of clinical Aspergillus isolates from different provinces in Eastern China. The data included the antifungal susceptibility distributions with eight common antifungal drugs, cyp51A gene mutations of triazole-resistant Aspergillus fumigatus sensu stricto, and the genotypic relationships among the A. fumigatus sensu stricto isolates based on microsatellite typing. A. fumigatus sensu lato was the most common clinical Aspergillus species (n = 252), followed by A. flavus (n = 169), A. terreus (n = 37), A. niger (n = 29), and A. nidulans (n = 4). The modal minimum effective concentration values of micafungin and anidulafungin were lower than those of caspofungin for all Aspergillus species. The in vitro efficacy of isavuconazole was similar to that of voriconazole against most Aspergillus species. Sequencing revealed cyp51A gene mutations TR34/L98H, TR34/L98H/S297T/F495I, and TR46/Y121F/T289A in four triazole-resistant A. fumigatus sensu stricto. Phylogenetic analyses using microsatellite markers of A. fumigatus sensu stricto revealed that 211 unique genotypes clustered into two clades. The data demonstrate the diversity of clinically relevant Aspergillus species in Eastern China. Routine antifungal susceptibility testing should be performed to monitor the antifungal resistance and guide clinical therapy.


The 6-year multicenter study collected a total of 491 Aspergillus isolates from Eastern China to investigate the in vitro antifungal susceptibility to eight antifungal drugs, the cyp51A gene mutations of triazole-resistant A. fumigatus sensu stricto, and the genetic relatedness through microsatellite typing.


Assuntos
Antifúngicos , Infecções Fúngicas Invasivas , Animais , Antifúngicos/farmacologia , Aspergillus fumigatus , Filogenia , Proteínas Fúngicas/genética , Azóis/farmacologia , Farmacorresistência Fúngica/genética , Aspergillus , Triazóis/farmacologia , Genótipo , Infecções Fúngicas Invasivas/veterinária , Testes de Sensibilidade Microbiana/veterinária
3.
Mycoses ; 66(2): 98-105, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36196507

RESUMO

BACKGROUND: Invasive aspergillosis is one of the most common fungal infections and azole resistance in Aspergillus fumigatus (ARAf) is a growing medical concern in high-risk patients. To our knowledge, there is no comprehensive epidemiological surveillance study on the prevalence and incidence of ARAf isolates available in Iran. OBJECTIVES: The study aimed to report a five-year survey of triazole phenotypes and genotype patterns concerning the resistance in clinical and environmental A. fumigatus in Iran. METHODS: During the study time frame (2016-2021), a total of 1208 clinical and environmental Aspergillus species were collected. Isolates were examined and characterised by in vitro antifungal susceptibility testing (CLSI M38 broth microdilution) and cyp51A sequencing. RESULTS: In total, 485 Aspergillus section Fumigati strains were recovered (clinical, n = 23; 4.74% and environment, n = 462; 95.26%). Of which A. fumigatus isolates were the most prevalent species (n = 483; 99.59%). Amphotericin B and the echinocandins demonstrated good in vitro activity against the majority of isolates in comparison to triazole. Overall, 16.15% (n = 78) of isolates were phenotypically resistant to at least one of the azoles. However, 9.73% of A. fumigatus isolates for voriconazole were classified as resistant, 89.03% were susceptible, and 1.24% were intermediate. While, for itraconazole and posaconazole, using the epidemiological cut-off value 16.15% and 6.83% of isolates were non-wild types, respectively. Remarkably, in 21.79% (n = 17) phenotypically resistant isolates, no mutations were detected within the cyp51A gene. CONCLUSION: Although the incidence of ARAf varies from country to country, in Iran the rate has ranged from 3.3% to 18%, significantly increasing from 2013 to 2021. Strikingly, a quarter of the phenotypically resistant isolates harboured no mutations in the cyp51A gene. It seems that other mechanisms of resistance are importantly increasing. To fill a gap in our understanding of the mechanism for azole resistance in the non-cyp51A strains, we highly recommend further and more extensive monitoring of the soil with or without exposure to fungicides in agricultural and hospital areas.


Assuntos
Antifúngicos , Aspergillus fumigatus , Antifúngicos/farmacologia , Irã (Geográfico)/epidemiologia , Proteínas Fúngicas/genética , Farmacorresistência Fúngica/genética , Triazóis/farmacologia , Azóis/farmacologia , Aspergillus , Testes de Sensibilidade Microbiana
4.
Mycoses ; 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35796747

RESUMO

BACKGROUND: Azole resistance screening in A. fumigatus isolates can be routinely carried out by using azole-containing plates (E.Def 10.2 method), that requires filtering conidial suspensions prior inoculum adjustment. OBJECTIVES: We evaluated whether skipping the filtration step of conidial suspensions negatively influences the performance of the E.Def 10.2. Patients/Methods A. fumigatus sensu stricto isolates (n=92), classified as azole-susceptible or azole-resistant according to the EUCAST microdilution E.Def 9.4 method, were studied. Azole-resistant isolates had either wild type cyp51A gene sequence (n = 3) or the TR34 -L98H (n = 26), G54R (n = 5), TR46 -Y121F-T289A (n = 1), F46Y-M172V-N248T-D255E-E427K (n = 1), F165L (n=1), or G448S (n=1) cyp51A gene substitutions. In-house azole-containing agar plates were prepared according to the EUCAST E.Def 10.2 procedure. Conidial suspensions were obtained by adding distilled water (Tween 20 0.1%). Subsequently, the suspensions were either filtered or left unfiltered prior to inoculum adjustment to 0.5 McFarland. Using microdilution as the gold standard, agreement, sensitivity, and specificity of the agar plates inoculated with two inoculums were assessed. RESULTS: Agreements for the agar screening method with either unfiltered or filtered conidial suspensions were high for itraconazole (100%), voriconazole (100%), and posaconazole (97.8%). Sensitivity (100%) and specificity (98.2%) of the procedure to rule in or out resistance when unfiltered suspensions were used were also high. Isolates harbouring the TR34 -L98H, G54R, and TR46 -Y121F-T289A substitutions were detected with the modified method. CONCLUSIONS: Unfiltered conidial suspensions does not negatively influence the performance of the E.Def 10.2 method when screening for A. fumigatus sensu stricto.

5.
Med Mycol ; 58(1): 54-60, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31329931

RESUMO

Azole resistance among Aspergillus fumigatus isolates, which is mainly related to mutations in the cyp51A gene, is a concern because it is rising, worldwide disseminated, and associated with treatment failure and death. Data on azole resistance of aspergillus from Latin American countries is very scarce and do not exist for Peru. Two hundred and seven Aspergillus clinical isolates collected prospectively underwent mycology and molecular testing for specie identification, and 143 isolates were confirmed as A. fumigatus sensu stricto (AFSS). All AFSS were tested for in vitro azole susceptibility, and resistant isolates underwent PCR amplification and sequencing of the whole cyp51A gene and its promoter. The in vitro susceptibility showed a minimal inhibitory concentration (MIC) range, MIC50 and MIC90 of 0.125 to >16, 0.25, and 0.5 µg/ml for itraconazole; 0.25 to 2, 0.5, and 0.5 µg/ml for voriconazole; and 0.003 to 1, 0.06, and 0.125 µg/ml for posaconazole. Three isolates (2%) showed resistance to itraconazole and exhibited different mutations of the cyp51A gene. One isolate harbored the mutation M220K, while a second one exhibited the G54 mutation plus a modification in the cyp51A gene promoter. The third isolate, from an azole naive patient, presented an integration of a 34-bp tandem repeat (TR34) in the promoter region of the gene and a substitution of leucine 98 by histidine (L98H). The three source patients had a diagnosis or suspicion of chronic pulmonary aspergillosis.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Azóis/farmacologia , Farmacorresistência Fúngica Múltipla , Aspergilose Pulmonar/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Aspergillus fumigatus/genética , Criança , Pré-Escolar , Sistema Enzimático do Citocromo P-450/genética , Feminino , Proteínas Fúngicas/genética , Humanos , Lactente , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mutação , Peru , Estudos Prospectivos , Pesquisa Qualitativa , Adulto Jovem
6.
Mycopathologia ; 184(4): 479-492, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31309402

RESUMO

Aspergillus fumigatus is a globally distributed opportunistic fungal pathogen capable of causing highly lethal invasive aspergillosis in immunocompromised individuals. Recent studies have indicated that the global population consists of multiple, divergent genetic clusters that are geographically broadly distributed. However, most of the analyzed samples have come from continental Eurasia and the Americas where the effects of ancient versus recent factors are difficult to distinguish. Here, we investigated environmental A. fumigatus isolates from Auckland, New Zealand, a geographically isolated population, and compared them with those from other parts of the world to determine the relative roles of historical differentiation and recent gene flow in shaping A. fumigatus populations. Our data suggest that the Auckland A. fumigatus population contains both unique indigenous genetic elements as well as genetic elements that are similar to those from other regions such as Europe, Africa, and North America. Though the hypothesis of random recombination was rejected, we found abundant evidence for phylogenetic incompatibility and recombination within the Auckland A. fumigatus population. Additionally, susceptibility testing identified two triazole-resistant strains, one of which contained the globally distributed mutation TR34/L98H in the cyp51A gene. Our results suggest that contemporary gene flow, likely due to anthropogenic factors, is a major force shaping the New Zealand A. fumigatus population.


Assuntos
Aspergillus fumigatus/classificação , Aspergillus fumigatus/genética , Microbiologia Ambiental , Evolução Molecular , Fluxo Gênico , Variação Genética , Alelos , Aspergillus fumigatus/isolamento & purificação , Farmacorresistência Fúngica , Genes Fúngicos , Nova Zelândia , Recombinação Genética
7.
Emerg Infect Dis ; 24(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29261092

RESUMO

Infections caused by pan-azole-resistant Aspergillus fumigatus strains have emerged in Europe and recently in the United States. Physicians specializing in infectious diseases reported observing pan-azole-resistant infections and low rates of susceptibility testing, suggesting the need for wider-scale testing.


Assuntos
Aspergilose/tratamento farmacológico , Antifúngicos/uso terapêutico , Aspergilose/epidemiologia , Aspergillus fumigatus/efeitos dos fármacos , Azóis/uso terapêutico , Farmacorresistência Fúngica , Humanos , Infectologia/estatística & dados numéricos , Testes de Sensibilidade Microbiana , Estados Unidos/epidemiologia , Voriconazol/uso terapêutico
8.
Artigo em Inglês | MEDLINE | ID: mdl-28607016

RESUMO

Aspergillus niger and its related species, known as Aspergillus section Nigri, are ubiquitously distributed across the globe and are often isolated from clinical specimens. In Japan, Aspergillus section Nigri is second most often isolated from clinical specimens following Aspergillus fumigatus We determined the species of Aspergillus section Nigri isolated in Japan by DNA sequencing of partial ß-tubulin genes and investigated drug susceptibility by the CLSI M38-A2 method. The collection contained 20 Aspergillus niger, 59 Aspergillus welwitschiae, and 39 Aspergillus tubingensis strains. Drug susceptibility testing revealed 30 to 55% of A. niger, 6.8 to 18.6% of A. welwitschiae, and 79.5 to 89.7% of A. tubingensis isolates to be less susceptible (so-called resistant) to itraconazole (ITC) and/or voriconazole (VRC) according to the epidemiologic cutoff values (ECVs) proposed for A. niger previously. MIC distributions of ITC or VRC showed no remarkable differences between clinical and environmental isolates. When the cyp51A sequences were compared between susceptible and resistant strains, 18 amino acid mutations were specific for resistant isolates of A. niger and A. tubingensis; however, none of them were confirmed to be associated with azole resistance. Three nonrelated A. welwitschiae isolates possessed a partial deletion in cyp51A, likely attributable to being more susceptible to azoles than other isolates. One of five ITC-resistant A. tubingensis isolates showed higher expression of cyp51A than did susceptible strains. Our results show that cyp51A point mutations may have no association with azole resistance but that in some cases the overexpression of cyp51A may lead to the azole resistance in these species.


Assuntos
Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/genética , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica Múltipla/genética , Proteínas Fúngicas/genética , Anfotericina B/farmacologia , Aspergilose/microbiologia , Aspergillus niger/classificação , Aspergillus niger/isolamento & purificação , Equinocandinas/farmacologia , Humanos , Itraconazol/farmacologia , Japão , Lipopeptídeos/farmacologia , Micafungina , Testes de Sensibilidade Microbiana , Voriconazol/farmacologia
9.
Mycoses ; 58(12): 699-706, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26448519

RESUMO

An increasing number of reports have described the emergence of acquired resistance of Aspergillus fumigatus to azole compounds. The primary mechanism of resistance in clinical isolates is the mutation of the azole drug target enzyme, which is encoded by the cyp51A gene. The aim of this study was to evaluate the impact of silencing the cyp51A gene in azole-resistant A. fumigatus isolates. A 21-nucleotide small-interfering RNA (siRNA) was designed based on the cDNA sequence of the A. fumigatus cyp51A gene. After silencing the cyp51A gene in germinated conidia (15, 20, 25 and 50 nM), azole-resistant A. fumigatus was cultured on broth media and gene expression was analysed by measuring the cyp51A mRNA level using RT-PCR assay. Hyphae were successfully transfected by siRNA and expression of the cyp51A gene was significantly reduced by siRNA at the concentration of 50 nM (P ≤ 0.05). In addition, at this siRNA concentration, the minimum inhibitory concentration of itraconazole for the treated cells was decreased, compared with that for untreated control cells, from 16 to 4 µg/ml.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Azóis/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , DNA Complementar/genética , Hifas/efeitos dos fármacos , Hifas/genética , Itraconazol/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Transfecção
10.
Med Mycol ; 52(3): 311-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24577012

RESUMO

The impact of different mutations in the Aspergillus fumigatus ergosterol biosynthesis pathway on pathogenesis has been evaluated using a simple invertebrate mini host, the caterpillar Galleria mellonella. A set of strains that includes clinical isolates and isogenic mutants with mutations at the cyp51A gene conferring azole resistance were studied. All strains demonstrated a similar in vitro growth pattern and are equally virulent against the insect larvae. These results suggest that in A. fumigatus acquisition of this particular azole-resistance mechanism would not imply any significant change in virulence. G. mellonella may provide a convenient and inexpensive model for the in vivo prescreening of mutants of A. fumigatus, contributing to the generation of a hypotheses that can be further tested in refined experiments in mammalian models.


Assuntos
Antifúngicos/farmacologia , Aspergilose/microbiologia , Aspergillus fumigatus/patogenicidade , Azóis/farmacologia , Modelos Animais de Doenças , Farmacorresistência Fúngica , Lepidópteros , Animais , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/crescimento & desenvolvimento , Sistema Enzimático do Citocromo P-450/genética , Proteínas Fúngicas/genética , Humanos , Larva , Virulência
11.
J Fungi (Basel) ; 9(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37504710

RESUMO

The Antifungal Susceptibility Testing method of the European Committee on Antimicrobial Susceptibility Testing (EUCAST-AFST) is a reference technique for the determination of the Minimum Inhibitory Concentration (MIC) of antifungals for Aspergillus fumigatus. However, it is time-consuming and requires expertise. Micronaut-AM (M-AM) is a fast, simple, time-saving, and ready-to-use new colorimetric method using an indicator (resazurin) to facilitate the visual reading. The aim of this retrospective study was to evaluate the performance of the M-AM system and compare it with the EUCAST broth microdilution reference method to determine the susceptibility of 77 A. fumigatus clinical strains to amphotericin B, itraconazole, voriconazole, and posaconazole. Overall, the essential agreements within ±2 dilutions were 100%, 62%, 58%, and 30% and the categorical agreements were 100%, 97%, 91%, and 87% for amphotericin B, itraconazole, voriconazole, and posaconazole, respectively. No categorical discrepancy was found for amphotericin B, but several categorical discordances were observed with azole antifungals. However, only 2 of the 16 azole-resistant strains confirmed by the cyp51A sequencing would have been misclassified by M-AM. The use of M-AM is probably suitable for the determination of the MICs of amphotericin B, but further evaluations are needed to confirm its usefulness for the determination of the MICs of azoles for A. fumigatus.

12.
Open Forum Infect Dis ; 9(2): ofab638, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35111868

RESUMO

Among 400 Aspergillus species from respiratory samples in Switzerland, Aspergillus fumigatus was the most frequent species. Non-fumigatus Aspergillus spp were more prevalent among solid organ transplant recipients and after azole exposure. Azole resistance was detected in 4 A fumigatus isolates, 3 of them with the "environmental" mutation TR34/L98H in the cyp51A gene.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33668719

RESUMO

Azole-resistant Aspergillus fumigatus (ARAF) strains have been reported on all continents, however, limited data exist on these strains in Africa, while several factors, mainly environmental ones, suggest their presence on this continent. This study aimed to assess the environmental prevalence of ARAF strains in Burkina Faso, a country situated in the West African region where data on ARAF is non-existent. In total, 120 environmental samples (soil) were collected and analyzed. Samples were screened for resistance using three azole-containing agar plates; one without azole antifungal (growth control) and two supplemented with either itraconazole (4 mg/L) or voriconazole (2 mg/L). The EUCAST susceptibility testing method was used to confirm the azole-resistant phenotype of A. fumigatus sensu-stricto isolates. Mutations in the cyp51A gene were determined by sequencing. Of the 120 samples, 51 positive samples showed growth of A. fumigatus isolates on control medium. One ARAF (2%; 1/51) isolate was found amongst A. fumigatus positive samples and harbored the F46Y/M172V/E427K cyp51A mutations. No TR34/L98H or TR46/Y121F/T289A mutations were observed. Our study described the first A. fumigatus isolate resistant to an azole antifungal in Burkina Faso.


Assuntos
Aspergillus fumigatus , Azóis , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus fumigatus/genética , Azóis/farmacologia , Burkina Faso , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Testes de Sensibilidade Microbiana
14.
J Fungi (Basel) ; 7(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946598

RESUMO

The emergence of azole resistant Aspergillus spp., especially Aspergillus fumigatus, has been described in several countries around the world with varying prevalence depending on the country. To our knowledge, azole resistance in Aspergillus spp. has not been reported in the West Indies yet. In this study, we investigated the antifungal susceptibility of clinical and environmental isolates of Aspergillus spp. from Martinique, and the potential resistance mechanisms associated with mutations in cyp51A gene. Overall, 208 Aspergillus isolates were recovered from clinical samples (n = 45) and environmental soil samples (n = 163). They were screened for resistance to azole drugs using selective culture media. The Minimum Inhibitory Concentrations (MIC) towards voriconazole, itraconazole, posaconazole and isavuconazole, as shown by the resistant isolates, were determined using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) microdilution broth method. Eight isolates (A. fumigatus, n = 6 and A. terreus, n = 2) had high MIC for at least one azole drug. The sequencing of cyp51A gene revealed the mutations G54R and TR34/L98H in two A. fumigatus clinical isolates. Our study showed for the first time the presence of azole resistance in A. fumigatus and A. terreus isolates in the French West Indies.

15.
Microorganisms ; 9(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379247

RESUMO

INTRODUCTION: The frequency in detection of azole-resistant Aspergillus fumigatus isolates has increased since 2010. In Portugal, the section Fumigati is one of the most frequent, and resistant strains to have been found in clinical and environmental contexts. Although several cryptic species within the Fumigati section show intrinsic resistance to azoles, one factor driving (acquired) resistance is selective pressure deriving from the extensive use of azoles. This is particularly problematic in occupational environments where high fungal loads are expected, and where there is an increased risk of human exposure and infection, with impact on treatment success and disease outcome. The mechanisms of resistance are diverse, but mainly associated with mutations in the cyp51A gene. Despite TR34/L98H being the most frequent mutation described, it has only been detected in clinical specimens in Portugal. METHODS: We analyzed 99 A. fumigatus isolates from indoor environments (healthcare facilities, spas, one dairy and one waste sorting unit) collected from January 2018 to February 2019 in different regions of Portugal. Isolates were screened for resistance to itraconazole, voriconazole and posaconazole by culture, and resistance was confirmed by broth microdilution. Sequencing of the cyp51A gene and its promoter was performed to detect mutations associated with resistance. RESULTS: Overall, 8.1% of isolates were able to grow in the presence of at least one azole, and 3% (isolated from the air in a dairy and from filtering respiratory protective devices in a waste sorting industry) were pan-azole-resistant, bearing the TR34/L98H mutation. CONCLUSION: For the first time in Portugal, we report environmental isolates bearing the TR34/L98H mutation, isolated from occupational environments. Environmental surveillance of the emergence of azole-resistant A. fumigatus sensu stricto strains is needed, to ensure proper and timely implementation of control policies that may have a positive impact on public and occupational health.

16.
Curr Fungal Infect Rep ; 13(3): 129-136, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31552129

RESUMO

PURPOSE OF REVIEW: The incidence of invasive aspergillosis has increased substantially over the past few decades, accompanied by a change in susceptibility patterns of Aspergillus fumigatus with increasing resistance observed against triazole antifungals, including voriconazole and isavuconazole, the most commonly used antifungal agents for the disease. Culture-based methods for determining triazole resistance are still the gold standard but are time consuming and lack sensitivity. We sought to provide an update on non-culture-based methods for detecting resistance patterns to Aspergillus. RECENT FINDINGS: New molecular-based approaches for detecting triazole resistance to Aspergillus, real-time polymerase chain reaction (PCR) to detect mutations to the Cyp51A protein, have been developed which are able to detect most triazole-resistant A. fumigatus strains in patients with invasive aspergillosis. SUMMARY: Over the last few years, a number of non-culture-based methods for molecular detection of Aspergillus triazole resistance have been developed that may overcome some of the limitations of culture. These molecular methods are therefore of high epidemiological and clinical relevance, mainly in immunocompromised patients with hematological malignancies, where culture has particularly limited sensitivity. These assays are now able to detect most triazole-resistant Aspergillus fumigatus strains. Given that resistance rates vary, clinical utility for these assays still depends on regional resistance patterns.

17.
Curr Med Mycol ; 5(3): 36-42, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31850395

RESUMO

BACKGROUND AND PURPOSE: Aspergillus fumigatus is one of the most common opportunistic fungus, which causes infection in immunocompromised and neutropenic patients. The current guidelines recommend voriconazole as the initial therapeutic and prophylactic agent for almost all cases, especially in patients with organ transplants, which leads to increased medication resistance in A. fumigatus. The aim of the present study was to evaluate the antifungal activity and effect of kombucha as a natural compound on A. fumigatus growth, as well as on the expression of cgrA and cyp51A genes. MATERIALS AND METHODS: A panel of 15 A. fumigatus strains with two quality controls of CM237 and CM2627 as susceptible and resistant strains were obtained from Tehran Medical Mycology Laboratory, Tehran,Iran(TMML).Antifungal susceptibility testing assay was performed according to the Clinical and Laboratory Standards Institute (CLSI) M38-A2 document. Moreover, the mycelial dry weight of the fungus was calculated before and after being treated with kombucha. In addition, the quantitative changes in the expression of cgrA and cyp51A genes were analyzed by real-time polymerase chain reaction (real-time PCR) technique. RESULTS: In the present study, the minimum inhibitory concentration ranges of kombucha were measured at 6,170 and 12,300 µg/mL for ten A. fumigatus azole-susceptible strains and 24,700 µg/mL for five A. fumigatus resistant strains. Moreover, changes in mycelial dry weight under kombucha treatment conditions underwent a significant reduction (P≤0.05). A coordinate down-regulation of expression in cgrA and cyp51A genes was observed in all azole-susceptible and -resistant A. fumigatus strains, after treating the fungus with different concentrations of kombucha (P≤0.05). CONCLUSION: According to the obtained results, kombucha as a natural antioxidant , can exert inhibitory effects against the growth and expression of some genes in A. fumigatusstrains.

18.
Front Microbiol ; 9: 1656, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083151

RESUMO

Aspergillus spp. are agents of a broad-spectrum of diseases among humans. Their growing resistance to azoles, the cornerstone in the management of human aspergillosis, is a worrisome problem around the world. Considering lack of data from Portugal on this topic, particularly from the northern region, a retrospective surveillance study was planned to assess frequency of cryptic Aspergillus species and azoles resistance. A total of 227 clinical isolates, mainly from the respiratory tract (92.1%), collected from three hospitals serving a population of about three million people, were studied for their epidemiology and antifungal susceptibility patterns determined by the E.DEF.9.3 protocol of EUCAST. Employing molecular methods, seven Aspergillus complexes were identified; Aspergillus fumigatus sensu stricto was the most frequent isolate (86.7%). A 7.5% prevalence of cryptic species was found; A. welwitschiae (A. niger complex-3.1%) and A. lentulus (A. fumigatus complex-2.2%) were the most frequent. Amongst cryptic species, it was found a percentage of resistance to voriconazole, posaconazole and isavuconazole of 47.1, 82.4, and 100%, respectively. Five A. fumigatus sensu stricto showed pan-azole resistance. Sequencing their cyp51A gene revealed the presence of one isolate with TR46/Y121F/T289A mutation and two isolates with TR34/L98H mutation. This study emphasizes the need to identify strains to the species level and to evaluate their antifungal susceptibility in all human originated Aspergillus spp. isolates, particularly those from invasive aspergillosis.

19.
Open Access Maced J Med Sci ; 6(5): 747-750, 2018 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-29875840

RESUMO

AIM: The main goal of the present study was to find azole-resistant and molecular analysis of cyp51A gene in Aspergillus fumigatus. MATERIALS AND METHODS: Fifty-eight A. fumigatus strains including environmental, clinical and reference isolates were assessed in this investigation. Azole susceptibility testing for itraconazole and voriconazole was carried out for A. fumigatus isolates. PCR was performed based on cyp51A gene sequence for all isolates. RESULTS: Susceptibility testing verified the minimum inhibitory concentrations (MICs) for itraconazole (0.125 to 2 µg/ml) and voriconazole (0.125 to 4 µg/ml). Nine (15.5%) A. fumigatus isolates were resistant to voriconazole with MIC 4 µg/ml. A 1500 bp DNA fragment was amplified using cyp51A gene for all tested Aspergillus isolates. The sequences of the fragments showed 99% identity with A. fumigatus cyp51A gene in the GenBank. No point mutation was found at cyp51A gene codons. CONCLUSION: In the current study, we detected the voriconazile resistant in A. fumigatus isolates. Susceptibility tests should be considered in patients who infected by A. fumigatus.

20.
Adv Pharm Bull ; 7(1): 53-59, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28507937

RESUMO

Purpose: Introducing the effect of RNAi in fungi to downregulate essential genes has made it a powerful tool to investigate gene function, with potential strategies for novel disease treatments. Thus, this study is an endeavor to delve into the silencing potentials of siRNA on cyp51A and MDR1 in voriconazole-resistant Aspergillus flavus as the target genes. Methods: In this study, we designed three cyp51A-specific siRNAs and three MDR1-specific siRNAs and after the co-transfection of siRNA into Aspergillus flavus, using lipofectamine, we investigated the effect of different siRNA concentrations (5, 15, 25, 50nM) on cyp51A and MDR1 expressions by qRT-PCR. Finally, the Minimum Inhibitory Concentrations (MICs) of voriconazole for isolates were determined by broth dilution method. Results: Cyp51A siRNA induced 9, 22, 33, 40-fold reductions in cyp51A mRNA expres-sion in a voriconazole-resistant strain following the treatment of the cells with concentrations of 5, 15, 25, 50nM siRNA, respectively. Identically, the same procedure was applied to MDR1, even though it induced 2, 3, 4, 10-fold reductions. The results demonstrated a MIC for voriconazole in the untreated group (4µg per ml), when compared to the group treated with cyp51A-specific siRNA and MDR1-specific siRNA, both at concentrations of 25 and 50nM, yielding 2µg per ml and 1µg per ml when 25 nM was applied and 2µg per ml and 0.5µg per ml when the concentration doubled to 50 nM. Conclusion: In this study, we suggested that siRNA-mediated specific inhibition of cyp51A and MDR1 genes play roles in voriconazole-resistant A.flavus strain and these could be apt target genes for inactivation. The current study promises a bright prospect for the treatment of invasive aspergillosis through the effective deployment of RNAi and gene therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA