RESUMO
Herpesviruses modulate immune control to secure lifelong infection. The mechanisms Human Cytomegalovirus (HCMV) employs in this regard can reveal unanticipated aspects of cellular signaling involved in antiviral immunity. Here, we describe a novel relationship between the TGF-ß family cytokine BMP9 and HCMV infection. We identify a cross-talk between BMP9-induced and IFN receptor-mediated signaling, showing that BMP9 boosts the transcriptional response to and antiviral activity of IFNß, thereby enhancing viral restriction. We also show that BMP9 is secreted by human fibroblasts upon HCMV infection. However, HCMV infection impairs BMP9-induced enhancement of the IFNß response, indicating that this signaling role of BMP9 is actively targeted by HCMV. Indeed, transmembrane proteins US18 and US20, which downregulate type I BMP receptors, are necessary and sufficient to cause inhibition of BMP9-mediated boosting of the antiviral response to IFNß. HCMV lacking US18 and US20 is more sensitive to IFNß. Thus, HCMV has a mutually antagonistic relationship with BMP9, which extends the growing body of evidence that BMP signaling is an underappreciated modulator of innate immunity in response to viral infection.
Assuntos
Fator 2 de Diferenciação de Crescimento , Imunidade Inata , Humanos , Citocinas/metabolismo , Citomegalovirus/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Transdução de SinaisRESUMO
The herpesviral nuclear egress represents an essential step of viral replication efficiency in host cells, as it defines the nucleocytoplasmic release of viral capsids. Due to the size limitation of the nuclear pores, viral nuclear capsids are unable to traverse the nuclear envelope without a destabilization of this natural host-specific barrier. To this end, herpesviruses evolved the regulatory nuclear egress complex (NEC), composed of a heterodimer unit of two conserved viral NEC proteins (core NEC) and a large-size extension of this complex including various viral and cellular NEC-associated proteins (multicomponent NEC). Notably, the NEC harbors the pronounced ability to oligomerize (core NEC hexamers and lattices), to multimerize into higher-order complexes, and, ultimately, to closely interact with the migrating nuclear capsids. Moreover, most, if not all, of these NEC proteins comprise regulatory modifications by phosphorylation, so that the responsible kinases, and additional enzymatic activities, are part of the multicomponent NEC. This sophisticated basis of NEC-specific structural and functional interactions offers a variety of different modes of antiviral interference by pharmacological or nonconventional inhibitors. Since the multifaceted combination of NEC activities represents a highly conserved key regulatory stage of herpesviral replication, it may provide a unique opportunity towards a broad, pan-antiherpesviral mechanism of drug targeting. This review presents an update on chances, challenges, and current achievements in the development of NEC-directed antiherpesviral strategies.
Assuntos
Citomegalovirus , Herpesviridae , Citomegalovirus/metabolismo , Membrana Nuclear/metabolismo , Proteínas Virais/metabolismo , Herpesviridae/metabolismo , Fosforilação , Simplexvirus/metabolismo , Núcleo Celular/metabolismoRESUMO
Herpesviruses are one of the most contagious DNA viruses that threaten human health, causing severe diseases, including, but not limited to, certain types of cancer and neurological complications. The overuse and misuse of anti-herpesvirus drugs are key factors leading to drug resistance. Therefore, targeting human herpesviruses with natural products is an attractive form of therapy, as it might improve treatment efficacy in therapy-resistant herpesviruses. Plant polyphenols are major players in the health arena as they possess diverse bioactivities. Hence, in this article, we comprehensively summarize the recent advances that have been attained in employing plant non-flavonoid polyphenols, such as phenolic acids, tannins and their derivatives, stilbenes and their derivatives, lignans, neolignans, xanthones, anthraquinones and their derivatives, curcuminoids, coumarins, furanocoumarins, and other polyphenols (phloroglucinol) as promising anti-herpesvirus drugs against various types of herpesvirus such as alpha-herpesviruses (herpes simplex virus type 1 and 2 and varicella-zoster virus), beta-herpesviruses (human cytomegalovirus), and gamma-herpesviruses (Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus). The molecular mechanisms of non-flavonoid polyphenols against the reviewed herpesviruses are also documented.
Assuntos
Infecções por Vírus Epstein-Barr , Infecções por Herpesviridae , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Herpesviridae/tratamento farmacológico , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Herpesvirus Humano 4 , Herpesvirus Humano 3RESUMO
The problem of designing new antiviral drugs against Human Cytomegalovirus (HCMV) was addressed using the Online Chemical Modeling Environment (OCHEM). Data on compound antiviral activity to human organisms were collected from the literature and uploaded in the OCHEM database. The predictive ability of the regression models was tested through cross-validation, giving coefficient of determination q2 = 0.71-0.76. The validation of the models using an external test set proved that the models can be used to predict the activity of newly designed compounds with reasonable accuracy within the applicability domain (q2 = 0.70-0.74). The models were applied to screen a virtual chemical library of imidazole derivatives, which was designed to have antiviral activity. The six most promising compounds were identified, synthesized and their antiviral activities against HCMV were evaluated in vitro. However, only two of them showed some activity against the HCMV AD169 strain.
Assuntos
Citomegalovirus , Relação Quantitativa Estrutura-Atividade , Antibacterianos/química , Antivirais/farmacologia , Humanos , Imidazóis/química , Imidazóis/farmacologia , Aprendizado de MáquinaRESUMO
Herpesviruses can rewire cellular signaling in host cells by expressing viral G protein-coupled receptors (GPCRs). These viral receptors exhibit homology to human chemokine receptors, but some display constitutive activity and promiscuous G protein coupling. Human cytomegalovirus (HCMV) has been detected in multiple cancers, including glioblastoma, and its genome encodes four GPCRs. One of these receptors, US28, is expressed in glioblastoma and possesses constitutive activity and oncomodulatory properties. UL33, another HCMV-encoded GPCR, also displays constitutive signaling via Gαq, Gαi, and Gαs proteins. However, little is known about the nature and functional effects of UL33-driven signaling. Here, we assessed UL33's signaling repertoire and oncomodulatory potential. UL33 activated multiple proliferative, angiogenic, and inflammatory signaling pathways in HEK293T and U251 glioblastoma cells. Notably, upon infection, UL33 contributed to HCMV-mediated STAT3 activation. Moreover, UL33 increased spheroid growth in vitro and accelerated tumor growth in different in vivo tumor models, including an orthotopic glioblastoma xenograft model. UL33-mediated signaling was similar to that stimulated by US28; however, UL33-induced tumor growth was delayed. Additionally, the spatiotemporal expression of the two receptors only partially overlapped in HCMV-infected glioblastoma cells. In conclusion, our results unveil that UL33 has broad signaling capacity and provide mechanistic insight into its functional effects. UL33, like US28, exhibits oncomodulatory properties, elicited via constitutive activation of multiple signaling pathways. UL33 and US28 might contribute to HCMV's oncomodulatory effects through complementing and converging cellular signaling, and hence UL33 may represent a promising drug target in HCMV-associated malignancies.
Assuntos
Receptores de Quimiocinas/metabolismo , Proteínas Virais/metabolismo , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Citomegalovirus/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Glioblastoma/patologia , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Receptores de Quimiocinas/genética , Receptores Virais/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs about 22 nucleotides in length, which play an important role in gene regulation of both eukaryotes and viruses. They can promote RNA cleavage and repress translation via base-pairing with complementary sequences within mRNA molecules. MAIN BODY: Human cytomegalovirus (HCMV) encodes a large number of miRNAs that regulate transcriptions of both host cells and themselves to favor viral infection and inhibit the host's immune response. To date, ~ 26 mature HCMV miRNAs have been identified. Nevertheless, their roles in viral infection are ambiguous, and the mechanisms have not been fully revealed. Therefore, we discuss the methods used in HCMV miRNA research and summarize the important roles of HCMV miRNAs and their potential mechanisms in infection. CONCLUSIONS: To study the miRNAs encoded by viruses and their roles in viral replication, expression, and infection will not only contribute to the planning of effective antiviral therapies, but also provide new molecular targets for the development of antiviral drugs.
Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/genética , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , Linhagem Celular , Citomegalovirus/fisiologia , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , RNA Viral/genética , Replicação Viral/genéticaRESUMO
Understanding how the T cell memory response directed towards human cytomegalovirus (HCMV) develops and changes over time while the virus persists is important. Whilst HCMV primary infection and periodic reactivation is well controlled by T cell responses in healthy people, when the immune system is compromised such as post-transplantation, during pregnancy, or underdeveloped such as in new-born infants and children, CMV disease can be a significant problem. In older people, HCMV infection is associated with increased risk of mortality and despite overt disease rarely being seen there are increases in HCMV-DNA in urine of older people suggesting that there is a change in the efficacy of the T cell response following lifelong infection. Therefore, understanding whether phenomenon such as "memory inflation" of the immune response is occurring in humans and if this is detrimental to the overall health of individuals would enable the development of appropriate treatment strategies for the future. In this review, we present the evidence available from human studies regarding the development and maintenance of memory CD8 + and CD4 + T cell responses to HCMV. We conclude that there is only limited evidence supportive of "memory inflation" occurring in humans and that future studies need to investigate immune cells from a broad range of human tissue sites to fully understand the nature of HCMV T cell memory responses to lytic and latent infection.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Imunidade Celular , Ativação Viral , Latência Viral , Citomegalovirus/crescimento & desenvolvimento , Infecções por Citomegalovirus/virologia , Humanos , Memória ImunológicaRESUMO
Human cytomegalovirus (HCMV) is a beta herpesvirus which large amount of people in world has interacted with. Recent studies indicated that CMV DNA is associated with several cancer types including "Glioblastoma (GBM)" which is the most common and aggressive type of primary brain cancer. In clinical studies it was shown that several antiviral medicines prolonged life span of glioblastoma patients. One of them is Acyclovir (ACV) which is a type of nucleoside analog, used to cure viral infections and might be a potential treatment supplement for Glioblastoma. In this study we aimed to investigate if ACV had cytotoxic effect on glioblastoma cell line U87 MG and also the effect of ACV on healthy cells. Furthermore it was aimed to search the effect of Rosmarinus Officinalis also known as rosemary which is an aromatic, perennial plant concurrent with ACV on glioblastoma and healthy cells.
Assuntos
Aciclovir/uso terapêutico , Glioblastoma/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Rosmarinus/química , Aciclovir/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Extratos Vegetais/farmacologia , Survivina/genética , Survivina/metabolismo , Células Tumorais CultivadasRESUMO
Congenital human cytomegalovirus (HCMV) infection and HCMV infection of immunosuppressed patients cause significant morbidity and mortality, and vaccine development against HCMV is a major public health priority. HCMV envelope glycoproteins gB, gH, and gL, which constitute the core fusion machinery, play critical roles in HCMV fusion and entry into host cells. HCMV gB and gH/gL have been reported to elicit potent neutralizing antibodies. Recently, the gB/gH/gL complex was identified in the envelope of HCMV virions, and 16-50% of the total gH/gL bound to gB, forming the gB/gH/gL complex. These findings make the gB/gH/gL a unique HCMV vaccine candidate. We previously reported the production of HCMV trimeric gB and gH/gL heterodimers, and immunization with a combination of trimeric gB and gH/gL heterodimers elicited strong synergistic HCMV-neutralizing activity. To further improve the immunogenicity of gH/gL, we produced trimeric gH/gL. Rabbits immunized with HCMV trimeric gH/gL induced up to 38-fold higher serum titers of gH/gL-specific IgG relative to HCMV monomeric gH/gL, and elicited ~10-fold higher titers of complement-dependent and complement-independent HCMV-neutralizing activity for both epithelial cells and fibroblasts. HCMV trimeric gH/gL in combination with HCMV trimeric gB would be a novel promising HCMV vaccine candidate that could induce highly potent neutralizing activities.
Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra Citomegalovirus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Coelhos , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genéticaRESUMO
Human cytomegalovirus (HCMV) infection and periodic reactivation are generally well controlled by the HCMV-specific T cell response in healthy people. While the CD8+ T cell response to HCMV has been extensively studied, the HCMV-specific CD4+ T cell effector response is not as well understood, especially in the context of direct interactions with HCMV-infected cells. We screened the gamma interferon (IFN-γ) and interleukin-10 (IL-10) responses to 6 HCMV peptide pools (pp65, pp71, IE1, IE2, gB, and US3, selected because they were the peptides most frequently responded to in our previous studies) in 84 donors aged 23 to 74 years. The HCMV-specific CD4+ T cell response to pp65, IE1, IE2, and gB was predominantly Th1 biased, with neither the loss nor the accumulation of these responses occurring with increasing age. A larger proportion of donors produced an IL-10 response to pp71 and US3, but the IFN-γ response was still dominant. CD4+ T cells specific to the HCMV proteins studied were predominantly effector memory cells and produced both cytotoxic (CD107a expression) and cytokine (macrophage inflammatory protein 1ß secretion) effector responses. Importantly, when we measured the CD4+ T cell response to cytomegalovirus (CMV)-infected dendritic cells in vitro, we observed that the CD4+ T cells produced a range of cytotoxic and secretory effector functions, despite the presence of CMV-encoded immune evasion molecules. CD4+ T cell responses to HCMV-infected dendritic cells were sufficient to control the dissemination of virus in an in vitro assay. Together, the results show that HCMV-specific CD4+ T cell responses, even those from elderly individuals, are highly functional and are directly antiviral.IMPORTANCE Human cytomegalovirus (HCMV) infection is carried for a lifetime and in healthy people is kept under control by the immune system. HCMV has evolved many mechanisms to evade the immune response, possibly explaining why the virus is never eliminated during the host's lifetime. The dysfunction of immune cells associated with the long-term carriage of HCMV has been linked with poor responses to new pathogens and vaccines when people are older. In this study, we investigated the response of a subset of immune cells (CD4+ T cells) to HCMV proteins in healthy donors of all ages, and we demonstrate that the functionality of CD4+ T cells is maintained. We also show that CD4+ T cells produce effector functions in response to HCMV-infected cells and can prevent virus spread. Our work demonstrates that these HCMV-specific immune cells retain many important functions and help to prevent deleterious HCMV disease in healthy older people.
Assuntos
Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Células Dendríticas/imunologia , Adulto , Idoso , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-10/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
The worldwide infection rate of herpesvirus is high, but the detailed prevalence in China, especially the central area, remains unclear. In the present study, the prevalence of herpes simplex virus (HSV), Epstein-Barr virus (EBV), and human cytomegalovirus (HCMV) was investigated in 303 healthy adults in Wuhan, a representative city in Central China. Viral-specific IgG and IgM titers were examined in the serum by chemiluminescent immunoassay, and the existence of viral genomic DNA in blood cells was determined by nested PCR. The overall IgG seroprevalences were 81.5%, 95.4%, and 93.7% for HSV, EBV, and HCMV, while the corresponding IgM seroprevalences were only 6.3%, 2.3%, and 0. The viral genomic DNA of HSV, EBV, and HCMV was identified in the blood samples of 5.9%, 14.2%, and 22.8% of the tested donors, respectively. Significantly, less HSV IgM-positive samples were found in the population over 20 years old than below 20 group; female displayed higher chances for HSV IgG and genome positivity; and occupations such as waiters and medical staffs were shown to be with higher risk for HCMV genome positivity. This study provided useful reference data for the HSV, EBV, and HCMV prevalence in central China, and suggested the potential importance of detecting viral genome to complement serum test data.
Assuntos
Anticorpos Antivirais/sangue , Citomegalovirus/isolamento & purificação , DNA Viral/sangue , Genoma Viral , Herpesvirus Humano 4/isolamento & purificação , Simplexvirus/isolamento & purificação , Adulto , China/epidemiologia , Infecções por Citomegalovirus/epidemiologia , Infecções por Vírus Epstein-Barr/epidemiologia , Feminino , Voluntários Saudáveis , Herpes Simples/epidemiologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Reação em Cadeia da Polimerase , Prevalência , Estudos Soroepidemiológicos , Adulto JovemRESUMO
Immune correlates of protection against human cytomegalovirus (HCMV) infection are still debated. This study aimed to investigate which arm of the immune response plays a major role in protection against HCMV infection in kidney transplant recipients (n = 40) and heart transplant recipients (n = 12). Overall, patients were divided into 2 groups: one including 37 patients with low viral load (LVL), and the other including 15 patients with high viral load (HVL). All LVL patients resolved the infection spontaneously, whereas HVL patients were all treated with one or more courses of antivirals. In HVL patients, viral DNAemia, which was more than 100 times higher than LVL, appeared and peaked at significantly earlier times, but disappeared much later than in LVL patients. During a 1-year follow-up, all LVL patients had levels of HCMV-specific CD4+ (and CD8+ ) T cells significantly higher than HVL patients. On the contrary, titers of neutralizing antibodies and enzyme-linked immunosorbent assay-IgG antibodies to gB, gHgLgO, and pentamer gHgLpUL128L were overlapping in the 2 patient groups. In conclusion, while a valid HCMV-specific T-cell response was detected in more than 90% of LVL patients, >90% of HVL patients lacked an adequate T-cell response. Antibody responses did not appear to be associated directly or indirectly with protection.
Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Transplante de Coração/efeitos adversos , Humanos , Imunoglobulina G/sangue , Itália , Transplante de Rim/efeitos adversos , Pessoa de Meia-Idade , Transplantados , Carga Viral , Adulto JovemRESUMO
The germline encoded proteins serving as "pattern recognition receptors" (PRRs) constitute the earliest step in the innate immune response by recognizing the "pathogen-associated molecular patterns" (PAMPs) that comprise microbe nucleic acids and proteins usually absent from healthy hosts. Upon detection of exogenous nucleic acid two different innate immunity signaling cascades are activated. The first culminates in the production of chemokines, cytokines, and type I interferons (IFN-I), while the second leads to inflammasome complex formation. Human cytomegalovirus (HCMV), a member of the b-herpesvirus subfamily, is a widespread pathogen that infects the vast majority of the world's population. The virion has an icosahedral capsid that contains a linear dsDNA genome of approximately 240 kb, surrounded by an outer lipid envelope and a proteinaceous tegument containing several viral proteins. Despite the numerous and multifaceted antiviral effects of IFNs and cytokines, HCMV is able to invade, multiply, and establish persistent infection in healthy human hosts. To achieve this goal the virus has developed different strategies to block the IFN-I response and to alter the physiological outcomes of the IFN-inducible genes. This article focuses on HCMV tegument pp65 by reviewing its mechanisms of action in favoring virus evasion from the host innate immune response.
Assuntos
Citomegalovirus/fisiologia , Evasão da Resposta Imune/fisiologia , Imunidade Inata/fisiologia , Fosfoproteínas/metabolismo , Proteínas da Matriz Viral/metabolismo , Citomegalovirus/genética , Regulação Viral da Expressão Gênica , Humanos , Fosfoproteínas/genética , Proteínas da Matriz Viral/genéticaRESUMO
Background: Advances in next-generation sequencing (NGS) technologies allow comprehensive studies of genetic diversity over the entire genome of human cytomegalovirus (HCMV), a significant pathogen for immunocompromised individuals. Methods: Next-generation sequencing was performed on target enriched sequence libraries prepared directly from a variety of clinical specimens (blood, urine, breast milk, respiratory samples, biopsies, and vitreous humor) obtained longitudinally or from different anatomical compartments from 20 HCMV-infected patients (renal transplant recipients, stem cell transplant recipients, and congenitally infected children). Results: De novo-assembled HCMV genome sequences were obtained for 57 of 68 sequenced samples. Analysis of longitudinal or compartmental HCMV diversity revealed various patterns: no major differences were detected among longitudinal, intraindividual blood samples from 9 of 15 patients and in most of the patients with compartmental samples, whereas a switch of the major HCMV population was observed in 6 individuals with sequential blood samples and upon compartmental analysis of 1 patient with HCMV retinitis. Variant analysis revealed additional aspects of minor virus population dynamics and antiviral-resistance mutations. Conclusions: In immunosuppressed patients, HCMV can remain relatively stable or undergo drastic genomic changes that are suggestive of the emergence of minor resident strains or de novo infection.
Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/genética , Genoma Viral/genética , Hospedeiro Imunocomprometido , Adulto , Idoso , Estudos de Coortes , Citomegalovirus/classificação , Infecções por Citomegalovirus/imunologia , DNA Viral/análise , DNA Viral/genética , Farmacorresistência Viral/genética , Feminino , Variação Genética/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , TransplantadosRESUMO
The role of human cytomegalovirus (HCMV)-specific T-cell responses in breast milk of HCMV-seropositive mothers is not well defined. In these studies, we demonstrate that the frequency of cytomegalovirus (CMV)-pp65-specific T-cell responses in peripheral blood mononuclear cells (PBMCs) and breast milk cells (BMCs) is increased for CD8+ T cells in both sample sources when compared with CD4+ T cells. The frequency of pp55-specific CD8 T cells producing interferon γ (IFN-γ) alone or dual IFN-γ/granzyme rB producers is increased in breast milk compared with PBMCs. Lastly, we observed a positive correlation between breast milk viral load and the CD8 pp65-specific response, suggesting that local virus replication drives antigen-specific CD8 T cells into the breast.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Citomegalovirus/patogenicidade , Leite Humano/imunologia , Leite Humano/virologia , Adulto , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/virologia , Infecções por Citomegalovirus/fisiopatologia , Feminino , Humanos , Carga ViralRESUMO
Glioblastoma (GBM) are the most common and aggressive tumors of human brain. Recent studies showed that human cytomegalovirus (HCMV) can induce malignant transformation of tumor cells to maintain stemness. Transcription factor 5 (ATF5) is an anti-apoptotic protein that is highly expressed in malignant glioma. The aim of this study is to investigate the effect of HCMV infection on the stem cell makers of U251 cells. U251 cells were infected by AD169 HCMV strain (MOI = 1). The expression of stem cell makers (CD133, NES, Notch1) in infected U251 cells were compared with the expression in uninfected U251 cell to see the difference between them. Then, the changes of cell proliferation activity and the expression level of Notch intracellular domain (NICD), Notch1, ATF5, and IE protein were detected in the infected cells, and the expressions of Notch1 and NICD were increased. Cell proliferation assay showed that HCMV infection significantly increased the proliferation. These cells could form tumor spheres in non-adherent conditions. Consistent with these findings, the effect of silencing ATF5 on the proliferation of HCMV-infected U251 cells was also examined. The result shows that short interfering RNA-mediated ATF5 downregulation inhibited this process. These findings imply that HCMV infection may regulate ATF5 signaling pathway to increase cell malignant traits and maintain stemness. J. Med. Virol. 89:878-886, 2017. © 2016 Wiley Periodicals, Inc.
Assuntos
Antígeno AC133/análise , Transformação Celular Viral , Citomegalovirus/crescimento & desenvolvimento , Nestina/análise , Neuroglia/virologia , Receptor Notch1/análise , Fatores Ativadores da Transcrição/análise , Linhagem Celular Tumoral , Proliferação de Células , Perfilação da Expressão Gênica , HumanosRESUMO
PURPOSE: The research project targeted the distribution of genotypes, alleles and haplotypes in single nucleotide polymorphisms (SNPs) within the interleukin (IL) 1A, IL1B, IL6, IL12B and TNFA genes, in fetuses and neonates, congenitally infected with human cytomegalovirus (HCMV), and among uninfected controls. METHODS: The study included 20 fetuses and neonates with congenital HCMV infection and 31 control individuals. The genotypes in SNPs of the studied cytokine genes were identified by a self-designed nested PCR-RFLP assays. Selected genotypes, representing distinct variants in analyzed polymorphisms, were confirmed by sequencing. The relationship between the genetic status of the studied polymorphisms and congenital infection development was estimated, using a logistic regression model. RESULTS: The CT haplotype, composed of C allele determined in IL1A -889 C > T and T allele in IL1B +3954 C > T SNP, increased the risk of congenital HCMV infection, as well as the onset of disease related symptoms (P ≤ 0.0001). Considering disease outcome, the risk of development of symptoms, was increased among the CT heterozygotes in IL1A -889 C > T polymorphism (OR 2.86, 95% CI 0.24-33.90; P = 0.045). Moreover, multiple-SNP variants CCGAG in the range of all the SNPs, analyzed in the study, increased the risk of congenital infection with HCMV (OR 7.94, 95% CI 1.38-45.69; P = 0.026). CONCLUSIONS: Polymorphisms within the proinflammatory cytokine genes may contribute to the development of congenital infection with HCMV.
Assuntos
Citocinas/genética , Infecções por Citomegalovirus/congênito , Infecções por Citomegalovirus/patologia , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Feto , Frequência do Gene , Técnicas de Genotipagem , Humanos , Recém-Nascido , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNARESUMO
BACKGROUND: Human cytomegalovirus (HCMV) is the most common cause of intrauterine infections worldwide. The toll-like receptors (TLRs) have been reported as important factors in immune response against HCMV. Particularly, TLR2, TLR4 and TLR9 have been shown to be involved in antiviral immunity. Evaluation of the role of single nucleotide polymorphisms (SNPs), located within TLR2, TLR4 and TLR9 genes, in the development of human cytomegalovirus (HCMV) infection in pregnant women and their fetuses and neonates, was performed. METHODS: The study was performed for 131 pregnant women, including 66 patients infected with HCMV during pregnancy, and 65 age-matched control pregnant individuals. The patients were selected to the study, based on serological status of anti-HCMV IgG and IgM antibodies and on the presence of viral DNA in their body fluids. Genotypes in TLR2 2258 A > G, TLR4 896 G > A and 1196 C > T and TLR9 2848 G > A SNPs were determined by self-designed nested PCR-RFLP assays. Randomly selected PCR products, representative for distinct genotypes in TLR SNPs, were confirmed by sequencing. A relationship between the genotypes, alleles, haplotypes and multiple variants in the studied polymorphisms, and the occurrence of HCMV infection in pregnant women and their offsprings, was determined, using a logistic regression model. RESULTS: Genotypes in all the analyzed polymorphisms preserved the Hardy-Weinberg equilibrium in pregnant women, both infected and uninfected with HCMV (P > 0.050). GG homozygotic and GA heterozygotic status in TLR9 2848 G > A SNP decreased significantly the occurrence of HCMV infection (OR 0.44 95% CI 0.21-0.94 in the dominant model, P ≤ 0.050). The G allele in TLR9 SNP was significantly more frequent among the uninfected pregnant women than among the infected ones (χ2 = 4.14, P ≤ 0.050). Considering other polymorphisms, similar frequencies of distinct genotypes, haplotypes and multiple-SNP variants were observed between the studied groups of patients. CONCLUSIONS: TLR9 2848 G > A SNP may be associated with HCMV infection in pregnant women.
Assuntos
Infecções por Citomegalovirus/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Complicações Infecciosas na Gravidez/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Receptor Toll-Like 9/genética , Adolescente , Adulto , Anticorpos Antivirais/sangue , Citomegalovirus/imunologia , DNA Viral/sangue , Feminino , Frequência do Gene , Técnicas de Genotipagem , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Gravidez , Análise de Sequência de DNA , Adulto JovemRESUMO
BACKGROUND: Human cytomegalovirus (HCMV) is responsible for the most common intrauterine infections, which may be acquired congenitally from infected pregnant woman to fetus. The research was aimed to estimate the role of three single nucleotide polymorphisms (SNPs) located in TLR2 gene, and the common contribution of TLR2, and previously studied TLR4 and TLR9 SNPs, to the occurrence of congenital HCMV infection in fetuses and newborns. METHODS: The study was performed in 20 Polish fetuses and newborns, congenitally infected with HCMV, and in 31 uninfected controls, as well as with participation of pregnant women, the mothers of 16 infected and 14 uninfected offsprings. Genotypes in TLR2 SNPs were determined, using self-designed nested PCR-RFLP assays, and confirmed by sequencing. The genotypes were tested for Hardy-Weinberg (H-W) equilibrium, and for their relationship with the development of congenital cytomegaly, using a logistic regression model. The common influence of TLR2, TLR4 and TLR9 SNPs on the occurrence of congenital disease was estimated by multiple-SNP analysis. RESULTS: Distribution of the genotypes and alleles in TLR2 1350 T>C and 2029 C>T SNPs was similar between the studied groups of fetuses and neonates. In case of 2258 G>A polymorphism, the GA heterozygotic status was significantly more frequent in the infected cases than among the uninfected individuals (25.0% vs. 3.2%, respectively), and increased the risk of HCMV infection (OR 10.00, 95% CI 1.07-93.44; P ≤ 0.050). Similarly, the A allele within 2258 G>A polymorphism was significantly more frequent among the infected offsprings than in the uninfected ones (12.5% vs. 1.6%; P ≤ 0.050). Complex AA variants for both TLR2 2258 and TLR9 2848 G>A polymorphisms, were estimated to be at increased risk of congenital HCMV infection (OR 11.58, 95% CI 1.19-112.59; P ≤ 0.050). Additionally, significant relationships were observed between the occurrence of complex AA or GA variants for both TLR2 and TLR9 SNPs and the increased viral loads, determined in fetal amniotic fluids and in maternal blood or urine specimens (P ≤ 0.050). CONCLUSIONS: Among various TLR2, TLR4 and TLR9 polymorphisms, TLR2 2258 G>A SNP seems to be an important factor associated with increased risk of congenital HCMV infection in Polish fetuses and neonates.
Assuntos
Infecções por Citomegalovirus/congênito , Infecções por Citomegalovirus/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Receptor 2 Toll-Like/genética , Adulto , Feminino , Feto/patologia , Frequência do Gene , Técnicas de Genotipagem , Humanos , Recém-Nascido , Polônia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Gravidez , Medição de Risco , Análise de Sequência de DNARESUMO
Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state.