Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Microb Cell Fact ; 23(1): 82, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38481270

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers, posing a serious public health challenge that necessitates the development of new therapeutics, therapies, and prevention methods. Among the various therapeutic approaches, interventions involving lactic acid bacteria (LAB) as probiotics and postbiotics have emerged as promising candidates for treating and preventing CRC. While human-isolated LAB strains are considered highly favorable, those sourced from environmental reservoirs such as dairy and fermented foods are also being recognized as potential sources for future therapeutics. RESULTS: In this study, we present a novel and therapeutically promising strain, Lactococcus lactis ssp. lactis Lc4, isolated from dairy sources. Lc4 demonstrated the ability to release the cytostatic agent - arginine deiminase (ADI) - into the post-cultivation supernatant when cultured under conditions mimicking the human gut environment. Released arginine deiminase was able to significantly reduce the growth of HT-29 and HCT116 cells due to the depletion of arginine, which led to decreased levels of c-Myc, reduced phosphorylation of p70-S6 kinase, and cell cycle arrest. The ADI release and cytostatic properties were strain-dependent, as was evident from comparison to other L. lactis ssp. lactis strains. CONCLUSION: For the first time, we unveil the anti-proliferative properties of the L. lactis cell-free supernatant (CFS), which are independent of bacteriocins or other small molecules. We demonstrate that ADI, derived from a dairy-Generally Recognized As Safe (GRAS) strain of L. lactis, exhibits anti-proliferative activity on cell lines with different levels of argininosuccinate synthetase 1 (ASS1) expression. A unique feature of the Lc4 strain is also its capability to release ADI into the extracellular space. Taken together, we showcase L. lactis ADI and the Lc4 strain as promising, potential therapeutic agents with broad applicability.


Assuntos
Citostáticos , Lactococcus lactis , Humanos , Citostáticos/metabolismo , Lactococcus lactis/metabolismo , Hidrolases/metabolismo , Linhagem Celular Tumoral , Arginina
2.
Bioorg Chem ; 145: 107168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354500

RESUMO

Being aware of the need to develop more efficient therapies against cancer, herein we disclose an innovative approach for the design of selective antiproliferative agents. We have accomplished the conjugation of a coumarin fragment with lipophilic cations (triphenylphosphonium salts, guanidinium) for providing mitochondriotropic agents that simultaneously target also carbonic anhydrases IX and XII, involved in the development and progression of cancer. The new compounds prepared herein turned out to be strong inhibitors of carbonic anhydrases IX and XII of human origin (low-to-mid nM range), also endowed with high selectivity, exhibiting negligible activity towards cytosolic CA isoforms. Key interactions with the enzyme were analysed using docking and molecular dynamics simulations. Regarding their in vitro antiproliferative activities, an increase of the tether length connecting both pharmacophores led to a clear improvement in potency, reaching the submicromolar range for the lead compounds, and an outstanding selectivity towards tumour cell lines (S.I. up to >357). Cytotoxic effects were also analysed on MDR cell lines under hypoxic and normoxic conditions. Chemoresistance exhibited by phosphonium salts, and not by guanidines, against MDR cells was based on the fact that the former were found to be substrates of P-glycoprotein (P-gp), the pump responsible for extruding foreign chemicals; this situation was reversed by administrating tariquidar, a third generation P-gp inhibitor. Moreover, phosphonium salts provoked a profound depolarization of mitochondria membranes from tumour cells, thus probably compromising their oxidative metabolism. To gain insight into the mode of action of title compounds, continuous live cell microscopy was employed; interestingly, this technique revealed two different antiproliferative mechanisms for both families of mitocans. Whereas phosphonium salts had a cytostatic effect, blocking cell division, guanidines led to cell death via apoptosis.


Assuntos
Antineoplásicos , Anidrases Carbônicas , Compostos Organofosforados , Humanos , Anidrases Carbônicas/metabolismo , Sais , Relação Estrutura-Atividade , Antígenos de Neoplasias/metabolismo , Antineoplásicos/química , Cumarínicos/química , Guanidinas , Inibidores da Anidrase Carbônica/química , Estrutura Molecular
3.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125943

RESUMO

The rising incidence of colorectal cancer (CRC) and gastric cancer (GC) worldwide, coupled with the limited effectiveness of current chemotherapeutic agents, has prioritized the search for new therapeutic options. Natural substances, which often exhibit cytostatic properties, hold significant promise in this area. This review evaluates the anticancer properties of three natural alkaloids-berberine, sanguinarine, and chelerythrine-against CRC and GC. In vivo and in vitro studies have demonstrated that these substances can reduce tumor volume and inhibit the epithelial-mesenchymal transition (EMT) of tumors. At the molecular level, these alkaloids disrupt key signaling pathways in cancer cells, including mTOR, MAPK, EGFR, PI3K/AKT, and NF-κB. Additionally, they exhibit immunomodulatory effects, leading to the induction of programmed cell death through both apoptosis and autophagy. Notably, these substances have shown synergistic effects when combined with classical cytostatic agents such as cyclophosphamide, 5-fluorouracil, cetuximab, and erlotinib. Furthermore, berberine has demonstrated the ability to restore sensitivity in individuals originally resistant to cisplatin GC. Given these findings, natural compounds emerge as a promising option in the chemotherapy of malignant gastrointestinal tumors, particularly in cases with limited treatment options. However, more research is necessary to fully understand their therapeutic potential.


Assuntos
Benzofenantridinas , Berberina , Neoplasias Colorretais , Neoplasias Gástricas , Humanos , Benzofenantridinas/farmacologia , Benzofenantridinas/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Berberina/farmacologia , Berberina/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Animais , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Alcaloides/farmacologia , Alcaloides/uso terapêutico
4.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473963

RESUMO

The protein p32 (C1QBP) is a multifunctional and multicompartmental homotrimer that is overexpressed in many cancer types, including colon cancer. High expression levels of C1QBP are negatively correlated with the survival of patients. Previously, we demonstrated that C1QBP is an essential promoter of migration, chemoresistance, clonogenic, and tumorigenic capacity in colon cancer cells. However, the mechanisms underlying these functions and the effects of specific C1QBP protein inhibitors remain unexplored. Here, we show that the specific pharmacological inhibition of C1QBP with the small molecule M36 significantly decreased the viability rate, clonogenic capacity, and proliferation rate of different colon cancer cell lines in a dose-dependent manner. The effects of the inhibitor of C1QBP were cytostatic and non-cytotoxic, inducing a decreased activation rate of critical pro-malignant and mitogenic cellular pathways such as Akt-mTOR and MAPK in RKO colon cancer cells. Additionally, treatment with M36 significantly affected the mitochondrial integrity and dynamics of malignant cells, indicating that p32/C1QBP plays an essential role in maintaining mitochondrial homeostasis. Altogether, our results reinforce that C1QBP is an important oncogene target and that M36 may be a promising therapeutic drug for the treatment of colon cancer.


Assuntos
Neoplasias do Colo , Citostáticos , Humanos , Citostáticos/farmacologia , Mitógenos/farmacologia , Transdução de Sinais , Proteínas Mitocondriais/metabolismo , Proliferação de Células , Proteínas de Transporte/metabolismo
5.
Molecules ; 29(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125028

RESUMO

The presented work aimed to explore the potential of oleanolic acid dimers (OADs): their cytostatic and antioxidant activities, molecular docking, pharmacokinetics, and ADMETox profile. The cytostatic properties of oleanolic acid (1) and its 14 synthesised dimers (2a-2n) were evaluated against 10 tumour types and expressed as IC50 values. Molecular docking was performed with the CB-Dock2 server. Antioxidant properties were evaluated with the CUPRAC method. ADMETox properties were evaluated with the ADMETlab Manual (2.0) database. The results indicate that the obtained OADs can be effective cytostatic agents, for which the IC50 not exceeded 10.00 for many tested cancer cell lines. All OADs were much more active against all cell lines than the mother compound (1). All dimers can inhibit the interaction between the 1MP8 protein and cellular proteins with the best results for compounds 2f and 2g with unsaturated bonds within the linker. An additional advantage of the tested OADs was a high level of antioxidant activity, with Trolox equivalent for OADs 2c, 2d, 2g-2j, 2l, and 2m of approximately 0.04 mg/mL, and beneficial pharmacokinetics and ADMETox properties. The differences in the DPPH and CUPRAC assay results obtained for OADs may indicate that these compounds may be effective antioxidants against different radicals.


Assuntos
Antioxidantes , Simulação de Acoplamento Molecular , Ácido Oleanólico , Antioxidantes/química , Antioxidantes/farmacologia , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Ácido Oleanólico/análogos & derivados , Humanos , Linhagem Celular Tumoral , Dimerização , Antineoplásicos/farmacologia , Antineoplásicos/química , Estrutura Molecular
6.
J Biol Inorg Chem ; 28(6): 531-547, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37458856

RESUMO

In the treatment of hormone-dependent cancers, aromatase inhibitors (AI) are receiving increased attention due to some undesirable effects such as the risk of endometrial cancer and thromboembolism of SERMs (selective estrogen receptor modulators). Letrozole is the most active AI with 99% aromatase inhibition. Unfortunately, this compound also exhibits some adverse effects such as hot flashes and fibromyalgias. Therefore, there is an urgent need to explore new types of AIs that retain the same-or even increased-antitumor ability. Inspired by the letrozole structure, a set of new derivatives has been synthesized that include a ferrocenyl moiety and different heterocycles. The derivative that contains a benzimidazole ring, namely compound 6, exhibits a higher aromatase inhibitory activity than letrozole and it also shows potent cytostatic behavior when compared to other well-established aromatase inhibitors, as demonstrated by dose-response, cell cycle, apoptosis and time course experiments. Furthermore, 6 promotes the inhibition of cell growth in both an aromatase-dependent and -independent fashion, as indicated by the study of A549 and MCF7 cell lines. Molecular docking and molecular dynamics calculations on the interaction of 6 or letrozole with the aromatase binding site revealed that the ferrocene moiety increases the van der Waals and hydrophobic interactions, thus resulting in an increase in binding affinity. Furthermore, the iron atom of the ferrocene fragment can form a metal-acceptor interaction with a propionate fragment, and this results in a stronger coupling with the heme group-a possibility that is consistent with the strong aromatase inhibition of 6.


Assuntos
Neoplasias da Mama , Citostáticos , Humanos , Feminino , Letrozol/farmacologia , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/química , Aromatase/metabolismo , Metalocenos , Simulação de Acoplamento Molecular , Nitrilas/farmacologia , Triazóis/farmacologia , Células MCF-7
7.
Cancer Cell Int ; 23(1): 43, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899388

RESUMO

In addition to their lipid-lowering functions, statins elicit additional pleiotropic effects on apoptosis, angiogenesis, inflammation, senescence, and oxidative stress. Many of these effects have been reported in cancerous and noncancerous cells like endothelial cells (ECs), endothelial progenitor cells (EPCs) and human umbilical vein cells (HUVCs). Not surprisingly, statins' effects appear to vary largely depending on the cell context, especially as pertains to modulation of cell cycle, senescence, and apoptotic processes. Perhaps the most critical reason for this discordance is the bias in selecting the applied doses in various cells. While lower (nanomolar) concentrations of statins impose anti-senescence, and antiapoptotic effects, higher concentrations (micromolar) appear to precipitate opposite effects. Indeed, most studies performed in cancer cells utilized high concentrations, where statin-induced cytotoxic and cytostatic effects were noted. Some studies report that even at low concentrations, statins induce senescence or cytostatic impacts but not cytotoxic effects. However, the literature appears to be relatively consistent that in cancer cells, statins, in both low or higher concentrations, induce apoptosis or cell cycle arrest, anti-proliferative effects, and cause senescence. However, statins' effects on ECs depend on the concentrations; at micromolar concentrations statins cause cell senescence and apoptosis, while at nonomolar concentrations statins act reversely.

8.
Eur J Nutr ; 62(6): 2347-2363, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37140645

RESUMO

PURPOSE: The aim of this review is to highlight the potential of garlic phytoconstituents as antitumor agents in colorectal cancer management based on their molecular mechanisms of action, while asking if their consumption, as part of the human diet, might contribute to the prevention of colorectal cancer. METHODS: To gather information on appropriate in vitro, in vivo and human observational studies on this topic, the keywords "Allium sativum", "garlic", "colorectal cancer", "antitumor effect", "in vitro", "in vivo", "garlic consumption" and "colorectal cancer risk" were searched in different combinations in the international databases ScienceDirect, PubMed and Google Scholar. After duplicate and reviews removal, 61 research articles and meta-analyses published between 2000 and 2022 in peer-reviewed journals were found and included in this review. RESULTS: Garlic (Allium sativum) proves to be a rich source of compounds with antitumor potential. Garlic-derived extracts and several of its individual constituents, especially organosulfur compounds such as allicin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, diallyl tetrasulfide, allylmethylsulfide, S-allylmercaptocysteine, Z-ajoene, thiacremonone and Se-methyl-L-selenocysteine were found to possess cytotoxic, cytostatic, antiangiogenic and antimetastatic activities in different in vitro and in vivo models of colorectal cancer. The molecular mechanisms for their antitumor effects are associated with the modulation of several well-known signaling pathways involved in cell cycle progression, especially G1-S and G2-M transitions, as well as both the intrinsic and extrinsic apoptotic pathways. However, even though in various animal models some of these compounds have chemopreventive effects, based on different human observational studies, a diet rich in garlic is not consistently associated with a lower risk of developing colorectal cancer. CONCLUSION: Independent of the impact of garlic consumption on colorectal cancer initiation and promotion in humans, its constituents might be good candidates for future conventional and/or complementary therapies, based on their diverse mechanisms of action.


Assuntos
Compostos Alílicos , Antineoplásicos , Neoplasias Colorretais , Alho , Animais , Humanos , Sulfetos/farmacologia , Compostos de Enxofre , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Compostos Alílicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/prevenção & controle
9.
Bioorg Chem ; 133: 106410, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822000

RESUMO

Most of the currently available cytotoxic agents for tackling cancer are devoid of selectivity, thus causing severe side-effects. This situation stimulated us to develop new antiproliferative agents with enhanced affinity towards tumour cells. We focused our attention on novel chalcogen-containing compounds (thiosemicarbazones, disulfides, selenoureas, thio- and selenocyanates), and particularly on selenium derivatives, as it has been documented that this kind of compounds might act as prodrugs releasing selenium-based reactive species on tumour cells. Particularly interesting in terms of potency and selectivity was a pharmacophore comprised by a selenocyanato-alkyl fragment connected to a p-phenylenediamine residue, where the nature of the second amino moiety (free, Boc-protected, enamine-protected) provided a wide variety of antiproliferative activities, ranging from the low micromolar to the nanomolar values. The optimized structure was in turn conjugated through a peptide linkage with biotin (vitamin B7), a cellular growth promoter, whose receptor is overexpressed in numerous cancer cells; the purpose was to develop a selective vector towards malignant cells. Such biotinylated derivative behaved as a very strong antiproliferative agent, achieving GI50 values in the low nM range for most of the tested cancer cells; moreover, it was featured with an outstanding selectivity, with GI50 > 100 µM against human fibroblasts. Mechanistic studies on the mode of inhibition of the biotinylated selenocyanate revealed (Annexin-V assay) a remarkable increase in the number of apoptotic cells compared to the control experiment; moreover, depolarization of the mitochondrial membrane was detected by flow cytometry analysis, and with fluorescent microscopy, what supports the apoptotic cell death. Prior to the apoptotic events, cytostatic effects were observed against SW1573 cells using label-free cell-living imaging; therefore, tumour cell division was prevented. Multidrug resistant cell lines exhibited a reduced sensitivity towards the biotinylated selenocyanate, probably due to its P-gp-mediated efflux. Remarkably, antiproliferative levels could be restored by co-administration with tariquidar, a P-gp inhibitor; this approach can, therefore, overcome multidrug resistance mediated by the P-gp efflux system.


Assuntos
Antineoplásicos , Citostáticos , Selênio , Humanos , Citostáticos/farmacologia , Linhagem Celular Tumoral , Selênio/farmacologia , Cianatos/farmacologia , Apoptose , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/química , Relação Estrutura-Atividade
10.
Arch Toxicol ; 97(6): 1453-1517, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37099053

RESUMO

With increasing numbers of cancer cases, the use of antineoplastic agents is expected to rise. This will be accompanied by an increase in occupational exposure, which can cause unwanted health effects in workers. Our aim was to give an overview of genotoxic and epigenetic effects after occupational exposure to antineoplastic agents and to assess the concentration-effect relation. Four databases were searched for papers investigating genotoxic and/or epigenetic effects of occupational exposure to antineoplastic agents. Out of the 245 retrieved papers, 62 were included in this review. In this systematic literature review, we confirmed that exposure of healthcare workers to antineoplastic agents can lead to genotoxic damage. However, we observed a lack of data on exposure as well as genotoxic and epigenetic effects in workers other than healthcare workers. Furthermore, gaps in the current knowledge regarding the potential epigenetic effects caused by antineoplastic drug exposure and regarding the link between internal antineoplastic drug concentration and genotoxic and epigenetic effects after occupational exposure to antineoplastic agents were identified, offering a first step for future research.


Assuntos
Antineoplásicos , Exposição Ocupacional , Humanos , Antineoplásicos/toxicidade , Exposição Ocupacional/efeitos adversos , Dano ao DNA
11.
Biochemistry (Mosc) ; 88(7): 912-923, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37751863

RESUMO

Pharmacological value of some natural compounds makes them attractive for use in oncology. The sulfur-containing thiosulfinates found in plants of the genus Allium have long been known as compounds with various therapeutic properties, including antitumor. Over the last few years, the effect of thiosulfinates on various stages of carcinogenesis has been actively investigated. In vitro and in vivo studies have shown that thiosulfinates inhibit proliferation of cancer cells, as well as they induce apoptosis. The purpose of this review is to summarize current data on the use of natural and synthetic thiosulfinates in cancer therapy. Antitumor mechanisms and molecular targets of these promising compounds are discussed. A significant part of the review is devoted to consideration of a new strategy for treatment of oncological diseases - use of the directed enzyme prodrug therapy approach aiming to obtain antitumor thiosulfinates in situ.

12.
Chem Biodivers ; 20(6): e202300156, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37212385

RESUMO

In this project, an effective procedure for constructing a new combination of pyrazolo[3,4-b]pyridine was depicted through the coupling of diazonium salt 2 of heterocyclic amine 1 with active methylene, enamine, and amidine moieties such as 3, 5, 7, and 9 at 0-5 °C in pyridine to afford hydrazinylhydrazonoyl derivatives 4, and diazenylheterocyclic derivatives 6, 8, and 10, respectively. Also, aminopyrazolo[3,4-b]pyridine 1 condensed with different aryl or heteroaryl aldehydes in EtOH/AcOH gave the corresponding aldimine 14, 15, 16. Compound 15 was cyclized via refluxing in DMF for 6 h to afford 18, while the transformation of compound 16 with an alkyl halide afforded 19a, b. The synthesized compounds, explicated by spectral data and elemental analysis, were examined for their antitumor activities. The in vitro cytotoxic activity of new pyrazolo[3,4-b]pyridines against the A2780CP, MCF-7, and HepG-2 cell lines was evaluated using the reference doxorubicin. Compounds 15 and 19a exhibited high reactivity against the A2780CP cell lines, with IC50 values of 35 and 17.9 µM, respectively. Also, compound 28 had the cytotoxic potential for A2780CP and MCF-7 cell lines, with IC50 values of 14.5, and 27.8 µM, respectively.


Assuntos
Antineoplásicos , Humanos , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Piridinas/farmacologia , Células MCF-7 , Relação Estrutura-Atividade , Proliferação de Células , Linhagem Celular Tumoral
13.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834222

RESUMO

BRAF-targeted therapies are widely used for the treatment of melanoma patients with BRAF V600 mutations. Vemurafenib, dabrafenib as well as encorafenib have demonstrated substantial therapeutic activity; however, as is the case with other chemotherapeutic agents, the frequent development of resistance limits their efficacy. Autophagy is one tumor survival mechanism that could contribute to BRAF inhibitor resistance, and multiple studies support an association between vemurafenib-induced and dabrafenib-induced autophagy and tumor cell survival. Clinical trials have also demonstrated a potential benefit from the inclusion of autophagy inhibition as an adjuvant therapy. This review of the scientific literature relating to the role of autophagy that is induced in response to BRAF-inhibitors supports the premise that autophagy targeting or modulation could be an effective adjuvant therapy.


Assuntos
Neoplasias Cutâneas , Humanos , Vemurafenib/uso terapêutico , Neoplasias Cutâneas/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Autofagia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
14.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175727

RESUMO

Oncological diseases are difficult to treat even with strong drugs due to development the multidrug resistance (MDR) of cancer cells. A strategy is proposed to increase the efficiency and selectivity of cytotoxic agents against cancer cells to engage the differences in the morphology and microenvironment of tumor and healthy cells, including the pH, membrane permeability, and ion channels. Using this approach, we managed to develop enhanced formulations of cytotoxic agents with adjuvants (which are known as efflux inhibitors and as ion channel inhibitors in tumors)-with increased permeability in A549 and a protective effect on healthy HEK293T cells. The composition of the formulation is as follows: cytotoxic agents (doxorubicin (Dox), paclitaxel (Pac), cisplatin) + adjuvants (allylbenzenes and terpenoids) in the form of inclusion complexes with ß-cyclodextrin. Modified cyclodextrins make it possible to obtain soluble forms of pure substances of the allylbenzene and terpenoid series and increase the solubility of cytotoxic agents. A comprehensive approach based on three methods for studying the interaction of drugs with cells is proposed: MTT test-quantitative identification of surviving cells; FTIR spectroscopy-providing information on the molecular mechanisms inaccessible to study by any other methods (including binding to DNA, surface proteins, or lipid membrane); confocal microscopy for the visualization of observed effects of Dox accumulation in cancer or healthy cells depending on the drug formulation as a direct control of the correctness of interpretation of the results obtained by the two other methods. We found that eugenol (EG) and apiol increase the intracellular concentration of cytostatic in A549 cells by 2-4 times and maintain it for a long time. However, an important aspect is the selectivity of the enhancing effect of adjuvants on tumor cells in relation to healthy ones. Therefore, the authors focused on adjuvant's effect on the control healthy cells (HEK293T): EG and apiol demonstrate "protective" properties from cytostatic penetration by reducing intracellular concentrations by about 2-3 times. Thus, a combined formulation of cytostatic drugs has been found, showing promise in the aspects of improving the efficiency and selectivity of antitumor drugs; thereby, one of the perspective directions for overcoming MDR is suggested.


Assuntos
Antineoplásicos , Citostáticos , Neoplasias , Humanos , Terpenos/farmacologia , Citostáticos/farmacologia , Citotoxinas/farmacologia , Células HEK293 , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/química , Resistência a Múltiplos Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/química , Extratos Vegetais/farmacologia , Adjuvantes Imunológicos/farmacologia
15.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298542

RESUMO

Methotrexate (MTX) is a folic acid analog and has been used to treat a wide variety of malignant and non-malignant diseases. The wide use of these substances has led to the continuous discharge of the parent compound and its metabolites in wastewater. In conventional wastewater treatment plants, the removal or degradation of drugs is not complete. In order to study the MTX degradation by photolysis and photocatalysis processes, two reactors were used with TiO2 as a catalyst and UV-C lamps as a radiation source. H2O2 addition was also studied (absence and 3 mM/L), and different initial pHs (3.5, 7, and 9.5) were tested to define the best degradation parameters. Results were analyzed by means of ANOVA and the Tukey test. Results show that photolysis in acidic conditions with 3 mM of H2O2 added is the best condition for MTX degradation in these reactors, with a kinetic constant of 0.028 min-1. According to the ANOVA test, all considered factors (process, pH, H2O2 addition, and experimentation time) caused statistically significant differences in the MTX degradation results.


Assuntos
Metotrexato , Poluentes Químicos da Água , Fotólise , Peróxido de Hidrogênio/química , Raios Ultravioleta , Titânio/química , Águas Residuárias , Poluentes Químicos da Água/química , Oxirredução , Catálise
16.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511391

RESUMO

Bones are the fourth most frequent site of metastasis from malignant tumors, including breast cancer, prostate cancer, melanoma, etc. The bioavailability of bone tissue for chemotherapy drugs is extremely low. This requires a search for new approaches of targeted drug delivery to the tumor growth zone after surgery treatment. The aim of this work was to develop a method for octacalcium phosphate (OCP) bone graft functionalization with the cytostatic drug cisplatin to provide the local release of its therapeutic concentrations into the bone defect. OCP porous ceramic granules (OCP ceramics) were used as a platform for functionalization, and bisphosphonate zoledronic acid was used to mediate the interaction between cisplatin and OCP and enhance their binding strength. The obtained OCP materials were studied using scanning electron and light microscopy, high-performance liquid chromatography, atomic emission spectroscopy, and real-time PCR. In vitro and in vivo studies were performed on normal and tumor cell lines and small laboratory animals. The bioactivity of initial OCP ceramics was explored and the efficiency of OCP functionalization with cisplatin, zoledronic acid, and their combination was evaluated. The kinetics of drug release and changes in ceramics properties after functionalization were studied. It was established that zoledronic acid changed the physicochemical and bioactive properties of OCP ceramics and prolonged cisplatin release from the ceramics. In vitro and in vivo experiments confirmed the biocompatibility, osteoconductivity, and osteoinductivity, as well as cytostatic and antitumor properties of the obtained materials. The use of OCP ceramics functionalized with a cytostatic via the described method seems to be promising in clinics when primary or metastatic tumors of the bone tissue are removed.


Assuntos
Cisplatino , Citostáticos , Masculino , Animais , Ácido Zoledrônico/farmacologia , Cisplatino/farmacologia , Fosfatos de Cálcio/química , Regeneração Óssea
17.
Bull Exp Biol Med ; 174(6): 738-740, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37170019

RESUMO

Cytostatic activity of baicalin, baicalein, and neogalenical drug Chlorophyllipt was studied in vitro on HeLa-v cells. Standard samples of Eucalimin, baicalin, and baicalein, as well as Chlorophyllipt and paclitaxel (reference drug Taxacad) were used. The cell deaths were determined by MTT assay in a Multiskan FC microplate reader with incubator. The effective inhibition concentration (IC50) of the tested substances were: paclitaxel (4.0±0.4 µM)-baicalein (10.5±1.1 µM)-baicalin (16.5±1.7 µM)-sum of euglobals in Chlorophyllipt (24.1±2.5 µM). Chlorophyllipt was found to exhibit cytostatic activity. Cytostatic activity of baicalein, baicalin, and Chlorophyllipt was lower than cytostatic activity of the reference drug by 2.6, 4.1, and 6 times, respectively. The prospects of further evaluation of the synergetic effect of baicalin, baicalein, and chlorophyllipt used in combinations with different cytostatic agents for finding the most effective combination have been shown.


Assuntos
Citostáticos , Flavanonas , Humanos , Citostáticos/farmacologia , Flavonoides/farmacologia , Flavanonas/farmacologia , Flavanonas/metabolismo , Células HeLa , Paclitaxel
18.
Bull Exp Biol Med ; 175(4): 530-534, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37768451

RESUMO

Glioblastoma is a tumor characterized by pronounced hypoxia. Hypoxia produces diverse effects on tumor cells, and the results of experimental studies available so far are contradictory. In vitro hypoxia can be modeled in two ways: by reducing the level of atmospheric oxygen (physically induced hypoxia) or by using hypoxia-inducing chemicals such as cobalt chloride (II) (CoCl2) (chemically induced hypoxia). In the present work, we analyzed the effect of CoCl2 on the viability, proliferation, and apoptosis of cells of three glioblastoma cell lines: 1321N1, T98g, and U373 MG. It was shown that CoCl2 induced a dose-dependent decrease in cell viability and proliferation, and at high concentrations (200 and 400 µM) stimulated cell death. CoCl2 had no effect on the cytotoxic activity of doxorubicin in two cell lines T98g and U373 MG, and enhanced the effect of the chemotherapeutic agent on the 1321N1 cell line, though no synergistic cytotoxic effect of the two agents was observed.

19.
Bratisl Lek Listy ; 124(12): 907-914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37983286

RESUMO

BACKGROUND: Recently, trabeculectomy with mitomycin C (MMC) where MMC is applied by injection into the Tenon layer has attracted close attention. However, the data on efficacy and safety of this technique is still limited and more clinical studies are needed. Therefore, the work is aimed at comprehensive evaluation of the effectiveness of trabeculectomy using MMC applied by intra-Tenon injection. METHODS: A set of 50 eyes in 50 patients underwent trabeculectomy using MMC at concentration of 0.4 mg/ml in a total volume of 0.05 ml. The primary end point was to control intraocular pressure (IOP) on postoperative days 1, 8, 30 and 90 and subsequently at 6 and 12 months after surgery. The secondary end point was to evaluate the changes in various corneal parameters prior to and 90 days after surgical procedure. RESULTS: The mean preoperative IOP was 32.34 ± 9.45 mmHg. After surgery, the mean IOP significantly decreased to 17.52 ± 4.58 mmHg at the 90-day follow-up, and to 18.14 ± 3.74 and 19.30 ± 3.82 mmHg at 6 and 12 months after the procedure, respectively. The mean BCVA values remained unchanged compared to baseline (0.77 ± 0.23) to the 90-day follow-up (0.80 ± 0.23).  The mean number of anti-glaucoma medications significantly reduced from 3.50 ± 0.74 to 0.58 ± 1.03 postoperatively. Similarly, the mean corneal hysteresis and ACD of the eye as well as CECD were significantly changed postoperatively. CONCLUSIONS: Trabeculectomy using MMC applied by injection is a safe and effective surgical method for the treatment of primary and secondary forms of open-angle glaucoma. It has a significant hypotonising effect and allows a complete discontinuation of antiglaucoma drugs (Tab. 3, Fig. 3, Ref. 58).


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Trabeculectomia , Humanos , Trabeculectomia/métodos , Mitomicina/uso terapêutico , Glaucoma/cirurgia , Glaucoma de Ângulo Aberto/cirurgia , Glaucoma de Ângulo Aberto/tratamento farmacológico , Resultado do Tratamento , Pressão Intraocular , Seguimentos
20.
Invest New Drugs ; 40(5): 895-904, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35857203

RESUMO

Gastric cancer is one of the most common malignant solid tumors in the world, especially in Asia with high mortality due to a lack of effective treatment. The potential usage of the newly constructed arginine-depleting enzyme-mono-PEGylated Bacillus caldovelox arginase mutant (BCA-M-PEG20), an effective drug against multiple cancer cell lines such as cervical and lung cancers, for the treatment of gastric cancer was demonstrated. Our results indicated that BCA-M-PEG20 significantly inhibited argininosuccinate synthetase (ASS)-positive gastric cancer cells, MKN-45 and BGC-823, while another arginine-depleting enzyme, arginine deiminase (ADI, currently under Phase III clinical trial), failed to suppress the growth of gastric cancer cells. In vitro studies demonstrated that BCA-M-PEG20 inhibited MKN-45 cells by inducing autophagy and cell cycle arrest at the S phase under 0.58 U/mL (IC50 values). Significant caspase-dependent apoptosis was induced in MKN-45 after the treatment with 2.32 U/mL of BCA-M-PEG20. In vivo studies showed that administrations of BCA-M-PEG20 at 250 U/mouse twice per week significantly suppressed about 50% of tumor growth in the MKN-45 gastric cancer xenograft model. Taken together, BCA-M-PEG20 demonstrated a superior potential to be an anti-gastric cancer drug.


Assuntos
Neoplasias Pulmonares , Neoplasias Gástricas , Animais , Apoptose , Arginase/farmacologia , Arginina , Autofagia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Geobacillus , Humanos , Hidrolases/farmacologia , Hidrolases/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA