Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Microbiol ; 23(9): e13346, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33900003

RESUMO

Endocytosis in Trypanosoma cruzi is mainly performed through a specialised membrane domain called cytostome-cytopharynx complex. Its ultrastructure and dynamics in endocytosis are well characterized in epimastigotes, being absent in trypomastigotes, that lack endocytic activity. Intracellular amastigotes also possess a cytostome-cytopharynx but participation in endocytosis of these forms is not clear. Extracellular amastigotes can be obtained from the supernatant of infected cells or in vitro amastigogenesis. These amastigotes share biochemical and morphological features with intracellular amastigotes but retain trypomastigote's ability to establish infection. We analysed and compared the ultrastructure of the cytostome-cytopharynx complex of intracellular amastigotes and extracellular amastigotes using high-resolution tridimensional electron microscopy techniques. We compared the endocytic ability of intracellular amastigotes, obtained through host cell lysis, with that of extracellular amastigotes. Intracellular amastigotes showed a cytostome-cytopharynx complex similar to epimastigotes'. However, after isolation, the complex undergoes ultrastructural modifications that progressively took to an impairment of endocytosis. Extracellular amastigotes do not possess a cytostome-cytopharynx complex nor the ability to endocytose. Those observations highlight morpho functional differences between intra and extracellular amastigotes regarding an important structure related to cell metabolism. TAKE AWAYS: T. cruzi intracellular amastigotes endocytose through the cytostome-cytopharynx complex. The cytostome-cytopharynx complex of intracellular amastigotes is ultrastructurally similar to the epimastigote. Intracellular amastigotes, once outside the host cell, disassembles the cytostome-cytopharynx membrane domain. Extracellular amastigotes do not possess a cytostome-cytopharynx either the ability to endocytose.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Membrana Celular , Endocitose , Humanos , Microscopia Eletrônica
2.
J Struct Biol ; 196(3): 319-328, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27480509

RESUMO

Trypanosoma cruzi epimastigotes uptake nutrients by endocytosis via the cytostome-cytopharynx complex - an anterior opening (cytostome) continuous with a funnel-shaped invagination (cytopharynx) that extends to the posterior of the cell, accompanied by microtubules. During metacyclogenesis - the transformation of epimastigotes into human-infective metacyclic trypomastigotes - the cytostome-cytopharynx complex disappears, as trypomastigotes lose endocytic ability. To date, no studies have examined cytostome-cytopharynx complex disappearance in detail, or determined if endocytic activity persists during metacyclogenesis. Here, we produced 3D reconstructions of metacyclogenesis intermediates (Ia, Ib, Ic) using electron microscopy tomography and focused ion beam-scanning electron microscopy (FIB-SEM), concentrating on the cytostome-cytopharynx complex and adjacent structures, including the preoral ridge (POR). Parasite endocytic potential was examined by incubation of intermediate forms with the endocytic tracer transferrin (Tf)-Au. Ia, Ib and Ic cells were capable of internalizing Tf-Au, and had a shorter cytopharynx than that of epimastigotes, with the cytostome/POR progressively displaced towards the posterior, following the movement of the kinetoplast/flagellar pocket. While some Ic cells had a short cytopharynx with an enlarged proximal end (∼300nm in diameter, larger than that of the cytostome), other Ic cells had no cytopharynx invagination, but retained the cytopharynx microtubules, which were also present in metacyclics. We conclude that cytostome-cytopharynx disappearance and loss of endocytic ability are late events in metacyclogenesis, during which the cytostome is displaced towards the posterior, probably due to a link to the kinetoplast/flagellar pocket. Retention of the cytopharynx microtubules by metacyclics may allow prompt cytostome-cytopharynx reassembly in amastigotes, upon host cell infection.


Assuntos
Membrana Celular/química , Microtúbulos/química , Transferrina/química , Trypanosoma cruzi/química , Animais , Membrana Celular/ultraestrutura , Tomografia com Microscopia Eletrônica , Endocitose/genética , Humanos , Microtúbulos/ultraestrutura , Transferrina/ultraestrutura , Trypanosoma cruzi/patogenicidade
3.
Micron ; 152: 103180, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798356

RESUMO

In Brazil, the Trypanosoma sp. 858 was isolated from a toad (Anura: Bufonidae: Rhinella ictericus) and successfully maintained in cultures. We previously demonstrated that this trypanosome is different but tightly clustered phylogenetically with other trypanosomes from anurans. In this study, we addressed the ultrastructural features of cultured epimastigotes of this new trypanosome. Our results showed very long and thin free motile forms exhibiting a long flagellum and remarkable large and loose K-DNA network. In addition, the anterior portion contained many acidocalcisomes and a well-developed spongiome tubules-contractile vacuole system. One of the main morphological features of this anuran trypanosome was the presence of a complex cytostome-cytopharynx with a specialized membrane coating at the entrance, which is often hidden by the flagellum. Other conspicuous features are the presence of lipid-like droplets, lamellar membrane limited inclusions, and one very large reservosome, all at the posterior portion of the cell body. This new trypanosome may constitute an excellent model for organelles studies related to endocytosis and lipid storage, as demonstrated herein using scanning and transmission electron microscopy and three-dimensional models obtained by either electron microscopy tomography or dual-beam slice and view series.


Assuntos
Imageamento Tridimensional , Trypanosoma , Animais , Bufonidae , Membrana Celular , Vacúolos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA