Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Genome ; 66(7): 165-174, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094381

RESUMO

Macroptilium (Benth.) Urb. is a neotropical legume genus from the subtribe Phaseolinae. The investigated species present a stable chromosome number (2n = 22), but differ in their karyotype formulae, suggesting the presence of chromosome rearrangements. In this work, we comparatively analysed the karyotypes of six species (Macroptilium atropurpureum, Macroptilium bracteatum, Macroptilium erythroloma, Macroptilium gracile, Macroptilium lathyroides, and Macroptilium martii) from the two main clades that form the genus. Heterochromatin distribution was investigated with chromomycin A3 (CMA)/4',6-diamidino-2-phenylindole (DAPI) staining and fluorescent in situ hybridization was used to localize the 5S and 35S ribosomal DNA (rDNA) sites. Single copy bacterial artificial chromosomes (BACs) previously mapped in the related genera Phaseolus L. and Vigna Savi were used to establish chromosome orthologies and to investigate possible rearrangements among species. CMA+/DAPI- bands were observed, mostly associated with rDNA sites. Additional weak, pericentromeric bands were observed on several chromosomes. Although karyotypes were similar, species could be differentiated mainly by the number and position of the 5S and 35S rDNA sites. BAC markers demonstrated conserved synteny of the main rDNA sites on orthologous chromosomes 6 and 10, as previously observed for Phaseolus and Vigna. The karyotypes of the six species could be differentiated, shedding light on its karyotype evolution.


Assuntos
Phaseolus , Hibridização in Situ Fluorescente , Cariotipagem , Cariótipo , Phaseolus/genética , DNA Ribossômico/genética , Bandeamento Cromossômico
2.
Plant Biotechnol J ; 20(6): 1021-1030, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35199459

RESUMO

We had the fortune of starting our scientific/research careers in the Molecular Biology and Crop Biotechnology Laboratory of Professor P.K. Gupta at Ch. Charan Singh University, Meerut, UP, India. Here, we describe the most important scientific contributions of our beloved mentor in the area of cytotaxonomy, cytogenetics, mutation breeding, quantitative genetics, molecular biology, crop biotechnology and plant genomics, on his 85th birthday. Important contributions made in the development and use of genomics resources including the development and use of different kinds of molecular markers, genetic and physical mapping, quantitative trait locus (QTL) interval mapping, genome-wide association mapping and molecular breeding including marker-assisted selection have been briefly summarized. Efforts have been also made to give readers a glimpse of important contributions in the study of cytology/apomixis of grasses, cytotaxonomic studies in asteraceae/fabaceae, nuclear/repetitive DNA content in Lolium, interspecific/intergeneric relationships involving the genus Hordeum and re-examining taxonomy of the tribe Triticeae.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Análise Citogenética , Genoma de Planta/genética , Genômica , Humanos , Melhoramento Vegetal
3.
BMC Genomics ; 22(1): 508, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34225677

RESUMO

BACKGROUND: In the course of evolution, chromosomes undergo evolutionary changes; thus, karyotypes may differ considerably among groups of organisms, even within closely related taxa. The genus Daucus seems to be a promising model for exploring the dynamics of karyotype evolution. It comprises some 40 wild species and the cultivated carrot, a crop of great economic significance. However, Daucus species are very diverse morphologically and genetically, and despite extensive research, the taxonomic and phylogenetic relationships between them have still not been fully resolved. Although several molecular cytogenetic studies have been conducted to investigate the chromosomal structure and karyotype evolution of carrot and other Daucus species, detailed karyomorphological research has been limited to carrot and only a few wild species. Therefore, to better understand the karyotype relationships within Daucus, we (1) explored the chromosomal distribution of carrot centromeric repeats (CentDc) in 34 accessions of Daucus and related species by means of fluorescence in situ hybridization (FISH) and (2) performed detailed karyomorphological analysis in 16 of them. RESULTS: We determined the genomic organization of CentDc in 26 accessions of Daucus (belonging to both Daucus I and II subclades) and one accession of closely related species. The CentDc repeats were present in the centromeric regions of all chromosomes of 20 accessions (representing 11 taxa). In the other Daucus taxa, the number of chromosome pairs with CentDc signals varied depending on the species, yet their centromeric localization was conserved. In addition, precise chromosome measurements performed in 16 accessions showed the inter- and intraspecific karyological relationships among them. CONCLUSIONS: The presence of the CentDc repeats in the genomes of taxa belonging to both Daucus subclades and one outgroup species indicated the ancestral status of the repeat. The results of our study provide useful information for further evolutionary, cytotaxonomic, and phylogenetic research on the genus Daucus and may contribute to a better understanding of the dynamic evolution of centromeric satellites in plants.


Assuntos
Apiaceae , Daucus carota , Daucus carota/genética , Hibridização in Situ Fluorescente , Cariótipo , Filogenia
4.
Cytogenet Genome Res ; 160(9): 539-553, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33227787

RESUMO

The family Aspredinidae comprises a clade of complex systematic relationships, both from molecular and morphological approaches. In this study, conventional and molecular cytogenetic studies coupled with nucleotide sequencing were performed in 6 Aspredininae species (Amaralia hypsiura, Bunocephalus cf. aloikae, Bunocephalus amaurus, Bunocephalus aff. coracoideus, Bunocephalus verrucosus, and Platystacus cotylephorus) from different locations of the Amazon hydrographic basin. Our results showed highly divergent diploid numbers (2n) among the species, ranging from 49 to 74, including the occurrence of an XX/X0 sex chromosome system. A neighbor-joining phylogram based on the cytochrome c oxidase I (COI) showed that Bunocephalus coracoideus is not a monophyletic clade, but closely related to B. verrucosus. The karyotypic data associated with COI suggest an ancestral karyotype for Aspredinidae with a reduced 2n, composed of bi-armed chromosomes and a trend toward chromosomal fissions resulting in higher diploid number karyotypes, mainly composed of acrocentric chromosomes. Evolutionary relationships were discussed under a phylogenetic context with related species from different Siluriformes families. The karyotype features and chromosomal diversity of Aspredinidae show an amazing differentiation, making this family a remarkable model for investigating the evolutionary dynamics in siluriforms as well as in fish as a whole.


Assuntos
Peixes-Gato/genética , Cromossomos/genética , Animais , Evolução Biológica , Brasil , Peixes-Gato/classificação , Cromossomos/ultraestrutura , Código de Barras de DNA Taxonômico , DNA Ribossômico/genética , Diploide , Evolução Molecular , Feminino , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Filogenia , RNA Ribossômico 18S/genética , RNA Ribossômico 5S/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Cromossomos Sexuais/genética , Cromossomos Sexuais/ultraestrutura , Especificidade da Espécie
5.
Chromosome Res ; 27(4): 313-319, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31338646

RESUMO

One of the first characteristics that we learn about the genome of many species is the number of chromosomes it is divided among. Despite this, many questions regarding the evolution of chromosome number remain unanswered. Testing hypotheses of chromosome number evolution using comparative approaches requires trait data to be readily accessible and associated with currently accepted taxonomy. The lack of accessible karyotype data that can be linked to phylogenies has limited the application of comparative approaches that could help us understand the evolution of genome structure. Furthermore, for taxonomists, the significance of new karyotype data can only be determined with reference to records for other species. Here, we describe a curated database (karyotype.org) developed to facilitate access to chromosome number and sex chromosome system data for amphibians. The open web interface for this database allows users to generate customized exploratory plots and tables of selected clades, as well as downloading CSV files for offline analyses.


Assuntos
Anfíbios/genética , Cromossomos , Bases de Dados Genéticas , Genômica/métodos , Cariótipo , Animais , Feminino , Masculino , Cromossomos Sexuais
6.
BMC Evol Biol ; 19(1): 98, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064342

RESUMO

BACKGROUND: The Micronycterinae form a subfamily of leaf-nosed bats (Phyllostomidae) that contains the genera Lampronycteris Sanborn, 1949, and Micronycteris Gray, 1866 (stricto sensu), and is characterized by marked karyotypic variability and discrepancies in the phylogenetic relationships suggested by the molecular versus morphological data. In the present study, we investigated the chromosomal evolution of the Micronycterinae using classical cytogenetics and multidirectional chromosome painting with whole-chromosomes probes of Phyllostomus hastatus and Carollia brevicauda. Our goal was to perform comparative chromosome mapping between the genera of this subfamily and explore the potential for using chromosomal rearrangements as phylogenetic markers. RESULTS: The Micronycterinae exhibit great inter- and intraspecific karyotype diversity, with large blocks of telomere-like sequences inserted within or adjacent to constitutive heterochromatin regions. The phylogenetic results generated from our chromosomal data revealed that the Micronycterinae hold a basal position in the phylogenetic tree of the Phyllostomidae. Molecular cytogenetic data confirmed that there is a low degree of karyotype similarity between Lampronycteris and Micronycteris specimens analyzed, indicating an absence of synapomorphic associations in Micronycterinae. CONCLUSIONS: We herein confirm that karyotypic variability is present in subfamily Micronycterinae. We further report intraspecific variation and describe a new cytotype in M. megalotis. The cytogenetic data show that this group typically has large blocks of interstitial telomeric sequences that do not appear to be correlated with chromosomal rearrangement events. Phylogenetic analysis using chromosome data recovered the basal position for Micronycterinae, but did not demonstrate that it is a monophyletic lineage, due to the absence of common chromosomal synapomorphy between the genera. These findings may be related to an increase in the rate of chromosomal evolution during the time period that separates Lampronycteris from Micronycteris.


Assuntos
Quirópteros/classificação , Quirópteros/genética , Evolução Molecular , Cariótipo , Filogenia , Animais , Teorema de Bayes , Mapeamento Cromossômico , Coloração Cromossômica/métodos , Cromossomos de Mamíferos/genética
7.
Cytogenet Genome Res ; 158(1): 38-45, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31079097

RESUMO

Karyotypes and chromosomal characteristics with focus on B chromosomes of 2 species of the serrasalmid genus Metynnis, namely M. lippincottianus and M. maculatus, were examined using conventional (C-banding) and molecular (FISH mapping of minor and major rDNAs and Rex1, Rex3, and Rex6 retrotransposable elements) protocols. Both species possessed a diploid chromosome number of 2n = 62 and karyotypes composed of 32 metacentric + 28 submetacentric + 2 subtelocentric and 32 metacentric + 26 submetacentric + 4 subtelocentric, respectively; one small B element was found in the female genome of M. lippincottianus. C-banding revealed heterochromatin in the pericentromeric and terminal portions of all chromosomes of both species; the B chromosome was entirely heterochromatic. FISH showed 18S rDNA sites in 2 chromosome pairs in both species (pairs 19 and 22), and a large block in the B chromosome, while 5S rDNA signals were detected in the first pair of subtelocentric chromosomes in both species, moreover in M. maculatus an additional labeled pair 4 was observed. Mapping of the Rex1, Rex3, and Rex6 retrotransposable elements in the genomes of M. lippincottianus and M. maculatus indicated that they were dispersed throughout nearly all the chromosomes of the complement, except for the B chromosome of M. lippincottianus.


Assuntos
Caraciformes/genética , Cromossomos/genética , Animais , Bandeamento Cromossômico , Cromossomos/ultraestrutura , DNA Ribossômico/genética , Feminino , Heterocromatina/genética , Heterocromatina/ultraestrutura , Hibridização in Situ Fluorescente , Cariótipo , Masculino , Retroelementos/genética , Caracteres Sexuais , Especificidade da Espécie
8.
Mol Biol Rep ; 46(5): 4873-4881, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31240527

RESUMO

Cynodon dactylon is characterized by taxonomic and systematic complexity, and polyploidy is one of the factors responsible for its genetic and morphological diversity. The aim of the present study was to compare karyotypes of C. dactylon cytotypes based on fluorescent banding and nuclear DNA content. The nine C. dactylon accessions evaluated were obtained from the Active Germplasm Bank (BAG) of the United States Department of Agriculture (USDA). Roots were pretreated with cycloheximide, fixed in Carnoy's solution and subjected to enzymatic digestion. Slides were prepared by the dissociation and air-drying technique. The fluorescent banding pattern was obtained using chromomycin A3 (CMA)/4,6-dimidino-2-phenylindole (DAPI) staining and DNA content was estimated by flow cytometry. The chromosome number of the accessions ranged from 2n = 2x = 18 to 2n = 5x = 45. Chromosomal polymorphism was observed based on the distribution and number of heterochromatic bands, with CMA+ bands located in the pericentromeric position and DAPI+ bands mainly in the terminal position. PI477004-26 (2n = 3x = 27) and PI291966-27 (2n = 4x = 36) had the highest and lowest number of DAPI+ bands, respectively. The number of CMA+ bands was stable, as only PI477004-26, PI291966-27 and PI289750-10 (2n = 5x = 45) showed variation. There was no direct correlation between an increase in the ploidy level and an increase in the percentage of heterochromatic regions, mainly in relation to A-T-rich blocks. The chromosomal banding variation found reinforces the notion of allopolyploidy occurrence in C. dactylon and demonstrates the genomic complexity of this species regard to repetitive DNA content.


Assuntos
Cynodon/classificação , Cynodon/genética , Cariótipo , Bandeamento Cromossômico , Cromossomos de Plantas , Cariotipagem , Ploidias
9.
Int J Mol Sci ; 20(14)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331072

RESUMO

The catfish family Siluridae contains 107 described species distributed in Asia, but with some distributed in Europe. In this study, karyotypes and other chromosomal characteristics of 15 species from eight genera were examined using conventional and molecular cytogenetic protocols. Our results showed the diploid number (2n) to be highly divergent among species, ranging from 2n = 40 to 92, with the modal frequency comprising 56 to 64 chromosomes. Accordingly, the ratio of uni- and bi-armed chromosomes is also highly variable, thus suggesting extensive chromosomal rearrangements. Only one chromosome pair bearing major rDNA sites occurs in most species, except for Wallago micropogon, Ompok siluroides, and Kryptoterus giminus with two; and Silurichthys phaiosoma with five such pairs. In contrast, chromosomes bearing 5S rDNA sites range from one to as high as nine pairs among the species. Comparative genomic hybridization (CGH) experiments evidenced large genomic divergence, even between congeneric species. As a whole, we conclude that karyotype features and chromosomal diversity of the silurid catfishes are unusually extensive, but parallel some other catfish lineages and primary freshwater fish groups, thus making silurids an important model for investigating the evolutionary dynamics of fish chromosomes.


Assuntos
Peixes-Gato/genética , Variação Genética , Genoma , Genômica , Cariótipo , Sequências Repetitivas de Ácido Nucleico , Animais , Peixes-Gato/classificação , Bandeamento Cromossômico , Hibridização Genômica Comparativa , Análise Citogenética , Genômica/métodos , Hibridização in Situ Fluorescente
10.
Int J Mol Sci ; 20(20)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31601021

RESUMO

Cichlid fishes are the subject of scientific interest because of their rapid adaptive radiation, resulting in extensive ecological and taxonomic diversity. In this study, we examined 11 morphologically distinct cichlid species endemic to Barombi Mbo, the largest crater lake in western Cameroon, namely Konia eisentrauti, Konia dikume, Myaka myaka, Pungu maclareni, Sarotherodon steinbachi, Sarotherodon lohbergeri, Sarotherodon linnellii, Sarotherodon caroli, Stomatepia mariae, Stomatepia pindu, and Stomatepia mongo. These species supposedly evolved via sympatric ecological speciation from a common ancestor, which colonized the lake no earlier than one million years ago. Here we present the first comparative cytogenetic analysis of cichlid species from Barombi Mbo Lake using both conventional (Giemsa staining, C-banding, and CMA3/DAPI staining) and molecular (fluorescence in situ hybridization with telomeric, 5S, and 28S rDNA probes) methods. We observed stability on both macro and micro-chromosomal levels. The diploid chromosome number was 2n = 44, and the karyotype was invariably composed of three pairs of meta/submetacentric and 19 pairs of subtelo/acrocentric chromosomes in all analysed species, with the same numbers of rDNA clusters and distribution of heterochromatin. The results suggest the evolutionary stability of chromosomal set; therefore, the large-scale chromosomal rearrangements seem to be unlikely associated with the sympatric speciation in Barombi Mbo.


Assuntos
Adaptação Biológica/genética , Adaptação Biológica/efeitos da radiação , Instabilidade Cromossômica/efeitos da radiação , Ciclídeos/genética , Animais , Evolução Biológica , Camarões , Bandeamento Cromossômico , Mapeamento Cromossômico , Hibridização in Situ Fluorescente , Cariótipo , Cariotipagem , Lagos , Telômero/genética
11.
Cytogenet Genome Res ; 156(3): 158-164, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30472715

RESUMO

The hoatzin (Opisthocomus hoazin Müller, 1776) is a folivorous bird, endemic to the Amazonian region. It presents some unique characteristics, including wing claws and foregut fermentation, which make its phylogenetic relationship to other birds difficult to determine. There have been various attempts to place it among the Galliformes, Gruiformes, Musophagiformes, Cuculiformes, and Charadriiformes, but phylogenetic analyses always show low supporting values. Nowadays, the hoatzin is included in the monotypic order Opisthocomiformes, but the relationship of this order to other groups of birds is still unclear. Although its karyotype resembles the typical avian model, fissions of the syntenic groups corresponding to chicken chromosomes 1 and 2 and 2 fusions were found. The presence of 18S rDNA clusters in 2 pairs of microchromosomes is another derived character. Hence, different rearrangements were detected in the karyotype of the hoatzin, indicating it has been derived from the putative ancestral karyotype by the occurrence of fissions and fusions. However, as these rearrangements are not exclusive to O. hoazin, they do not clarify the phylogenetic position of this enigmatic species.


Assuntos
Aves/classificação , Aves/genética , Cariotipagem , Filogenia , Animais , Mapeamento Cromossômico , Coloração Cromossômica , DNA Ribossômico/genética , Diploide , Feminino , Hibridização in Situ Fluorescente , Metáfase , RNA Ribossômico 18S/genética , Sintenia
12.
Genetica ; 144(1): 37-46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26650375

RESUMO

The genera Leptodactylus and Adenomera comprise 92 species distributed throughout the Neotropical region. These species have a modal diploid chromosome number 2n = 22. However, chromosome rearrangements are evident in the differentiation of five intra-generic groups in the genus Leptodactylus (L. fuscus, L. latrans, L. marmoratus (formally composed by the species of the genus Adenomera), L. melanonotus, L. pentadactylus), yet it is not clear if there is a karyotype pattern for each group. Aiming to understand the intra-generic and interspecific karyotype patterns of Leptodactylus and Adenomera, cytogenetic analyses were performed in A. andreae, L. macrosternum, L. pentadactylus, L. petersii, and L. riveroi using conventional staining, C-banding, nucleolus organizer region (NOR) and hybridization in situ fluorescent (FISH). The karyotype of Leptodactylus riveroi was described for the first time. Adenomera andreae had 2n = 26, while the remaining species 2n = 22. The NOR was found on pair No. 8 of A. andreae, L. macrosternum, L. pentadactylus, and L. riveroi, whereas L. petersii had it on pairs Nos. 6 and 10. These locations were confirmed by the FISH with 18S rDNA probe, except for pair No. 10 of L. petersii. The C-banding pattern was evident at the centromeres of chromosomes of all species and some interspecific variations were also observed. 2n = 22 was observed in the species of the L. latrans group, as well as in the intra-generic groups L. fuscus and L. pentadactylus; in the L. melanonotus group there were three diploid chromosome numbers 2n = 20, 22 and 24; and a larger variation in 2n was also evident in the L. marmoratus group.


Assuntos
Anuros/genética , Cariótipo , Animais , Anuros/classificação , Brasil , Bandeamento Cromossômico , Diploide , Feminino , Hibridização in Situ Fluorescente , Masculino , Região Organizadora do Nucléolo/genética , RNA Ribossômico 18S/genética , Especificidade da Espécie
13.
Genetica ; 143(6): 729-39, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26497874

RESUMO

Based on morphological, bioacoustics, and morphological traits, the genus Scinax has been subdivided into two major clades: S. catharinae and S. ruber. The first clade includes S. catharinae and S. perpusillus groups, whereas the second clade includes S. rostratus and S. uruguayus groups. Chromosome morphology, NOR and C-banding patterns of variation support these clades. This study aims the cytogenetic characterization of five species currently included in the S. perpusillus group: Scinax sp. (gr. perpusillus), S. arduous, S. belloni, S. cosenzai, and S. v-signatus, including standard cytogenetic techniques and repetitive DNA FISH probes. All species had 2n = 24 chromosomes. Nucleolar organizing regions occurred in chromosome pair 6 in all species, but differed in their locations among some species, suggesting a putative synaponomastic character for the clade. In S. belloni, the first chromosome pair was a metacentric, contrasting with the submetacentric first pair reported in all other species of the genus. Scinax sp. (gr. perpusillus) and S. v-signatus had similar karyotypic formulae, suggesting they are related species. Scinax cosenzai had a divergent C-banding pattern. Repetitive DNA probes hybridized more frequently in chromosomal subtelomeric regions in all species indicating recent cladogenesis in these species. Karyotypic evidence indicates unreported high levels of stabilization within S. perpusillus and in S. catharinae clade, resulting in a wealth of characters potentially informative for higher phylogenetic analyses.


Assuntos
Anuros/genética , Instabilidade Cromossômica , Cariótipo , Animais , Anuros/classificação , Brasil , Cariotipagem , Especificidade da Espécie
14.
J Fish Biol ; 87(3): 634-45, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26242690

RESUMO

A comparative cytogenetic analysis, using both conventional staining techniques and fluorescence in situ hybridization, of six Indo-Pacific moray eels from three different genera (Gymnothorax fimbriatus, Gymnothorax flavimarginatus, Gymnothorax javanicus, Gymnothorax undulatus, Echidna nebulosa and Gymnomuraena zebra), was carried out to investigate the chromosomal differentiation in the family Muraenidae. Four species displayed a diploid chromosome number 2n = 42, which is common among the Muraenidae. Two other species, G. javanicus and G. flavimarginatus, were characterized by different chromosome numbers (2n = 40 and 2n = 36). For most species, a large amount of constitutive heterochromatin was detected in the chromosomes, with species-specific C-banding patterns that enabled pairing of the homologous chromosomes. In all species, the major ribosomal genes were localized in the guanine-cytosine-rich region of one chromosome pair, but in different chromosomal locations. The (TTAGGG)n telomeric sequences were mapped onto chromosomal ends in all muraenid species studied. The comparison of the results derived from this study with those available in the literature confirms a substantial conservation of the diploid chromosome number in the Muraenidae and supports the hypothesis that rearrangements have occurred that have diversified their karyotypes. Furthermore, the finding of two species with different diploid chromosome numbers suggests that additional chromosomal rearrangements, such as Robertsonian fusions, have occurred in the karyotype evolution of the Muraenidae.


Assuntos
Bandeamento Cromossômico , Enguias/genética , Hibridização in Situ Fluorescente , Animais , Evolução Biológica , Diploide , Enguias/classificação , Feminino , Heterocromatina , Oceano Índico , Cariótipo , Masculino , Região Organizadora do Nucléolo/genética , Telômero/genética
15.
Comp Cytogenet ; 18: 175-182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39360033

RESUMO

Within a practical course of cytotaxonomy organized in Pisa (Italy) on February 2024 by the Group for Floristics, Systematics and Evolution of the Italian Botanical Society, we tested whether using image analysis softwares possible biases are still introduced by different observers. We conclude that observer bias selectively applies in possibly overestimating the length of short arms in a karyotype. As a consequence, the parameters most sensitive to these possible errors are CVCI and CVCL, and to a less degree MCA and THL. To achieve more stable results among observers, a still lacking standardized measurement protocol could be helpful.

16.
Comp Cytogenet ; 18: 73-95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38798789

RESUMO

To characterize the chromosomes of the four species of Polygonatum Miller, 1754, used in traditional Chinese medicine, P.cyrtonema Hua, 1892, P.kingianum Collett et Hemsley, 1890, P.odoratum (Miller, 1768) Druce, 1906, and P.sibiricum Redouté, 1811, and have an insight into the karyotype variation of the genus Polygonatum, fluorescence in situ hybridization (FISH) with 5S and 45S rDNA oligonucleotide probes was applied to analyze the karyotypes of 9 populations of the four species. Detailed molecular cytogenetic karyotypes of the 9 populations were established for the first time using the dataset of chromosome measurements and FISH signals of 5S and 45S rDNA. Four karyotype asymmetry indices, CVCI, CVCL, MCA and Stebbins' category, were measured to elucidate the asymmetry of the karyotypes and karyological relationships among species. Comparison of their karyotypes revealed distinct variations in the karyotypic parameters and rDNA patterns among and within species. The basic chromosome numbers detected were x = 9, 11 and 13 for P.cyrtonema, x = 15 for P.kingianum, x = 10 and 11 for P.odoratum, and x = 12 for P.sibiricum. The original basic chromosome numbers of the four species were inferred on the basis of the data of this study and previous reports. All the 9 karyotypes were of moderate asymmetry and composed of metacentric, submetacentric and subtelocentric chromosomes or consisted of two of these types of chromosomes. Seven populations have one locus of 5S rDNA and two loci of 45S rDNA, and two populations added one 5S or 45S locus. The karyological relationships among the four species revealed by comparison of rDNA patterns and PCoA based on x, 2n, TCL, CVCI, MCA and CVCL were basically accordant with the phylogenetic relationships revealed by molecular phylogenetic studies. The mechanisms of both intra- and inter-specific dysploidy in Polygonatum were discussed based on the data of this study and literature.

17.
Methods Mol Biol ; 2703: 161-171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646944

RESUMO

A brief overview to the Index to Chromosome Numbers in Asteraceae database is provided. The database contains karyological information on Asteraceae and has been repeatedly improved and updated and is now hosted at the National Bioscience Database center. Also, we take the opportunity to revisit the evolution of base chromosome numbers in Asteraceae, emphasizing the phenomena of polyploidy, descending dysploidy, and hybridization, common in the family. Chromosome numbers for species included in one of the most recent phylogenetic treatments of the Asteraceae were obtained from the Index to Chromosome Numbers in Asteraceae database were mapped on to the modified phylogeny diagram, and base chromosome numbers were determined for each branch of the phylogeny. Results for tribal base numbers were the same as those hypothesized in our previous work with additional base numbers added for tribes not previously recognized but supported by newer phylogenetic methods. The Asteraceae show an ancestral base chromosome number of x = 9 and originated in the Antarctica (Gondowanaland) in Cretaceous (80 Mys ago). The x = 9 number has been retained through successive South American lineages of the Barnadesieeae, Gochnatieae, Stiffieae, Wunderlichieae, Astereae, and Senecioneae following northward migration. Northward migration to Africa was accompanied with x = 10 becoming the dominant base chromosome number as the family evolved multiple additional tribes. Northward migration to Australasia with x = 9 was in Astereae and the families Goodeneaseae, Menyanthaceae, and Stylydiaceae. The evolution of the North American Heliantheae alliance began with the appearance of x2 = 19 which persisted in multiple additional new tribes. Frequent dysploidy decreases, polyploidy and hybridization occurred throughout the history of the family.


Assuntos
Asteraceae , Humanos , Asteraceae/genética , Filogenia , Hibridização Genética , Poliploidia , Cromossomos
18.
Comp Cytogenet ; 17(1): 31-58, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305810

RESUMO

To have an insight into the karyotype variation of eight Cucurbitaceae crops including Cucumissativus Linnaeus, 1753, Cucumismelo Linnaeus, 1753, Citrulluslanatus (Thunberg, 1794) Matsumura et Nakai, 1916, Benincasahispida (Thunberg, 1784) Cogniaux, 1881, Momordicacharantia Linnaeus, 1753, Luffacylindrica (Linnaeus, 1753) Roemer, 1846, Lagenariasicerariavar.hispida (Thunberg, 1783) Hara, 1948 and Cucurbitamoschata Duchesne ex Poiret, 1819, well morphologically differentiated mitotic metaphase chromosomes were prepared using the enzymatic maceration and flame-drying method, and the chromosomal distribution of heterochromatin and 18S-5.8S-26S rRNA genes (45S rDNA) was investigated using sequential combined PI and DAPI (CPD) staining and fluorescence in situ hybridization (FISH) with 45S rDNA probe. Detailed karyotypes were established using the dataset of chromosome measurements, fluorochrome bands and rDNA FISH signals. Four karyotype asymmetry indices, CVCI, CVCL, MCA and Stebbins' category, were measured to elucidate the karyological relationships among species. All the species studied had symmetrical karyotypes composed of metacentric and submetacentric or only metacentric chromosomes, but their karyotype structure can be discriminated by the scatter plot of MCA vs. CVCL. The karyological relationships among these species revealed by PCoA based on x, 2n, TCL, MCA, CVCL and CVCI was basically in agreement with the phylogenetic relationships revealed by DNA sequences. CPD staining revealed all 45S rDNA sites in all species, (peri)centromeric GC-rich heterochromatin in C.sativus, C.melo, C.lanatus, M.charantia and L.cylindrica, terminal GC-rich heterochromatin in C.sativus. DAPI counterstaining after FISH revealed pericentromeric DAPI+ heterochromatin in C.moschata. rDNA FISH detected two 45S loci in five species and five 45S loci in three species. Among these 45S loci, most were located at the terminals of chromosome arms, and a few in the proximal regions. In C.sativus, individual chromosomes can be precisely distinguished by the CPD band and 45S rDNA signal patterns, providing an easy method for chromosome identification of cucumber. The genome differentiation among these species was discussed in terms of genome size, heterochromatin, 45S rDNA site, and karyotype asymmetry based on the data of this study and previous reports.

19.
Genet Mol Biol ; 35(4): 797-801, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23271941

RESUMO

The fish genus Astyanax is widespread throughout the Neotropical region and is one of the most species-rich genera of the Characiformes. Cytogenetic studies of Astyanax have revealed marked intra- and interspecific diversity, with the identification of various species complexes. In this report, we describe the karyotypic structure of two sympatric species of Astyanax (Astyanax sp. and Astyanax aff. fasciatus) from the Middle Contas River basin in the northeastern Brazilian state of Bahia. Both species had 2n = 48 but differed in their karyotypic formulae. Small heterochromatic blocks and multiple nucleolar organizer regions (NORs) were identified in both species. Terminal CMA(3) (+)/DAPI(-) signals were observed in Astyanax sp. and A. aff. fasciatus, mostly coincident with NORs. These results show that chromosomal markers can be used to identify species in this fish complex. These markers can provide useful information for evolutionary studies and investigations on the mechanisms of chromosomal diversity in Astyanax.

20.
Genet Mol Biol ; 35(4 (suppl)): 1027-35, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23412701

RESUMO

Plants of the family Iridaceae are well represented in the grassland vegetation of southern Brazil, occurring in the Pampa and Atlantic Forest biomes. Nevertheless, little is known about the taxonomy and evolution of Iridaceae species in southern Brazil. The main goal of this review is to compile published information about South American Iridaceae, and to discuss the evolution and genetic diversity of the family presenting our own research data in the light of the published literature. The main focus is on the genera Calydorea, Cypella, Herbertia, and Sisyrinchium. Aspects of reproductive system and of pollinator attraction are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA