Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neurooncol ; 159(2): 261-270, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35816267

RESUMO

INTRODUCTION: We aimed to evaluate IDH1 p.R132H mutation and 2-hydroxyglutarate (2HG) in cerebrospinal fluid (CSF) as biomarkers for patients with IDH-mutant gliomas. METHODS: CSF was collected from patients with infiltrating glioma, and 2HG levels were measured by liquid chromatography-mass spectrometry. IDH1 p.R132H mutant allele frequency (MAF) in CSF-ctDNA was measured by digital droplet PCR (ddPCR). Tumor volume was measured from standard-of-care magnetic resonance images. RESULTS: The study included 48 patients, 6 with IDH-mutant and 42 with IDH-wildtype gliomas, and 57 samples, 9 from the patients with IDH-mutant and 48 from the patients with IDH-wildtype gliomas. ctDNA was detected in 7 of the 9 samples from patients with IDH-mutant glioma, and IDH1 p.R132H mutation was detected in 5 of the 7 samples. The MAF ranged from 0.3 to 39.95%. Total 2HG level, D-2HG level, and D/L-2HG ratio in CSF were significantly higher in patients with IDH-mutant gliomas than in patients with IDH-wildtype gliomas. D-2HG level and D/L-2HG ratio correlated with total tumor volume in patients with IDH-mutant gliomas but not in patients with IDH-wildtype gliomas. CONCLUSION: Our results suggest that detection of IDH1 p.R132H mutation by ddPCR and increased D-2HG level in CSF may help identify IDH-mutant gliomas. Our results also suggest that D-2HG level and D/L-2HG ratio correlate with tumor volume in patients with IDH-mutant gliomas. Further prospective studies with larger cohorts are needed to validate these findings.


Assuntos
DNA Tumoral Circulante , Glioma , Isocitrato Desidrogenase , Biomarcadores , Neoplasias Encefálicas/líquido cefalorraquidiano , Neoplasias Encefálicas/diagnóstico , DNA Tumoral Circulante/líquido cefalorraquidiano , Glioma/diagnóstico , Glutaratos , Humanos , Isocitrato Desidrogenase/líquido cefalorraquidiano , Isocitrato Desidrogenase/genética , Mutação , Estudos Prospectivos
2.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189102, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38653436

RESUMO

Gliomas with Isocitrate dehydrogenase (IDH) mutation represent a discrete category of primary brain tumors with distinct and unique characteristics, behaviors, and clinical disease outcomes. IDH mutations lead to aberrant high-level production of the oncometabolite D-2-hydroxyglutarate (D-2HG), which act as a competitive inhibitor of enzymes regulating epigenetics, signaling pathways, metabolism, and various other processes. This review summarizes the significance of IDH mutations, resulting upregulation of D-2HG and the associated molecular pathways in gliomagenesis. With the recent finding of clinically effective IDH inhibitors in these gliomas, this article offers a comprehensive overview of the new era of innovative therapeutic approaches based on mechanistic rationales, encompassing both completed and ongoing clinical trials targeting gliomas with IDH mutations.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Mutação , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/antagonistas & inibidores , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Glutaratos/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais , Terapia de Alvo Molecular
3.
J Neuropathol Exp Neurol ; 82(11): 921-933, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37740942

RESUMO

Gain-of-function mutations in isocitrate dehydrogenase (IDH) genes result in excessive production of (D)-2-hydroxyglutarate (D-2HG) which intrinsically modifies tumor cell epigenetics and impacts surrounding noncancerous cells through nonepigenetic pathways. However, whether D-2HG has a paracrine effect on endothelial cells in the tumor microenvironment needs further clarification. We quantified microvessel density by immunohistochemistry using tissue sections from 60 high-grade astrocytic gliomas with or without IDH mutation. Microvessel density was found to be reduced in tumors carrying an IDH mutation. Ex vivo experiments showed that D-2HG inhibited endothelial cell migration, wound healing, and tube formation by suppressing cell proliferation but not viability, possibly through reduced activation of the mTOR/STAT3 pathway. Further, D-2HG reduced fluorescent dextran permeability and decreased paracellular T-cell transendothelial migration by augmenting expression of junctional proteins thereby collectively increasing endothelial barrier function. These results indicate that D-2HG may influence the tumor vascular microenvironment by reducing the intratumoral vasculature density and by inhibiting the transport of metabolites and extravasation of circulating cells into the astrocytoma microenvironment. These observations provide a rationale for combining IDH inhibition with antitumor immunological/angiogenic approaches and suggest a molecular basis for resistance to antiangiogenic drugs in patients whose tumors express a mutant IDH allele.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Neoplasias Encefálicas/patologia , Células Endoteliais/metabolismo , Encéfalo/patologia , Astrocitoma/patologia , Mutação/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Proliferação de Células , Microambiente Tumoral
4.
Drugs Today (Barc) ; 56(1): 21-32, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32055803

RESUMO

Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key metabolic enzymes that convert isocitrate to alpha-ketoglutarate (alphaKG). Somatic point mutations in IDH1/2 that are found in rare distinct subsets of cancers confer a gain of function in cancer cells which results in the accumulation and secretion in vast excess of the oncometabolite D-2-hydroxyglutarate (D-2HG). Overproduction of D-2HG interferes with cellular metabolism and epigenetic regulation, contributing to oncogenesis. High levels of D-2HG inhibit alphaKG-dependent dioxygenases including histone, DNA and RNA demethylases, resulting in histone, DNA and RNA hypermethylation and cell differentiation blockade. In addition, D-2HG is a biomarker suitable for the detection of IDH1/2 mutations at diagnosis, and is also predictive of clinical response. The U.S. Food and Drug Administration (FDA) approved ivosidenib, a mutant-IDH1 enzyme inhibitor, for patients with relapsed or refractory IDH1-mutated acute myeloid leukemia (AML) in 2018, and also as front-line therapy for newly diagnosed elderly patients 75 years or older or who are ineligible to receive intensive chemotherapy in 2019. Ivosidenib represents a novel drug class for targeted therapy in AML.


Assuntos
Glicina/análogos & derivados , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Piridinas/uso terapêutico , Adulto , Idoso , Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Epigênese Genética , Glicina/uso terapêutico , Humanos , Mutação
5.
Biomed Pharmacother ; 89: 805-811, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28273642

RESUMO

Particular mutations in the isocitrate dehydrogenase gene (IDH) were discovered in several gliomas citing astrocytoma, oligodendroglioma, and glioblastoma multiform, but also in leukemia; these mutations were discovered in nearly all cases of secondary glioblastomas, they evolve from lower-grade gliomas, but are limited in primary high-grade glioblastoma multiform. These mutations distinctively produce (D)-2-hydroxyglutarate (D-2-HG) from alpha-ketoglutarate (α-KG). (D)-2-hydroxyglutarate is accumulated to very high concentrations which inhibit the function of enzymes that are dependent on alpha-ketoglutarate. This modification leads to a hyper-methylated state of DNA and histones, resulting in different gene expression that can activate oncogenes and inactivate tumor-suppressor genes. In our work we review the impact of the mutations that occur in IDH genes, we focus on their impact on distribution in cancer. As IDH mutations appear in many different conditions we expose the extent of IDH mutations and derivate their impact on cancer prognosis, diagnosis, and even their oncogenicity, we will also link their impact to HIF-1α and derivate some target and finally, we present some of the therapeutics under research and out on market.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isocitrato Desidrogenase/metabolismo , Neoplasias/metabolismo , Biomarcadores , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Isocitrato Desidrogenase/genética , Mutação , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA